Theory Tree_Input1

theory Tree_Input1
imports Tree_More_Corec_Upto0
theory Tree_Input1
imports Tree_More_Corec_Upto0
begin

type_synonym 'a K1 = "'a * 'a"
composition_bnf (open) K1: "'a * 'a"
thm K1.set_map
abbreviation "K1_map ≡ λf. f ** f"
abbreviation "K1_rel ≡ λR. rel_prod R R"
abbreviation "K1_set ≡ λx. Basic_BNFs.fsts x ∪ Basic_BNFs.snds x"
abbreviation "bd_K1 ≡ natLeq"
type_synonym bd_type_K1 = nat

end