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Abstract

Subtyping with coercion semantics allows a type inference system to correct some ill-typed pro-
grams by the automatic insertion of implicit type conversions at run-time. This simplifies program-
mer’s life but has its price: the general typability problem for given base type subtype dependencies
is NP-complete. Nevertheless, if the given coercions define an order on types with certain proper-
ties, the problem behaves in a sane way in terms of complexity.

This thesis presents an algorithm that can be used to extend Hindley-Milner type inference with
coercive subtyping assuming a given partial order on base types. Especially, we discuss restrictions
on the subtype dependencies that are necessary to achieve an efficient implementation. Examples of
problems that occur if these restrictions are not met are given. The result of these considerations is
that the algorithm is complete if the given base type poset is a disjoint union of lattices. Furthermore,
the interaction of subtyping with type classes is addressed. The algorithm that is extended to deal
with type classes requires even a stronger restriction to assure completeness.

An ML-implementation of the presented algorithm is used in the generic proof assistant Isabelle.

Zusammenfassung

Ein um Subtyping erweitertes Typinferenzsystem kann ein nicht typkorrektes Programm reparie-
ren, indem es implizite Typumwandlungsfunktionen, sogenannte Coercions, automatisch einfügt.
Dies vereinfacht das Leben der Programmierer, hat aber auch seinen Preis: das allgemeine Problem
der Typüberprüfung bei vorgegebenen Subtypbeziehungen zwischen Basistypen ist NP-vollständig.
Komplexitätstechnisch beherrschen kann man das Problem nur, wenn die Subtypbeziehungen eine
Ordnung mit gewissen Eigenschaften darstellen.

In dieser Bachelor-Thesis wird ein Algorithmus zur Erweiterung von der Hindley-Milner Typin-
ferenz um Subtyping mit Coercions vorgestellt. Ein wichtiger Aspekt der Arbeit ist die Diskus-
sion der für eine effiziente Implementierung notwendigen Einschränkungen der Suptyprelation.
Festgehalten wird dabei das Ergebnis der Vollständigkeit für den Algorithmus, falls die partielle
Ordnung von Subtypen eine disjunkte Vereinigung von Verbänden ist. Die Notwendigkeit dieser
Einschränkung wird mit anschaulichen Beispielen belegt. Darüber hinaus wird die Interaktion von
Subtyping mit Typklassen behandelt. Um die Vollständigkeit der Erweiterung, die zusätzlich zu
Subtyping auch noch Typklassen verarbeitet, zu garantieren, wird eine noch stärkere Restriktion
der Subtyprelation erörtert.

Eine ML-Implementierung der vorgestellten Erweiterung wird in dem generischen Beweisassi-
stenten Isabelle verwendet.
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Subtyping is a cross-cutting extension,
interacting with most other language features
in non-trivial ways.

Benjamin C. Pierce [Pie02]

1. Introduction

1.1. Motivation

The main idea of subtype polymorphism, or simply subtyping, extension is to allow the program-
mer to omit type conversions, also called coercions. Experienced object-oriented programmers are
used to this extension in form of inheritance. For example, in Java an object of a subclass can always
be treated as an object of a superclass. This happens automatically – the programmer does not have
to insert any type casts to indicate this.

In functional programming languages with static typing subtyping is not a common feature. The
main reason for this is the increase of complexity of a type inference system with subtyping com-
pared to the well known algorithm W. The advantages of subtyping are underestimated. Type con-
versions should never contribute to the semantics of a program. It would clearly end up in madness
if a type conversion from natural numbers to integers would change the value of the converted term.
So type conversions can be regarded as unnecessary ballast to make a code type-correct. Allowing
to remove them, subtyping improves the readability of a program a lot.

This applies at least as much to the field of semi-automated theorem proving. One of the core
features of the generic proof assistant Isabelle is the Isar proof language. The biggest achievement
of Isar is that it provides a language for writing down theorems and proofs, which are readable and
understandable for both machines and humans (with a mathematical background). Type conver-
sions are only relevant for the machine. It is desirable not to have them in the theorem and proof
texts. Instead the type inference system should insert them automatically to make the source code
type correct.

We present a generic algorithm that extends Hindley-Milner type inference with subtyping. The
algorithm is implemented and used in the Isabelle proof assistant.

1.2. Related Work

John C. Mitchell [Mit84], [Mit91] was the first to reason about automatic coercion insertion in func-
tional programming.

The COQ proof assistant uses a coercive subtyping algorithm that has some annoying issues that
are discussed in chapter 3. Luo and Kieling [KL03] show how a similar algorithm can be used in
Hindley-Milner type systems.

The basic algorithm presented in chapter 4 combines the works of Fuh and Mishra [FM88] and
Wand and O’Keefe [WO89].
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1. Introduction

Our subtype constraint simplification is based on the MATCH-algorithm presented by Fuh and
Mishra. MATCH in some way blends the usual unification with constraint simplification. Our
intention was to provide a clean cut between these logically disjoint procedures.

The core idea of our algorithm to solve the simplified constraint set was introduced by Wand
and O’Keefe . Unfortunately the complexity analysis in [WO89] was wrong. Mitchell and Lincoln
[LM92] improved the requirements on the partial subtype order to have linear time complexity
for this algorithm. Tiuryn [Tiu92] showed that the satisfiability problem for subtype inequalities is
solvable in PTIME if the underlying order of base types is a disjoint union of lattices.

1.3. Structure

Chapter 2 explains the notation used in this thesis. Then in chapter 3, basics of subtype polymor-
phism are covered. Also, a description of arising problems in case of the usage of a more or less
naive subtype inference algorithm is given. Chapter 4 presents our algorithm for subtyping, which
is extended for usage in a system with type classes in chapter 5. In chapter 6 some completeness
problems of our algorithm for arbitrary subtype relations are analyzed. Thereafter, we propose
restrictions on the subtype relation that establish the completeness property. Finally, chapter 7 pro-
vides some interesting implementation aspects on the extension of the Isabelle type inference with
subtyping and concludes the thesis with a prospect of possible further developments.

2



2. Notation and terminology

We want to introduce some notation and terminology that is frequently used in this thesis. We as-
sume that the reader in some way is familiar with the basics of type theory, especially with simply
typed lambda calculus and Hindley-Milner type inference. [Pie02] and [Mil78] provide a compre-
hensive introduction to this field.

Let us define the base language of terms for our type inference. We use a simply typed lambda
calculus with constants that have a predefined type signature.

〈term〉 = x variable
| c constant
| λx : 〈type〉.〈term〉 abstraction
| 〈term〉 〈term〉 application

Note that the typewriter font is used for terms. We use the common syntactic sugar for a se-
quence of lambda abstractions: λx y z.t replaces λx.λy.λz.t. Our terms can have the following
types:

〈type〉 = α type variable
| T base type
| C 〈type〉 . . . 〈type〉 constructed type

The number of arguments of a type constructor C is called the arity of C. Our type constructors
have always at least arity one. We distinguish between base types and constructed types in the
definition because in our algorithm these cases are treated completely different. The function type
is a special case of a binary type constructor. We use the common infix notation τ → σ instead of
→ τ σ in this case.

Further we stick to the following naming conventions:

• α, β, . . . denote type variables.

• S, T, U, . . . denote arbitrary base types.

• C,D, . . . denote type constructors.

• A,B,C, . . . denote concrete base types. In some examples B denotes the boolean type. P, N,
Z, Q, R and C correspond to prime, natural, integer, rational, real and complex numbers,
respectively.

• τ, σ, . . . denote arbitrary types.

3



2. Notation and terminology

• S,T, . . . denote sorts which are introduced in chapter 5.

The notation Σ(c) = τ means that the constant c has the signature τ . Free variables may occur in
a signature of a constant. We write c[α 7→τ ] for an instantiation of the free variables α = (α1, . . . , αn)1

in c with some types τ = (τ1, . . . , τn).
A Hindley-Milner type inference system uses unification as a basic instrument. We assume that an

unification algorithm is provided by the system that we are extending. The unification produces a
set of type substitutions. We use θ as notation for an arbitrary substitution set and α 7→ τ if we want
to specialize that α is substituted by τ . Type substitutions can also be applied to terms, since terms
also contain type annotations on constants and abstractions. For the application of a substitution to
a term we use two notations. An arbitrary substitution θ applied to the type τ is denoted by θτ . If
we want to apply a concrete substitution α 7→ τ to the type σ, we write σ[α 7→ τ ]. Moreover, we use
the same notation if we want to apply a substitution to any structure that contains terms or types,
e.g. the constraint graph which is introduced in chapter 4.

Our notation for the subtyping relation is “<:”. σ <: τ means σ is a subtype of τ . We write
σ <:f τ to indicate that any term of type σ can be transformed in a term of type τ by application of
the function f of type σ → τ . f is called coercion. The coercion semantics of the subtype relation
are covered in chapter 3. The subtyping relation is defined by a partial order on base types. In some
examples we will use a Hasse diagram as a graphical representation of this partial order. In the
diagram we place supertypes above subtypes. Thus, the partial order {N <: R} is represented by
figure 2.1.

Figure 2.1.: Simple partial order

We will also use the same representation for a set of subtype constraints between base types and
type variables. Base types are denoted by rectangular nodes, type variables by round nodes and
arbitrary types by octagonal nodes.

1The vector of free variables α is ordered in a canonical way
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3. Short introduction to subtyping

3.1. Coercion semantics of subtyping

There are two ways of interpreting the subtype relation. The first is called “subset semantics”. It
means that S is a subtype of T if the set of terms of type S is a subset of the set of terms of type
T . This provides a nice idea of what subtyping is, but is really unhandy to work with in a concrete
implementation. The second possible semantics states that a type S is a subtype of another type T if
there is a function of type S → T that is explicitly declared as a coercion. This “coercion semantics”
is our way of understanding what defines a subtype.

We allow to declare only functions of type S → T where S and T are base types as coercions.
Subtype relations between constructed types can be derived using map functions corresponding to
the constructor.

Definition 3.1 (Map function). Let C be an n-ary type constructor. Then we call a function f of type

f1 → f2 → . . .→ fn → C α1 α2 . . . αn → C β1 β2 . . . βn

where fi has either the type αi → βi or βi → αi a map function for C. If fi has the type αi → βi then C is
covariant in the i-th argument w.r.t. f. Otherwise C is contravariant in the i-th argument w.r.t. f.

Of course, there are different functions that are map functions for a single type constructor. With
“reasonable” map functions we refer to the map functions that really apply all fi to all subterms of
the corresponding type τi or σi.

Lemma 3.2 (Subtype relation for constructed types). Let C be an n-ary type constructor and f a reason-
able map function for C. Then it holds:

∀i = 1 . . . n :

τi <:fi σi when C covariant in the i-th argument w.r.t. f

σi <:fi τi when C contravariant in the i-th argument w.r.t. f

⇔

C τ1 τ2 . . . τn <:f f1 f2 . . . fn C σ1 σ2 . . . σn

Proof. “⇒”: The function f f1 f2 . . . fn converts terms of type C τ1 τ2 . . . τn in terms of type
C σ1 σ2 . . . σn.

5



3. Short introduction to subtyping

“⇐”: By definition of a map function.

For example, if S <:T of S T then List S <:map T of S List T where map: (α → β) → List α →
List β is the list map function.

An other interesting example is the function type which can be regarded as a binary type con-
structor. The function type is contravariant in the first argument. An explanation for this is given
in [Pie02]. A reasonable function type map function is the following: fun map = λ f1 f2 f x .

f2 (f (f1 x)). The type of fun map is (γ → α) → (β → δ) → (α → β) → (γ → δ). Thus from
T1 <:S1 of T1 S1 and S2 <:T2 of S2 T2 we can derive S1 → S2 <:fun map S1 of T1 T2 of S2 T1 → T2.

3.2. Subsumption rule

The theoretical extension of a Hindley-Milner type inference system with subtyping is easy. It is
done by adding a single, so called “subsumption” rule to the common inference rules. The judge-
ment Γ ` t u : T means that the term t gets transformed by coercion insertion to the term u that
has the type T in the context Γ.

Γ ` t u : S S <:c T

Γ ` t c u : T
SUBSUMPTION

Unfortunately, this works that easy only in theory. The rules of a type inference system including
this subsumption rule are not syntax directed. That means that if we proceed as we do during type
inference, reading the rules from bottom to top, more than one rule can be applicable. Actually the
subsumption rule is always applicable, so we have to guess where to apply it.

However, this problem can be avoided by rewriting the derivation trees of the type inference sys-
tem with subsumption. Executing this, Pierce [Pie02] shows that the only rule where subsumption
must be used in a syntax directed approach is the application rule.

Γ ` t1  u1 : T11 → T12 Γ ` t2  u2 : T2 T2 <:c T11

Γ ` t1 t2  u1 (c u2) : T12
APP

3.3. Inserting coercions “on the fly”

The simplest extension solving the subtyping problem that seems reasonable at first glance is to try
to insert a coercion immediately when a subtype relation S <: T occurs in the typing derivation
and to fail if no coercion from S to T exists. This way to handle subtyping is used in the Coq proof
assistant. However, there are issues.

Example 3.3. Let us consider the type reconstruction of the terms f 0 True and f True 0 with the
following type signatures: Σ(f) = α → α → B, Σ(True) = B and Σ(0) = N. Further B should be a
subtype of N via coercion nob: B→ N.

6



3.3. Inserting coercions “on the fly”

Σ(f) = α→ α→ B

Γ ` f f : N→ N→ B

Σ(0) = N

Γ ` 0 0 : N N <:id N

Γ ` f 0 f 0 : N→ B

Σ(True) = B

Γ ` True True : B B <:nob N

Γ ` f 0 True f 0 (nob True) : B

Σ(f) = α→ α→ B

Γ ` f f : B→ B→ B

Σ(True) = B

Γ ` True True : B B <:id B

Γ ` f True f True : B→ B

Σ(0) = N

Γ ` 0 0 : N

 

N <:c B

Γ ` f True 0 f True (c 0) : B

We see that the immediate coercion insertion works with the first term but fails dealing with the second.
Instead, the type of f True 0 should be inferred as following:

Σ(f) = α→ α→ B

Γ ` f f : N→ N→ B

Σ(True) = B

Γ ` True True : B B <:nob N

Γ ` f True f (nob True) : N→ B

Σ(0) = N

Γ ` 0 0 : N N <:id N

Γ ` f True 0 f (nob True) 0 : B

So, we have to insert a coercion while we derive the type of f True, which is not possible using the
described approach as f True is already type correct without any coercions.

The Coq reference manual [dt06] claims that this is the “normal” behaviour of coercions. Still,
almost all advantages of subtyping are lost if the programmer has to reason about the order of argu-
ments. Due to these considerations, the goal is to provide an algorithm that treats such symmetric
cases as shown above in the same way.

7





4. Coercive subtyping using subtype constraints

4.1. Overview

The approach presented here will not try to insert coercions at function applications where the ar-
gument type differs from the function domain immediately while inferring the type of the function
application. Instead, we generate subtype constraints. The entirety of all constraints provides us a
global view on the term that we are processing. Thus, we cannot run into the problems described
at the end of the previous chapter where we are only locally checking subterms while inferring the
type.

In the following, we assume a fixed set M of reasonable and unique map functions for type
constructors and a partial order on base types given by a set of defined coercions C. In chapter 6 we
show that to assure completeness of our algorithm we need to restrict the order on base types to a
disjoint union of lattices.

The algorithm can be divided in four major phases. A visualization of the main steps of the
algorithm in form of a control flow can be found in the appendix A. First, we need to generate the
subtype constraints traversing the term recursively. These constraints are inequalities on arbitrary
types. Then, we simplify the constraints until the constraint set contains only inequalities between
base types and variables. The next step is to organize these simplified inequalities in a graph and
solve them. Solving means in this case to find a substitution. Applying a solving substitution to
the whole constraint set results in inequalities that are consistent with the given partial order on
base types. The terms solvability and satisfiability are used synonymously in this thesis. Finally,
the coercions are inserted while traversing the term for the second time and applying the solving
substitution to the subterms. Separating the insertion of coercions from the constraint processing
is not necessary but allows not to care about how the coercions have to be transformed during
constraint simplification.

4.2. Constraint preprocessing

4.2.1. Constraint generation

We generate constraints with the following inference rules. The judgement Γ ` t : T∇(U, S) means
that the term t has the type T constrained with the unification problems U and the subtype inequal-
ities S in the context Γ. Our implementation of the SUBCT-CONST rule introduces fresh variables
τ that replace the polymorphic variables α in the type signature Σ(c) of a constant c in purpose to
provide the Hindley-Milner polymorphism. A constant that is not annotated with such a substitu-
tion does not contain polymorphic variables.

9



4. Coercive subtyping using subtype constraints

CONSTRAINT GENERATION RULES

x : T ∈ Γ

Γ ` x : T∇(∅, ∅)
SUBCT-VAR

Σ(c) = T

Γ ` c[α 7→τ ] : T [α 7→ τ ]∇(∅, ∅)
SUBCT-CONST

Γ,x : T1 ` t : T2∇(U, S)

Γ ` λx : T1.t : T1 → T2∇(U, S)
SUBCT-ABS

Γ ` t1 : T1∇(U1, S1) Γ ` t2 : T2∇(U2, S2)

fresh︷︸︸︷
α, β

Γ ` t1 t2 : β∇(U1 ∪ U2 ∪ {T1
.

= α→ β}, S1 ∪ S2 ∪ {T2 <: α})
SUBCT-APP

Example 4.1. Let us apply the rules to the failing example from the previous chapter:

Σ(f) : α→ α→ B

Γ ` f[α 7→α3] : α3 → α3 → B∇(∅, ∅)

Σ(True) : B

Γ ` True : B∇(∅, ∅)
fresh︷ ︸︸ ︷
α2, β2

Γ ` f[α 7→α3]True : β2∇({α3 → α3 → B .
= α2 → β2}, {B <: α2})

Σ(0) : N

Γ ` 0 : N∇(∅, ∅)
fresh︷ ︸︸ ︷
α1, β1

Γ ` f[α 7→α3]True 0 : β1∇({α3 → α3 → B .
= α2 → β2, β2

.
= α1 → β1}, {B <: α2,N <: α1})

The unification constraints U can be solved immediately. The resulting substitution θinit is applied
to the subtypes constraints S.

Example 4.2 (example 4.1 continued). In our example we obtain the substitution θinit = {α2 7→ α3, β2 7→
α3 → B, α1 7→ α3, β1 7→ B} and apply it to the constraint set θinitS = {B <: α3,N <: α3}.

4.2.2. Constraint simplification

Definition 4.3 (Atomic constraint). We call a subtype constraint atomic if it corresponds to one of the
following constraints (α, β are type variables, T is a base type):

• α <: β

• α <: T

• T <: α

The generated constraints are inequalities between arbitrary types. Our goal is to have only
atomic constraints. We can achieve this by applying the following rules to the constraint set re-
peatedly.

10



4.2. Constraint preprocessing

CONSTRAINT SIMPLIFICATION RULES

1. Transfer C τ1 τ2 . . . τn <: C σ1 σ2 . . . σn to n new subtype constraints or unification problems:

∀i = 1 . . . n



τi <: σi C is covariant in the i-th argument

w.r.t. to the known map function for C

σi <: τi C is contravariant in the i-th argument

w.r.t. to the known map function for C

τi
.

= σi no map function known for C

If unification constraints are generated, solve them directly and apply the resulting substitu-
tion to the whole constraint set.

2. Transfer α <: C τ1 τ2 . . . τn toC α1 α2 . . . αn <: C τ1 τ2 . . . τn using fresh variables α1, . . . , αn.
Apply the substitution {α 7→ C α1 α2 . . . αn} to the whole constraint set.

Same procedure for the symmetric constraint C τ1 τ2 . . . τn <: α.

3. Remove S <: T for base types S and T if S is a subtype of T 2. Fail otherwise.

4. Fail on any non-atomic constraint that is not matched by rules 1-3.

If none of the rules is applicable, there are only atomic constraints left. An interesting question is
whether this state or a failure is always reached after a finite number of iterations. It is obvious that
the simplification of the constraint α <: C α will never terminate. To eliminate such cases it suffices
to check whether for every constraint τ <: σ, τ is unifiable with σ. Of course, what we need here is
a weaker notion of unification, since we are unifying constraints where different base types may be
compared.

Definition 4.4 (Weak unification). Two types are weakly unifiable if they are unifiable regarding all base
types as equal. We call a substitution that is a most general unifier of these types regarding all base types as
equal a weak substitution.

So, before starting to apply the simplification rules on the constraint set, we check whether all
constraints are weakly unifiable. This test makes rule 4 obsolete since only non-atomic constraints
that match one of the rules 1-3 pass the weak unification test.

Theorem 4.5 (Termination). The subtype simplification will terminate if the weak unification test on the
constraint set passes.

Proof (based on the proof of lemma 13 in [BM96]). First of all, we show that after the application of any
rule the resulting constraint set is weakly unifiable if the original constraint set was weakly unifiable.
Let Si be the constraint set in step i, θi a weak substitution for Si. If we apply rule 1 or rule 3, θi
is still a weak substitution for the resulting constraint set. The application of rule 2 to the subtype
constraint α <: C τ1 τ2 . . . τn introduces new variables α1, . . . , αn and applies the substitution

2S and T might be the same type here
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4. Coercive subtyping using subtype constraints

〈α := C α1 α2 . . . αn〉 to the whole constraint set. Since {α <: C τ1 τ2 . . . τn} ∈ Si and Si is
weakly unifiable, θiα must be a type constructed by C so that replacing α with C α1 α2 . . . αn will
not produce a clash of different type constructors. Thus, Si+1 is still weakly unifiable. It is part
of the algorithm to test whether the starting constraint set is weakly unifiable. We will only start
to simplify the constraints if the test passes. By induction, we obtain weak unifiability for every
subtype constraint set produced by our simplification algorithm.

Now, we show the termination of the constraint simplification by specifying a measure that de-
creases with every non-failing application of any rule. Let #(τ) be the following recursively defined
number:

#(τ) =


1 if τ is a type variable

1 if τ is a base type

1 +
n∑
i=1

#(τi) if τ = C τ1 τ2 . . . τn

Further, we define two measures for a weakly unifiable subtype constraint set S:

|S| =
∑

{τ<:σ}∈S

#(τ) + #(σ) and |S|TV =
∑

x∈TV (S)

#(θx)

where θ is a most general unifier for S and TV (S) denotes the type variables occurring in S.

Consider the lexicographic order on tuples (|Si|TV , |Si|) for the coercion sets Si in any step i. If
rule 1 in case of a known map function or rule 3 are applied, then |Si|TV = |Si+1|TV holds because
TV (Si) = TV (Si+1) and θi = θi+1 obviously hold. Note that θi and θi+1 (most general unifiers for
Si and Si+1) must exist, since Si and Si+1 are weakly unifiable. On the other hand, |Si| = |Si+1|+ 2

holds because the rules are either removing exactly two type constructors or exactly two base types.

If rule 2 is applied to the constraint α <: C τ1 τ2 . . . τn, we notice that the weak substitutions θi
and θi+1 only differ concerning the variables α and α1, . . . , αn. Further, θi and θi+1 are associated
with the following equality: θiα = θi+1(C α1 α2 . . . αn). Now, we can conclude

#(θiα) = #(θi+1(C α1 α2 . . . αn)) = 1 +

n∑
j=1

#(θi+1αj) >

n∑
j=1

#(θi+1αj)

which together with the fact TV (Si+1) = (TV (Si)\{α})∪{α1, . . . , αn} implies |Si|TV > |Si+1|TV .

If rule 1 in case of an unknown map function is applied, we first consider the case where no
variable is assigned during unification. Then TV (Si) = TV (Si+1) and θi = θi+1 hold and imply
|Si|TV = |Si+1|TV . Further, |Si| > |Si+1| holds because a non-atomic constraint gets removed. The
other case is that some set of variables α gets assigned. Then TV (Si+1) = TV (Si) \ α and the fact
that θi and θi+1 only differ concerning the variables from the set α implies |Si|TV > |Si+1|TV .

In all cases it holds either |Si|TV > |Si+1|TV or |Si|TV = |Si+1|TV and |Si| > |Si+1|. Thus ∀i > 0 :

(|Si|TV , |Si|) > (|Si+1|TV , |Si+1|) holds.

Beside producing the atomic constraint set, the constraint simplification should also remember
the substitutions applied in rule 1 and rule 2 storing them in θinit. We refer to the resulting substitu-
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4.3. Solving subtype constraints on a graph

tion as θsimp. Note that the weak unification test also produces a substitution which is not contained
in θsimp.

Theorem 4.6 (Consistency). Let θsol be a substitution that solves the atomic constraint set produced by
constraint unification. Then θsimp ∪ θsol solves the original constraint set.

Intuition. The constraint simplification decomposes the dependencies between constructed types
into atomic constraints correctly using lemma 3.1. The information about the dependencies between
variables and constructed types, which is not contained in the atomic constraint set, is stored in
θsimp.

4.3. Solving subtype constraints on a graph

An efficient and logically clean way to reason about atomic subtype constraints is to represent the
types as nodes of a directed graph with arcs given by the constraints themselves. Concretely, this
means that a subtype constraint σ <: τ is represented by the arc (σ, τ). This way of thinking allows
us to speak of predecessors and successors of a type. In our algorithm we will use the transitive clo-
sure of the constraint graph. The transitive arcs can be stored directly in the graph or be computed
every time they are needed. In a concrete implementation a trade-off between these two possibilities
is required.

4.3.1. Graph construction

Building such a graph is straightforward. The only thing one has to care about is the handling
of cycles. Since the subtype relation is a partial order and therefore antisymmetric at most one
base type should occur in a cycle. In other words, if the elements of the cycle are not unifiable3,
the inference will fail. Unifiable cycles should be eliminated with the iterated application of the
following procedure in which G = (V,E) is the constraint graph and K is the set of nodes of the
cycle.

CYCLE ELIMINATION ALGORITHM (A SINGLE ITERATION)

1. P = {x | ∃c ∈ K : (x, c) ∈ E} \K

2. S = {x | ∃c ∈ K : (c, x) ∈ E} \K

3. Let τ be the most general unifier of K applied to any type in K

4. (V ′, E′) = G[V \K] where the notation G[S] describes the subgraph of G induced by S

5. Update G← (V ′ ∪ {τ}, E′ ∪ {(x, τ) | x ∈ P} ∪ {(τ, x) | x ∈ S})

6. Update the substitution θsimp ← θsimp ∪ {c 7→ τ | c ∈ K}

3From this point on, the standard unification is used again, not the weak unification.
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4. Coercive subtyping using subtype constraints

Lemma 4.7 (Termination). The cycle elimination terminates.

Proof. Obviously, since in the non-failing case |E|+ |V | decreases after each iteration.

Figure 4.1 visualizes the procedure handling an example graph containing a cycle.

Figure 4.1.: Collapse of a cycle in a graph

We call the substitution obtained from cycle elimination θcyc.

4.3.2. Constraint resolution

Now, we must find an assignment for all variables that appear in the graph G. We use an algorithm
that is based on the approach presented in [WO89].

First, we define a notation for supertypes, subtypes, greatest lower (infimum) and least upper
(supremum) bounds of two or a set of base types.

Definition 4.8 (Notation). Let S, T be base types and X a set of base types. We define4 w.r.t. the given
subtype relation “<:”:

• T = {T ′ | T <: T ′, T ′ base type} the set of supertypes

• T = {T ′ | T ′ <: T, T ′ base type} the set of subtypes

• Supremum of S and T : T t S ∈ T ∩ S and ∀U ∈ T ∩ S : T t S <: U

• Infimum of S and T : T u S ∈ T ∩ S and ∀L ∈ T ∩ S : L <: T u S
4This definition includes some procedural semantics, i.e. the non-existence of a type that satisfies the supre-

mum/infimum property produces a failure during computation.
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• Supremum of X :
⊔
X ∈

⋂
T∈X

T and ∀U ∈
⋂
T∈X

T :
⊔
X <: U

• Infimum of X :
d
X ∈

⋂
T∈X

T and ∀L ∈
⋂
T∈X

T : L <:
d
X

The algorithm iterates the following two loops until no new variable is assigned during a whole
iteration.

CONSTRAINT RESOLUTION ALGORITHM (A SINGLE ITERATION)

1. For every unassigned variable α in G do

a) Let Pα be the set of all base type predecessors5 of α in G

b) If Pα = ∅, skip steps c)-e)

c) Let Sα be the set of all base type successors5 of α in G

d) If
⊔
Pα exists and ∀ base types β ∈ Sα :

⊔
Pα <: β, update θcyc ← θcyc ∪ {α 7→

⊔
Pα} and

G← θcycG

e) Fail otherwise.

2. For every unassigned variable α in G do

a) Let Sα be the set of all base type successors5 of α in G

b) If Sα = ∅, skip steps c)-d)

c) If
d
Sα exists, update θcyc ← θcyc ∪ {α 7→

d
Pα} and G← θcycG

d) Fail otherwise.

Figure 4.2.: Crown-shaped constraint graph

The original algorithm of Wand an O’Keefe does not iterate these two loops. However, this is
necessary to resolve so called “crowns”. Figure 4.2 visualizes this problematic case which, e.g.
occurs as subgraphs of the constraint graph during the type inference of the term g (f 1 x) (f

x y). The signatures of the constants in this example are the following:
5This includes also transitive arcs.
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4. Coercive subtyping using subtype constraints

• Σ(g) = B→ B→ B

• Σ(f) = α→ α→ B

• Σ(1) = N

• Σ(x) = α

• Σ(y) = α.

After a single iteration is applied to such a crown not all variables will be assigned. The further
iterations ensure that all subtype dependencies are respected.

FINAL STEP OF THE CONSTRAINT RESOLUTION

By construction, unassigned variables only occur in the resulting graph in weakly connected com-
ponents that do not contain any base types. All variables in a single weakly connected component
should be unified. This produces some new substitutions. These are added to the substitution θcyc

which results in a substitution that is called θsol.

Example 4.9 (example 4.2 continued). Our running example passes constraint simplification and building
of the constraint graph without further modification of the constraints. We obtain the constraint graph shown
in figure 4.3.

Figure 4.3.: Constraint graph of f True 0

The constraint resolution algorithm assigns α3 the least upper bound of {B,N} which of course is N. The
resulting substitution is θsol = {α2 7→ α3, β2 7→ α3 → B, α1 7→ α3, β1 7→ B, α3 7→ N}

Lemma 4.10 (Termination). The constraint resolution terminates.

Proof. Obviously, since either the algorithm terminates or the number of unassigned variables de-
creases after every iteration.

Theorem 4.11 (Consistency). For every arc (τ, σ) of θsolG it holds either τ and σ are both the same type
variable or τ and σ are both base types and τ <: σ holds w.r.t. the given order on base types.
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4.4. Coercion insertion

Intuition. The case of τ and σ being the same type variable is obvious. Every assignment done in
loop 1 by the algorithm takes all successors and predecessors of the assigned variable into account.
In loop 2 we do not have to check the predecessors, since a variable that is unassigned after the first
loop does not have any base type predecessors.

Unfortunately this algorithm will not solve all satisfiable constraint sets for arbitrary posets on
base types. In chapter 6 we will provide examples of posets and subtype constraints that can not be
inferred. Restricting the partial order to be a disjoint union of lattices suffices to make the algorithm
complete.

4.4. Coercion insertion

Finally, we have a solving substitution θsol. Applying this substitution to the term annotated with
instantiations for polymorphic variables, which we obtain from the constraint generation step, will
produce a term that can always be coerced to a type correct term.

4.4.1. Insertion rules

We insert coercions at every function application using the following inference rules. The judgement
Γ ` t  u : T means that in context Γ the possibly ill-typed term t gets transformed by coercion
insertion and type substitution on constants and abstractions to a well-typed term u of type T .

COERCION INSERION RULES

x : T ∈ Γ

Γ ` x x : T
COERCE-VAR

Σ(c) = T

Γ ` c[α 7→τ ]  θsolc[α 7→τ ] : θsolT [α 7→ τ ]
COERCE-CONST

Γ,x : θsolT1 ` t u : T2

Γ ` λx : T1.t λx : θsolT1.u : θsolT1 → T2
COERCE-ABS

Γ ` t1  u1 : T11 → T12 Γ ` t2  u2 : T2 T2 <:c T11

Γ ` t1 t2  u1 (c u2) : T12
COERCE-APP

4.4.2. Generation rules

The coercion insertion rules do not specify what the coercions exactly are. Therefore, we provide
the following four rules:

17



4. Coercive subtyping using subtype constraints

COERCION GENERATION RULES

T <:id T
REFL

c : T → S ∈ C

T <:c S
DEF

c1 : T → R ∈ C c2 : R→ S ∈ C

T <:λx: T.c2 (c1 x) S
TRANS

mapC : ρ1 → . . .→ ρn → C α1 . . . αn → C β1 . . . βn ∈M θinst = {α 7→ τ , β 7→ σ}
∀i = 1 . . . n : ci : θinstρi ∈ C, θinstρi ∈ {τi → σi, σi → τi}

C τ1 . . . τn <:θinstmapC c1...c2 C σ1 . . . σn
CONS

CONS and DEF are given by definition of the coercion semantics. TRANS and REFL are justified
by the fact that the subtype order is reflexive and transitive. Transitivity causes some ambiguity.

Example 4.12. Consider the subtype order {A <:boa B,A <:coa C,B <:dob D,C <:doc D}. Now, there
are two possible coercions from A to D:

• λx: A.dob (boa x): A→ D

• λx: A.doc (coa x): A→ D

To resolve this ambiguity we assume coherence [Pie02] – an additional requirement to the co-
ercion definitions that forces ambiguous transitive coercions to represent the same function. In
theorem-provers like Isabelle it is possible to provide a coercion definition system that instructs the
user to provide a coherence proof. This procedure is suitable for this purpose.

Theorem 4.13 (Non-failure). Coercion insertion will never fail.

Intuition. The algorithm would have failed at one of the previous steps. By construction, θsol is
consistent with all arising subtype inequalities.

Example 4.14 (example 4.9 continued). In our example the term f[α→α3]True 0 was produced during
the constraint generation. We have solved the occurring constraints: θsol = {α2 7→ α3, β2 7→ α3 → B, α1 7→
α3, β1 7→ B, α3 7→ N}. The application of the coercion insertion rules produces the expected result:
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4.4. Coercion insertion

Σ(f) = α→ α→ B

Γ ` f[α→α3]  f[α→N] : N→ N→ B

Σ(True) = B

Γ ` True True : B

nob : B→ N ∈ C

B <:nob N
····

Γ ` f[α→α3]True f[α→N](nob True) : N→ B

Σ(0) = N

Γ ` 0 0 : N N <:id N

Γ ` f[α→α3]True 0 f[α→N](nob True) (id 0) : B
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5. Interaction with type classes

5.1. Type classes in Isabelle

The type inference system of the Isabelle proof assistant is a simply typed lambda calculus with
Hindley-Milner polymorphism and type classes. Our extension of type inference with subtyping
interferes in a more or less subtle way with the type class system of Isabelle. The type class system is
described in [Nip93] and [Wen97]. For our purpose it suffices to abstract the system to the following
facts.

Type classes represent sets of types. The intersection of finitely many type classes is called a sort.
Sorts are quasiordered (we call the relation “v”) and a maximal sort > exists. > contains all types.
All type variables are annotated with sorts. We use the notation α :: S for this. A type T can be
tested for membership in a sort S via the judgement `sort T : S. Further, a function arity(C,S) is
given. arity takes a type constructor C of arity n and a sort S as input and returns a tuple of n sorts
(S1, . . . ,Sn). The interpretation of this function is that `sort C τ1 . . . τn : S holds only if `sort τi : Si

holds ∀i = 1 . . . n. arity(C,S) can fail if C constructs types that do not belong to sort S. Also, a
unification that respects the type classes is required. For example, α :: S and X are not unifiable if
`sort X : S does not hold and the unification of α :: S and β :: T is a type variable annotated with
the intersection of the sorts S and T.

5.2. Interaction with constraint preprocessing

The constraint generation rules are not dramatically affected by type classes. We only need to pass
the variable annotations around. Fresh variables get annotated with >.

As we use the weak unification test only to ensure the termination of constraint simplification we
will not need to check sort consistency at this point. So, exactly the same test on subtype constraints
as in chapter 4 is enough.

During constraint simplification we need to ensure correct sort annotation when we replace a
variable with a constructed type. Therefore, we update the simplification rule 2:

2. Transfer α :: S <: C τ1 τ2 . . . τn to C (α1 :: S1) (α2 :: S2) . . . (αn :: Sn) <: C τ1 τ2 . . . τn

using fresh variables α1 :: S1, . . . , αn :: Sn if arity(C,S) = (S1, . . . ,Sn) holds. Apply the
substitution {α :: S 7→ C (α1 :: S1) (α2 :: S2) . . . (αn :: Sn)} to the whole constraint set.
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5. Interaction with type classes

5.3. Interaction with constraint resolution

Assuming a new unification function that respects the sort annotations the process of building the
constraint graph and eliminating cycles will work the same way as before.

The constraint resolution is more problematic. Here, every assignment must be “sort-correct”.

Example 5.1. Consider the following two examples in figure 5.1.

Figure 5.1.: Examples on type class-subtype interference

In example (a) our algorithm would try to assign the type N to α :: Field. This, however, is wrong since
N does not belong to the sort Field. Instead, the “smallest” supertype of N that is of sort Field should be
assigned to α . In our case this is R. The second example demonstrates another influence of sorts on the
assignment of variables. In this case α is annotated with > which would not contradict the assignment of N
to α. Still this assignment is wrong because N does not have any subtypes that belong to the sort Field which
is required for the assignment of β :: Field. To get the right assignment we need to find a supertype of N that
has a subtype of sort Field. Again the solution is R.

We integrate the observations in our algorithm by defining a new supremum and infimum that
depend on the sort of the variable to be assigned and a set of sorts belonging to the predeces-
sors/successors of this variable.

Definition 5.2 (Notation). Let S, T be base types, X a set of base types, S a sort and X a set of sorts. We
define6 w.r.t. the given subtype relation “<:”:

• T
X
S = {T ′ | T <: T ′, T ′ base type, `sort T

′ : S, ∀T ∈ X ∃T ′′base type : T ′′ <: T ′, `sort T
′′ : T} the

set of supertypes that are of sort S and have subtypes for every sort in X

• TX
S = {T ′ | T ′ <: T, T ′ base type, `sort T

′ : S, ∀T ∈ X ∃T ′′base type : T ′ <: T ′′, `sort T
′′ : T} the

set of subtypes that are of sort S and have supertypes for every sort in X

• Supremum of S and T : T tXS S ∈ T
X
S ∩ S

X
S and ∀U ∈ TX

S ∩ S
X
S : T tXS S <: U

6This definition includes some procedural semantics, i.e. the non-existence of a type that satisfies the supre-
mum/infimum property produces a failure during computation.

22



5.3. Interaction with constraint resolution

• Infimum of S and T : T uXS S ∈ T
X
S ∩ SX

S and ∀L ∈ TX
S ∩ SX

S : L <: T uXS S

• Supremum of X :
⊔X

SX ∈
⋂
T∈X

T
X
S and ∀U ∈

⋂
T∈X

T
X
S :
⊔X

SX <: U

• Infimum of X :
dX

SX ∈
⋂
T∈X

TX
S and ∀L ∈

⋂
T∈X

TX
S : L <:

dX
SX .

Now, we only need to define how the sort and the set of sorts for the supremum/infimum com-
putation are exactly obtained in the assignment procedure.

CONSTRAINT RESOLUTION ALGORITHM (TYPE CLASSES, A SINGLE ITERATION)

1. For every unassigned variable α :: S in G do

a) Let Pα be the set of all base type predecessors7 of α :: S in G

b) If Pα = ∅, skip steps c)-f)

c) Let Xα be the set of sorts of all type variable predecessors7 of α :: S in G

d) Let Sα be the set of all base type successors7 of α :: S in G

e) If
⊔Xα

S Pα exists and ∀ base types β ∈ Sα :
⊔Xα

S Pα <: β, update θcyc ← θcyc ∪ {α 7→⊔Xα
S Pα} and G← θcycG

f) Fail otherwise.

2. For every unassigned variable α :: S in G do

a) Let Sα be the set of all base type successors7 of α :: S in G

b) If Sα = ∅, skip steps c)-e)

c) Let Xα be the set of sorts of all type variable successors of α :: S in G

d) If
dXα

S Sα exists, update θcyc ← θcyc ∪ {α 7→
dXα

S Pα} and G← θcycG

e) Fail otherwise.

The properties of the original algorithm are still valid in the type class version. The algorithm
still always terminates and is consistent but not complete for arbitrary posets of base types. The
completeness is reached by restricting the poset structure. The restriction is even more complex
than in the original algorithm because the type class structure is involved. We will discuss the
restriction in the next chapter.

7This includes also transitive arcs.
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6. Completeness

6.1. Some problematic examples

So far, we have only made statements about termination and consistency of our algorithm. It is
equally important to ensure that the algorithm does not fail at a term which can be coerced to a
well-typed term. A typing system with this property is called complete.

As already mentioned earlier, our algorithm is not complete for arbitrary posets of base types.
This is justified by some simple examples. First, we consider the algorithm for the language without
type classes as described in chapter 4.

Example 6.1. The figure 6.1 shows a constraint graph that can not be satisfied with the given base type order
using our algorithm.

Figure 6.1.: Problematic example without type classes

During constraint resolution the type variable α is the first to be assigned with R because it is the only
variable that has a predecessor. Then, the assignment of β will fail, since the infimum R u N does not
exist in the given poset. This would not be a problem if the constraints were not satisfiable. Unfortunately,
{α 7→ C, β 7→ N} is a solving substitution.

Actually, if the algorithm first computes and assigns the infimum of the successors for every variable, this
example will work. Of course, this is not a satisfying insight.

Before we reason about a possible solution of the completeness problem we consider a second
example now involving type classes.
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6. Completeness

Example 6.2. Some problems also occur in the solvable constraint graph in figure 6.2. {α→ Q, β → Q} is
a solving substitution. Again, the presented algorithm shall be applied. In this example it is not clear which
variable is assigned first. Our algorithm does not name any specific order for this8. We assume that β is the
variable to be assigned first. β gets the value N t{Field}> Z = Q. Afterwards, the algorithm tries to assign α
to
⊔∅
Field{N}. This supremum does not exist, since R 6<: Q and Q 6<: R. Thus, the algorithm fails.

Figure 6.2.: Problematic example with type classes

In both cases, the problem is the non-existence of a supremum/infimum. The solution to this
problem is to postulate the existence of the supremum/infimum as a requirement for the partial
order of base types. Before we define what this means, we discuss why the problem should be
changed and not the algorithm.

6.2. Complexity

The question may arise why we are constructing such a sophisticated algorithm if it does not work.
The answer is complexity. As the general problem is NP-complete [WO89], we could transform it
into a satisfiability problem and let a SAT-solver do the work. However, type inference is a subsys-
tem of a functional programming language that should not be too slow. Transforming the problem
into a SAT problem eliminates all the problem-specific information. In our algorithm we use the
structure of the subtyping problem splitting it into phases that solve subproblems. Almost all of
these subproblems are solved efficiently.

The constraint generation is linear in the length of the term assuming the signature lookup and
the generation of fresh variables being constant. The unification is a well known problem that can be
solved very efficiently. The most problematic subproblem is the constraint simplification. A cascade
of applications of rule 2 may produce an exponential number of new type variables. However, in

8The order will actually become unimportant when we introduce the restrictions to solve the completeness problem
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6.3. Necessary restrictions on subtype dependencies

practice constraint sets do not behave that bad. Building the graph and solving the constraints is
done in polynomial time using graph structures for the constraint set and the partial order on base
types.

These complexity considerations are only formulated as conjectures in this thesis. They should
be proven formally in a further study.

6.3. Necessary restrictions on subtype dependencies

Tiuryn [Tiu92] has shown that satisfiability for an atomic set of subtype constraints can be tested in
polynomial time if the partial order on base types is a disjoint union of lattices. The representation
of the partial order as a directed graph allows us to speak of weakly connected components. With
this terminology Tiuryn’s requirement means that every weakly connected component is a lattice.
This is exactly the restriction that is needed to ensure that our algorithm from chapter 4 is complete.
The completeness is a simple consequence of two facts:

• In a solvable constraint set every supremum/infimum computation does not fail for sets of
base types from a single weakly connected component of the restricted base type order.

• Any weakly connected component of a solvable constraint graph may only contain base types
from a single weakly connected component of the base type order.

Example 6.2 demonstrates why a stronger restriction is necessary for the algorithm extended
with type classes. In that example, the given poset of base types is a lattice but the supremum
does not exist if we consider only base types that belong to the sort Field. The first idea to solve
this problem is to require any restriction of our base type poset (P, <:) with any sort S to (PS, <:)

where PS = {τ ∈ P |`sort τ : S} to be a disjoint union of lattices. This restriction extends Tiuryn’s
restriction, since every type belongs to the sort > so that it holds P = P>.

Unfortunately, this restriction is not strong enough. Example 6.3 demonstrates a problem that oc-
curs even though the poset of base types restricted to any sort is a lattice. The reason for this is the
fact that in the algorithm the poset of assignment candidates9 is not only constrained with a single
sort but also to the types that must have super-/subtypes belonging to some type classes. The struc-
ture of such a constrained poset could be almost random. At least, we can not expect the needed
supremum/infimum to exist. In some sense, type class restrictions cut out arbitrary10 type sets
from the assignment candidates. Still, we need to ensure the existence of the supremum/infimum
to achieve completeness.

Example 6.3. Assume, the constraint resolution algorithm is applied to the following constraint set:

{α :: All but rational <: C, α :: All but rational <: β :: Rational}

Figure 6.3 shows that the assignment candidates do not have a maximal element. So, the infimum does not
9E.g. when we compute

dX
SX the assignment candidates are

⋂
T∈X

TX
S

10Actually, it is not completely arbitrary. If a type τ has no supertype in the class S, then no supertype of τ has a
supertype in the class S. Nevertheless, the supremum/infimum could be cut out.
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6. Completeness

Figure 6.3.: Assignment candidates resulting from computation of
d{Rational}
All but rational{C}

exist and the algorithm fails.

Definition 6.4 (Sort-respecting subtype relation). We call a poset (P, <:) sort-respecting if
∀ sets of base types X ⊆ P, sets of sorts X, sorts S :

• either
⋂
T∈X

TX
S = ∅ or

⋂
T∈X

TX
S has a maximal element11

• and dually either
⋂
T∈X

T
X
S = ∅ or

⋂
T∈X

T
X
S has a minimal element12.

This definition assures that in a sort-respecting poset of base types for every type variable of a
solvable constraint set the supremum/infimum of its successors/predecessors is well-defined. This
is exactly the property that makes our algorithm complete. However, it is not really clear from the
definition how strong this restriction is. If the poset is a disjoint union of linear orders, it is also
sort-respecting because cutting out a set of types from a linear order results again in a linear order
that, of course, has a maximal/minimal element. We can also make the statement that the restriction
of the poset to be sort-respecting is weaker than the requirement of linear orders. This statement
is justified by the poset in figure 6.4 that is fulfilling our restriction and is obviously not a disjoint
union of linear orders.

Theorem 6.5 (Completeness of constraint resolution). If the partial order on base types is sort-respecting,
constraint resolution will succeed if the input constraint graph is solvable.

Informal proof by contradiction. Assume that the constraint resolution fails for a solvable constraint
graph. Constraint resolution fails either during the computation of the supremum/infimum or

11i.e. ∃τ ∈
⋂
T∈X

TX
S : ∀σ ∈

⋂
T∈X

TX
S : σ <: τ

12i.e. ∃τ ∈
⋂
T∈X

T
X
S : ∀σ ∈

⋂
T∈X

T
X
S : τ <: σ
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6.3. Necessary restrictions on subtype dependencies

Figure 6.4.: A sort-respecting poset of base types

during the test whether the successors of a variable, which was assigned to the supremum of its
predecessors, are supertypes of this supremum.

The first computation can only fail if two types from different weakly connected components of
the base type poset are compared, because the supremum/infimum is well-defined according to
our restriction of the base type poset in any other case. Clearly, this can never happen in the original
solvable graph. Also, this situation is not possible after any assignment step done by our algorithm,
since the algorithm will never “leave” the weakly connected component of the base type poset. In
other words, if a variable has a neighbour within the weakly connected component A of the base
type poset, it will only be assigned to a type from A.

So the failure must occur in the successor test in step 1d of the constraint resolution. Let α :: S be
the variable that produces the failure. We use the notation Pα, Sα and Xα as defined in the algorithm.
Thus, a base type β ∈ Sα with the property β <:

⊔Xα
S Pα, β 6=

⊔Xα
S Pα exists. Since

⊔Xα
S Pα is the

smallest upper bound for Pα, β can not be an upper bound for Pα w.r.t. the sorts S and Xα. Since the
original constraint graph does not contain such contradictions, a previous assignment of any base
type τ within Pα ∪ {β} must have been wrong. However, all of these previous assignments tested
whether τ <: β and ∀σ ∈ Pα : σ <: τ and passed these tests. This contradicts the assumption.

Theorem 6.6 (Completeness). If the partial order on base types is sort-respecting, the presented algorithm
will always coerce the term whenever it is possible.

Intuition. Using theorem 6.5 and theorem 4.13 we only have to show that the constraint generation
and preprocessing are producing a solvable constraint graph if the input term can be coerced. This
rather technical proof by contradiction assuming a failure for a term that can be coerced and the

29



6. Completeness

subsequent case distinction of every algorithm step where the failure could have appeared is left to
the reader.
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7. Conclusion

7.1. Usage in Isabelle

As the presented algorithm is used to extend the type inference system of the Isabelle proof assistant,
some interesting aspects of the concrete implementation are mentioned below.

7.1.1. User interface for subtyping

We provide two commands to define a coercion and a map function for a type constructor. Both
commands take a single term as their only argument.

The map functions are stored in a table. Using the type of a map function, the variance vector13

can be computed if the given function is a valid map function. This vector is also stored in the map
function table.

The partial order on base types is represented as a graph in our implementation. The command
to add coercions only checks whether the graph stays acyclic. More interesting restrictions like
coherence and lattice order are not controlled yet. An approach that would suit Isabelle well is to
formulate these restrictions as a proof goal and let the user provide the proof.

7.1.2. Ambiguous coercions

Isabelle uses rewriting rules to transform and simplify proof goals during the process of interactive
proving. These rules are very sensitive when it comes to syntax. A misplaced coercion would
disrupt the proof process. Even though we assured that our algorithm only produces type-correct
terms, a coercion could occur at an unexpected14 place.

Consider the following example.

Example 7.1. We inspect the term sin(1 + 1)15 with the given type signatures Σ(sin) = R → R,
Σ(+) = α :: Number → α :: Number → α :: Number and Σ(1) = N. Further N <:ron R holds.

There are two possibilities to repair the ill-typed term.

1. sin(ron (1 + 1))

2. sin((ron 1) + (ron 1))

13A vector that denotes the variance for every argument of a type constructor
14At least unexpected for the Isabelle simplifier that applies the rewriting rules
15+ is used as an infix operator but should be regarded as a usual binary function
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7. Conclusion

Our algorithm will insert coercions the way it is done in the first possibility. If we invert the order of
handling the predecessors/successors in the constraint resolution, the algorithm will produce the second term.
The proceeding of the algorithm in this example can be found in appendix B.

Of course our algorithm is deterministic. It will always insert coercions at the same place for
a single term. However, if the exact insertion point is ambiguous, the explicit type conversion is
still the preferable way in this case. Otherwise, some rewriting rules possibly can not be applied,
although semantically, it should be possible.

7.1.3. Benchmarks

A type inference algorithm is useless if it is too slow. We compare the original Isabelle type in-
ference algorithm with our implementation of coercive subtyping. For this purpose, we consider
the Isabelle theory src/HOL/Decision Procs/Approximation.thy from the Isabelle reposi-
tory16. This theory contains statements about bounds of numerical approximations of real-valued
functions. In these statements and their proofs a lot of type conversions, e.g. integer to real numbers,
are required. With the new type inference algorithm, it is possible to omit most of these conversions,
defining them as coercions.

To inspect the run-time behaviour of our algorithm we consider four different settings.

1. Original Isabelle type inference, unchanged Approximation.thy.

2. New algorithm, unchanged Approximation.thy.

3. New algorithm, added coercion and map function definitions in Approximation.thy.

4. New algorithm, added coercion and map function definitions in Approximation.thy, re-
moved most type conversions from the source code.

All four settings were tested on the same hardware (2,0 GHz Intel®Core™2 Duo CPU with 2 GB
RAM running Ubuntu 10.04). The CPU usage time for every setting is charted in table 7.1.

setting CPU usage in min : sec

1 4 : 34.85

2 5 : 02.31

3 5 : 06.63

4 5 : 01.27

Table 7.1.: Run-time benchmarks

Approximation.thy is one of the larger and more complex theories in the Isabelle/HOL repos-
itory. Still, our new subtyping algorithm does not need a displeasingly long time to step through
this theory.

16http://isabelle.in.tum.de/repos/isabelle/
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7.2. Further extensions

7.2. Further extensions

The implementation is intended to be the foundation of subtyping in Isabelle. The algorithm can
serve as an entry point for theoretical and practical research in subtype polymorphism. In this final
section two possible fields of further studies are presented.

7.2.1. Arbitrary subtype orderings

We have seen that the presented algorithm only works under certain restrictions. An interesting
question is how strong these restrictions are. For example, an intuitive way to model subtype rela-
tions between numeric types is a linear order, which is even a stronger restriction than we require.
A study of type families that behave well in terms of subtype orderings as, e.g. the numeric types,
is desirable. Further it is possible to analyze what can be done if the problematic partial orders
cannot be avoided. At this point the problem probably becomes NP-complete. That should also be
investigated and proven.

7.2.2. Subtype relation for types with different type constructors

Another thinkable research field is the further extension of the subtype relation. An interesting
approach is to allow coercions between constructed types with different type constructor. A concrete
example is a possible coercion between the list and the function type constructors. Any list with
elements of type α could be declared as a subtype of the function type N → α using the function
nth17 of type List α → N → α. The programmer could then write xs 42 instead of nth xs 42

for an arbitrary list xs.
It is not immediately clear how the presented algorithm has to be modified in order to use this

extension. Also, the usability has to be considered. Type inference supports the user in writing
correct programs. A type error is often the first indicator that the source code contains bugs. With
the proposed extension a lot more terms become type correct. Still, it is essential that a user receives
an error message in case of a bug rather than the source code gets transformed into something
nobody ever intended.

17nth xs 42 returns the 42th element of the list xs
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A. Constraint pipeline

Figure A.1.: Abstract control flow of the subtyping algorithm
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B. Inference of the sinus example

We infer the type of the term sin(1 + 1) with signatures and coercions described in chapter 7.
The notation α∗ is used as an abbreviation for α :: Number.

Σ(sin) = R→ R

Γ ` sin : R→ R∇(∅, ∅)

Σ(+[α 7→α4]) = α∗ → α∗ → α∗

Γ ` +[α 7→α4] : α∗4 → α∗4 → α∗4∇(∅, ∅)

Σ(1) = N

Γ ` 1 : N∇(∅, ∅)
fresh︷ ︸︸ ︷
α3, β3

Γ ` 1 +[α 7→α4] : β3∇ ({α∗4 → α∗4 → α∗4
.

= α3 → β3}, {N <: α3})
···········

Σ(1) = N

Γ ` 1 : N∇(∅, ∅)
fresh︷ ︸︸ ︷
α2, β2

Γ ` 1 +[α 7→α4]1 : β2∇

({
α∗4 → α∗4 → α∗4

.
= α3 → β3,

β3
.

= α2 → β2

}
,

{
N <: α3,

N <: α2

})
···········

fresh︷ ︸︸ ︷
α1, β1

Γ ` sin(1 +[α 7→α4]1) : β1∇




α∗4 → α∗4 → α∗4
.

= α3 → β3,

β3
.

= α2 → β2,

R→ R .
= α1 → β1

 ,


N <: α3,

N <: α2,

β2 <: α1




θinit = {α3 7→ α∗4, β3 7→ α∗4 → α∗4, α2 7→ α∗4, β2 7→ α∗4, α1 7→ R, β1 7→ R} is a most general unifier
of the unification constraints {α∗4 → α∗4 → α∗4

.
= α3 → β3, β3

.
= α2 → β2, R → R .

= α1 → β1}.
Applying this substitution to the subtype constraints produces an already atomic constraint set with
the corresponding constraint graph as shown in figure B.1.

Our algorithm will first compute the supremum of the predecessors of α4 :: Number. This results
in the assignment α4 :: Number 7→ N. However, if the same algorithm first covers the successors,
the other valid assignment will be produced: α4 :: Number 7→ R. Of course, different assignments
result in different terms as it is visible below.
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B. Inference of the sinus example

Figure B.1.: Ambiguous constraint graph

In case of the substitution α4 :: Number 7→ N coercion insertion proceeds as following:

Σ(sin) = R→ R

Γ ` sin sin : R→ R

Σ(+[α 7→α4]) = α∗ → α∗ → α∗

Γ ` +[α 7→α4]  +[α 7→N] : N→ N→ N

Σ(1) = N

Γ ` 1 1 : N N <:id N

Γ ` 1 +[α 7→α4]  (id 1) +[α 7→N] : N→ N
······

Σ(1) = N

Γ ` 1 1 : N N <:id N

Γ ` 1 +[α 7→α4]1 (id 1) +[α 7→N](id 1) : N
······ N <:ron R

Γ ` sin(1 +[α 7→α4]1) sin(ron ((id 1) +[α 7→N](id 1))) : R

Substitution α4 :: Number 7→ R results in an other derivation tree:

Σ(sin) = R→ R

Γ ` sin sin : R→ R

Σ(+[α 7→α4]) = α∗ → α∗ → α∗

Γ ` +[α 7→α4]  +[α 7→R] : R→ R→ R

Σ(1) = N

Γ ` 1 1 : N N <:ron R

Γ ` 1 +[α 7→α4]  (ron 1) +[α 7→R] : R→ R
······

Σ(1) = N

Γ ` 1 1 : N N <:ron R

Γ ` 1 +[α7→α4]1 (ron 1) +[α 7→R](ron 1) : R
······ R <:id R

Γ ` sin(1 +[α 7→α4]1) sin(id ((ron 1) +[α 7→R](ron 1))) : R
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