Foundational, Compositional (Co)datatypes for Higher-Order Logic Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Christian Blanchette

November 13, 2015

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Introduction

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list)

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list)

Resolve $\beta = \text{unit} + \alpha \times \beta$ minimally

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list)

Resolve $\beta = \text{unit} + \alpha \times \beta$ minimally

Prove
$$\frac{\varphi \operatorname{Nil}}{\forall x \ xs. \ \varphi \ xs \Rightarrow \varphi \ (Cons \ x \ xs)}}{\forall xs. \ \varphi \ xs}$$

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list) codatatype α tree₁ = Node (lab: α) (sub: (α tree₁) list)

Resolve $\beta = \text{unit} + \alpha \times \beta$ minimally

Prove
$$\frac{\varphi \operatorname{Nil} \quad \forall x \ xs. \ \varphi \ xs \Rightarrow \varphi \ (Cons \ x \ xs)}{\forall xs. \ \varphi \ xs}$$

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list) codatatype α tree₁ = Node (lab: α) (sub: (α tree₁) list)

 $\begin{array}{lll} \mbox{Resolve} & \beta = \mbox{unit} + \alpha \times \beta & \mbox{minimally} \\ \mbox{and} & \gamma = \alpha \times \gamma \mbox{ list} & \mbox{maximally} \end{array}$

Prove
$$\frac{\varphi \text{ Nil } \quad \forall x \text{ } ss. \ \varphi \text{ } ss \Rightarrow \varphi \text{ } (Cons \text{ } x \text{ } ss)}{\forall xs. \ \varphi \text{ } ss}$$

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list) codatatype α tree₁ = Node (lab: α) (sub: (α tree₁) list)

 $\begin{array}{lll} \mbox{Resolve} & \beta = \mbox{unit} + \alpha \times \beta & \mbox{minimally} \\ \mbox{and} & \gamma = \alpha \times \gamma \mbox{ list} & \mbox{maximally} \end{array}$

Prove
$$\frac{\varphi \text{ Nil } \quad \forall x \text{ } ss. \ \varphi \text{ } ss \Rightarrow \varphi \text{ } (Cons \text{ } x \text{ } ss)}{\forall xs. \ \varphi \text{ } ss}$$

and $\psi t_1 t_2$ $\forall x y. \psi x y \Rightarrow \text{lab } x = \text{lab } y \land \text{list_pred } \psi (\text{sub } x) (\text{sub } y)$ $t_1 = t_2$

(Co)datatype (Co)nstruction

Conclusion O

Motivation

datatype α list = Nil | Cons α (α list) codatatype α tree₁ = Node (lab: α) (sub: (α tree₁) fset)

 $\begin{array}{lll} \mbox{Resolve} & \beta = \mbox{unit} + \alpha \times \beta & \mbox{minimally} \\ \mbox{and} & \gamma = \alpha \times \gamma \mbox{ fset} & \mbox{maximally} \end{array}$

Prove
$$\frac{\varphi \text{ Nil } \quad \forall x \text{ } ss. \ \varphi \text{ } ss \Rightarrow \varphi \text{ } (Cons \text{ } x \text{ } ss)}{\forall xs. \ \varphi \text{ } ss}$$

and $\frac{\forall x \ y. \ \psi \ x \ y \Rightarrow \text{lab } x = \text{lab } y \land \text{fset_pred } \psi (\text{sub } x) (\text{sub } y)}{t_1 = t_2}$

(Co)datatype (Co)nstruction

Conclusion O

Higher-Order Logic

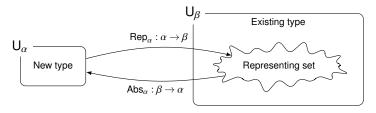
- Simply typed set theory with ML-style polymorphism
- Cannot handle proper classes

(Co)datatype (Co)nstruction

Conclusion O

Higher-Order Logic

- Simply typed set theory with ML-style polymorphism
- Cannot handle proper classes
- Primitive type definitions

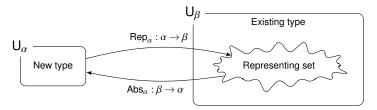


(Co)datatype (Co)nstruction

Conclusion O

Higher-Order Logic

- Simply typed set theory with ML-style polymorphism
- Cannot handle proper classes
- Primitive type definitions



Goal: Reduce (co)datatype specification to primitive type definitions

(Co)datatypes in interactive theorem provers

- PVS: axiomatic, monolithic (co)datatypes
- Agda, Coq: built-in (co)datatypes
- HOL based provers: definitional datatypes

(Co)datatypes in interactive theorem provers

- PVS: axiomatic, monolithic (co)datatypes
- Agda, Coq: built-in (co)datatypes
- HOL based provers: definitional datatypes
 - Melham–Gunter approach
 - Fixed universe for recursive, freely generated datatypes
 - Simulates nested recursion by mutual recursion
 - Used in HOL4, HOL Light, Isabelle/HOL, ...

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Beyond Melham–Gunter

- Codatatypes
- Mixture of codatatypes and datatypes
- Non-free structures (e.g. fset)
- "Real" nested recursion

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

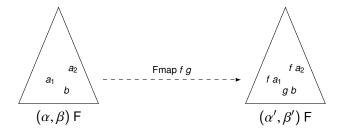
Type constructors are not just operators on types!

(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Functors

$$\mathsf{Fmap}: (\alpha \to \alpha') \to (\beta \to \beta') \to (\alpha, \beta) \mathsf{F} \to (\alpha', \beta') \mathsf{F}$$

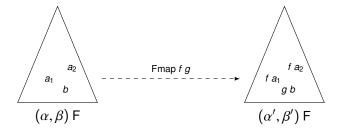


(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Functors

$$\mathsf{Fmap}: (\alpha \to \alpha') \to (\beta \to \beta') \to (\alpha, \beta) \mathsf{F} \to (\alpha', \beta') \mathsf{F}$$



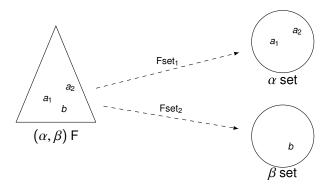
Fmap id id = id Fmap $f_1 f_2 \circ$ Fmap $g_1 g_2$ = Fmap $(f_1 \circ g_2) (f_2 \circ g_2)$

(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Containers

Fset₁ : (α, β) F $\rightarrow \alpha$ set Fset₂ : (α, β) F $\rightarrow \beta$ set

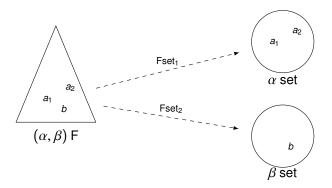


(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Containers

Fset₁ : (α, β) F $\rightarrow \alpha$ set Fset₂ : (α, β) F $\rightarrow \beta$ set

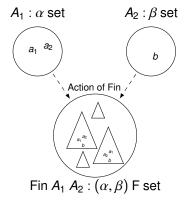


 $Fset_i \circ Fmap f_1 f_2 = image f_i \circ Fset_i$

Conclusion O

Type Constructors Act on Sets

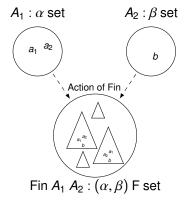
$$\mathsf{Fin}\ \mathsf{A}_1\ \mathsf{A}_2 = \{z \mid \mathsf{Fset}_1\ z \subseteq \mathsf{A}_1 \land \mathsf{Fset}_2\ z \subseteq \mathsf{A}_2\}$$



Conclusion O

Type Constructors Act on Sets

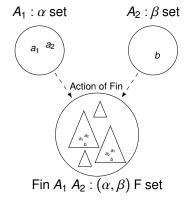
$$\mathsf{Fin}\ \mathsf{A}_1\ \mathsf{A}_2 = \{z \mid \mathsf{Fset}_1\ z \subseteq \mathsf{A}_1 \land \mathsf{Fset}_2\ z \subseteq \mathsf{A}_2\}$$



Conclusion O

Type Constructors Act on Sets

Fin
$$A_1 A_2 = \{z \mid \mathsf{Fset}_1 z \subseteq A_1 \land \mathsf{Fset}_2 z \subseteq A_2\}$$



 $\forall i \in \{1, 2\}. \ \forall x \in \mathsf{Fset}_i \ z. \ f_i \ x = g_i \ x \quad \Rightarrow \quad \mathsf{Fmap} \ f_1 \ f_2 \ z = \mathsf{Fmap} \ g_1 \ g_2 \ z$

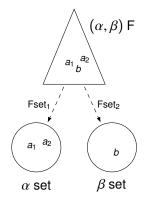
Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Bounded

Fbd: infinite cardinal



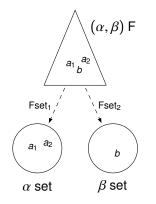
Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Bounded

Fbd: infinite cardinal



 $|\mathsf{Fset}_i z| \leq \mathsf{Fbd}$

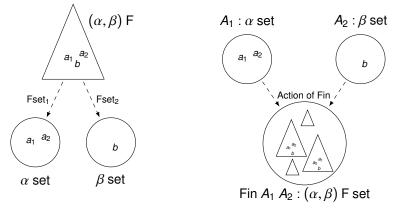
Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Bounded

Fbd: infinite cardinal



 $|\mathsf{Fset}_i z| \leq \mathsf{Fbd}$

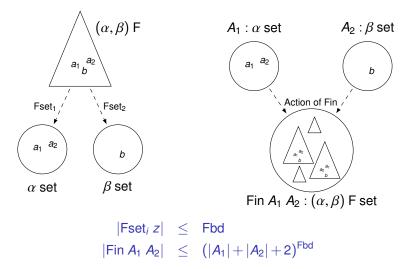
Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Type Constructors are Bounded

Fbd: infinite cardinal



Type Constructors are Bounded Natural Functors

- (F, Fmap) is a binary functor.
- For all α₁, Fset₁ is a natural transformation between ((α₁, _) F, Fmap) and (set, image).
- For all α₂, Fset₂ is a natural transformation between ((_, α₂) F, Fmap) and (set, image).
- If $\forall a \in \text{Fset}_i x$. $f_i a = g_i a$ for all $i \in \{1, 2\}$, then Fmap $f_1 f_2 x = \text{Fmap } g_1 g_2 x$.
- The following cardinal-bound conditions hold:
 - a. $\forall x : (\alpha_1, \alpha_2) \mathsf{F}$. $|\mathsf{Fset}_i x| \leq \mathsf{Fbd}_{\mathsf{Fbd}}$ for $i \in \{1, 2\}$;
 - b. $|\text{Fin } A_1 A_2| \le (|A_1| + |A_2| + 2)^{\text{Fbd}}.$
- (F, Fmap) preserves weak pullbacks.

- (F, Fmap) is a binary functor.
- For all α₁, Fset₁ is a natural transformation between ((α₁, _) F, Fmap) and (set, image).
- For all α₂, Fset₂ is a natural transformation between ((_, α₂) F, Fmap) and (set, image).
- If $\forall a \in \text{Fset}_i x$. $f_i a = g_i a$ for all $i \in \{1, 2\}$, then Fmap $f_1 f_2 x = \text{Fmap } g_1 g_2 x$.
- The following cardinal-bound conditions hold:
 - a. $\forall x : (\alpha_1, \alpha_2)$ F. $|\text{Fset}_i x| \leq \text{Fbd for } i \in \{1, 2\};$
 - b. $|\text{Fin } A_1 A_2| \le (|A_1| + |A_2| + 2)^{\text{Fbd}}.$
- (F, Fmap) preserves weak pullbacks.

- (F, Fmap) is a binary functor.
- For all α₁, Fset₁ is a natural transformation between ((α₁, _) F, Fmap) and (set, image).
- For all α₂, Fset₂ is a natural transformation between ((_, α₂) F, Fmap) and (set, image).
- If $\forall a \in \text{Fset}_i x$. $f_i a = g_i a$ for all $i \in \{1, 2\}$, then Fmap $f_1 f_2 x = \text{Fmap } g_1 g_2 x$.
- The following cardinal-bound conditions hold:
 - a. $\forall x : (\alpha_1, \alpha_2) \mathsf{F}$. $|\mathsf{Fset}_i x| \leq \mathsf{Fbd} \text{ for } i \in \{1, 2\};$
 - b. $|\text{Fin } A_1 A_2| \le (|A_1| + |A_2| + 2)^{\text{Fbd}}.$
- (F, Fmap) preserves weak pullbacks.

- (F, Fmap) is a binary functor.
- For all α₁, Fset₁ is a natural transformation between ((α₁, _) F, Fmap) and (set, image).
- For all α₂, Fset₂ is a natural transformation between ((_, α₂) F, Fmap) and (set, image).
- If $\forall a \in \text{Fset}_i x$. $f_i a = g_i a$ for all $i \in \{1, 2\}$, then Fmap $f_1 f_2 x = \text{Fmap } g_1 g_2 x$.
- The following cardinal-bound conditions hold:
 a. ∀x: (α₁, α₂) F. |Fset_i x| ≤ Fbd for i ∈ {1,2};
 b. |Fin A₁ A₂| ≤ (|A₁| + |A₂| + 2)^{Fbd}.
- (F, Fmap) preserves weak pullbacks.

- (F, Fmap) is a binary functor.
- For all α₁, Fset₁ is a natural transformation between ((α₁, _) F, Fmap) and (set, image).
- For all α₂, Fset₂ is a natural transformation between ((_, α₂) F, Fmap) and (set, image).
- If $\forall a \in \text{Fset}_i x$. $f_i a = g_i a$ for all $i \in \{1, 2\}$, then Fmap $f_1 f_2 x = \text{Fmap } g_1 g_2 x$.
- The following cardinal-bound conditions hold:
 - a. $\forall x : (\alpha_1, \alpha_2) \mathsf{F}$. $|\mathsf{Fset}_i x| \leq \mathsf{Fbd} \text{ for } i \in \{1, 2\};$
 - b. $|\text{Fin } A_1 A_2| \le (|A_1| + |A_2| + 2)^{\text{Fbd}}.$
- (F, Fmap) preserves weak pullbacks.

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

What are BNFs good for?

They ...

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

What are BNFs good for?

They ...

• cover basic type constructors (e.g. $+, \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)

Conclusion O

What are BNFs good for?

They ...

- cover basic type constructors (e.g. $+, \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)

Conclusion O

What are BNFs good for?

- cover basic type constructors (e.g. $+, \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition

What are BNFs good for?

- cover basic type constructors (e.g. $+, \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras and final coalgebras

Conclusion O

What are BNFs good for?

- cover basic type constructors (e.g. $+, \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras and final coalgebras
- are closed under initial algebras and final coalgebras

Conclusion O

What are BNFs good for?

- cover basic type constructors (e.g. $+, \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras and final coalgebras
- are closed under initial algebras and final coalgebras
- make initial algebras and final coalgebras expressible in HOL

From user specifications to (co)datatypes

- datatype α list = Nil | Cons α (α list)
- Abstract to $\beta = \text{unit} + \alpha \times \beta$
- Prove (α, β) F = unit + $\alpha \times \beta$ is BNF
- Define F-algebras
- Construct initial algebra (α IF, fld)
- Define iterator iter
- Prove characteristic theorems
- Prove that IF is a BNF

From user specifications to (co)datatypes

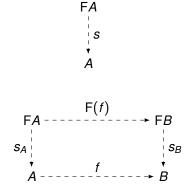
- codatatype α llist = Nil | Cons α (α llist)
- Abstract to $\beta = \text{unit} + \alpha \times \beta$
- Prove (α, β) F = unit + $\alpha \times \beta$ is BNF
- Define F-coalgebras
- Construct final coalgebra (α JF, unf)
- Define coiterator coiter
- Prove characteristic theorems
- Prove that JF is a BNF

(Co)datatype (Co)nstruction ●●○○○ Conclusion O

Algebras, Coalgebras & Morphisms

(Co)datatype (Co)nstruction ●●○○○ Conclusion O

Algebras, Coalgebras & Morphisms



(Co)datatype (Co)nstruction ●●○○○

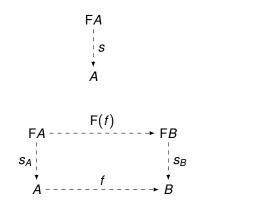
А

FA

s

Conclusion O

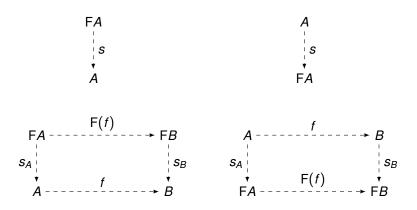
Algebras, Coalgebras & Morphisms



(Co)datatype (Co)nstruction

Conclusion O

Algebras, Coalgebras & Morphisms



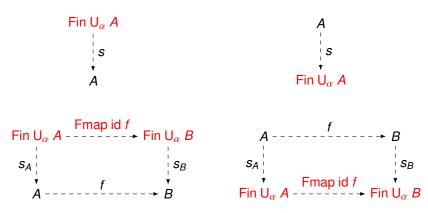
Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Algebras, Coalgebras & Morphisms $\beta = (\alpha, \beta) F$

In HOL:



(Co)datatype (Co)nstruction

Conclusion O

Initial Algebras & Final Coalgebras $\beta = (\alpha, \beta) F$

weakly initial:	exists morphism to any other algebra
initial:	exists unique morphism to any other algebra
weakly final:	exists morphism from any other coalgebra
final:	exists unique morphism from any other coalgebra

Conclusion O

Initial Algebras & Final Coalgebras $\beta = (\alpha, \beta) F$

weakly initial:exists morphism to any other algebrainitial:exists unique morphism to any other algebraweakly final:exists morphism from any other coalgebrafinal:exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial

Conclusion O

Initial Algebras & Final Coalgebras $\beta = (\alpha, \beta) F$

weakly initial:exists morphism to any other algebrainitial:exists unique morphism to any other algebraweakly final:exists morphism from any other coalgebrafinal:exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
- \Rightarrow Have a bound for its cardinality

 $\Rightarrow (\alpha \mathsf{ IF}, \mathsf{fld} : (\alpha, \alpha \mathsf{ IF}) \mathsf{ F} \rightarrow \alpha \mathsf{ IF})$

Conclusion O

Initial Algebras & Final Coalgebras $\beta = (\alpha, \beta) F$

weakly initial:exists morphism to any other algebrainitial:exists unique morphism to any other algebraweakly final:exists morphism from any other coalgebrafinal:exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
- \Rightarrow Have a bound for its cardinality
 - $\Rightarrow (\alpha \mathsf{ IF}, \mathsf{fld} : (\alpha, \alpha \mathsf{ IF}) \mathsf{ F} \rightarrow \alpha \mathsf{ IF})$

- Sum of all coalgebras is weakly final
- Suffices to consider coalgebras over types of certain cardinality
- Quotient of weakly final coalgebra to the greatest bisimulation is final

Conclusion O

Initial Algebras & Final Coalgebras $\beta = (\alpha, \beta) F$

weakly initial:exists morphism to any other algebrainitial:exists unique morphism to any other algebraweakly final:exists morphism from any other coalgebrafinal:exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
- \Rightarrow Have a bound for its cardinality

 $\Rightarrow (\alpha \text{ IF, fld} : (\alpha, \alpha \text{ IF}) \text{ F} \rightarrow \alpha \text{ IF})$

- Sum of all coalgebras is weakly final
- Suffices to consider coalgebras over types of certain cardinality
- Quotient of weakly final coalgebra to the greatest bisimulation is final
- Use concrete weakly final coalgebra (elements are tree-like structures)
- \Rightarrow Have a bound for its cardinality

 \Rightarrow (α JF, unf : α JF \rightarrow (α , α JF) F)

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Iteration & Coiteration $\beta = (\alpha, \beta) F$

• Given $s: (\alpha, \beta) \mathsf{F} \to \beta$

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Iteration & Coiteration $\beta = (\alpha, \beta) F$

- Given $s: (\alpha, \beta) \mathsf{F} \to \beta$
- Obtain unique morphism iter s from (α IF, fld) to (U_β, s)



Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Iteration & Coiteration $\beta = (\alpha, \beta) F$

- Given $\boldsymbol{s}: (\alpha, \beta) \mathsf{F} \to \beta$
- Obtain unique morphism iter s from (α IF, fld) to (U_β, s)

• Given $s: \beta \rightarrow (\alpha, \beta)$ F

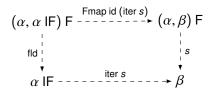
Bounded Natural Functors

(Co)datatype (Co)nstruction

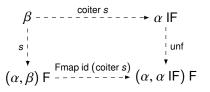
Conclusion O

Iteration & Coiteration $\beta = (\alpha, \beta) F$

- Given $s: (\alpha, \beta) \mathsf{F} \to \beta$
- Obtain unique morphism iter s from (α IF, fld) to (U_β, s)



- Given $s: \beta \rightarrow (\alpha, \beta)$ F
- Obtain unique morphism coiter s from (U_β, s) to (α JF, unf)



Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Induction & Coinduction $\beta = (\alpha, \beta) F$

• Given $\varphi : \alpha$ IF \rightarrow bool

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Induction & Coinduction $\beta = (\alpha, \beta) F$

- Given $\varphi : \alpha$ IF \rightarrow bool
- Abstract induction principle

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Induction & Coinduction $\beta = (\alpha, \beta) F$

- Given $\varphi : \alpha$ IF \rightarrow bool
- Abstract induction principle

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x}$$

• Given $\psi : \alpha \ \mathsf{JF} \to \alpha \ \mathsf{JF} \to \mathsf{bool}$

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion O

Induction & Coinduction $\beta = (\alpha, \beta) F$

- Given $\varphi : \alpha$ IF \rightarrow bool
- Abstract induction principle

- Given $\psi: \alpha \operatorname{JF} \to \alpha \operatorname{JF} \to \operatorname{bool}$
- Abstract coinduction principle

$$\frac{\forall z. \ (\forall x \in \mathsf{Fset}_2 \ z. \ \varphi \ x) \Rightarrow \varphi \ (\mathsf{fld} \ z)}{\forall x. \ \varphi \ x} \quad \frac{\forall x \ y. \ \psi \ x \ y \Rightarrow \mathsf{Fpred} \ \mathsf{Eq} \ \psi \ (\mathsf{unf} \ x) \ (\mathsf{unf} \ y)}{\forall x \ y. \ \psi \ x \ y \Rightarrow x = y}$$

(Co)datatype (Co)nstruction ○○○○● Conclusion O

Preservation of BNF Properties $\beta = (\alpha, \beta) F$

- IFmap $f = \text{iter} (\text{fld} \circ \text{Fmap } f \text{ id})$
- IFset = iter collect, where

collect $z = Fset_1 z \cup \bigcup Fset_2 z$

(Co)datatype (Co)nstruction ○○○○● Conclusion O

Preservation of BNF Properties $\beta = (\alpha, \beta) F$

- IFmap $f = \text{iter} (\text{fld} \circ \text{Fmap } f \text{ id})$
- IFset = iter collect, where

 $\mathsf{collect}\ z{=}\mathsf{Fset}_1\ z \cup \bigcup \ \mathsf{Fset}_2\ z$

Theorem (IF, IFmap, IFset, 2^{Fbd}) *is an BNF*

(Co)datatype (Co)nstruction ○○○○● Conclusion O

Preservation of BNF Properties $\beta = (\alpha, \beta) F$

- IFmap $f = \text{iter} (\text{fld} \circ \text{Fmap } f \text{ id})$
- IFset = iter collect, where

collect
$$z = Fset_1 z \cup \bigcup Fset_2 z$$

- JFmap *f* = coiter (Fmap *f* id ∘ unf)
- JFset $x = \bigcup_{i \in \mathbb{N}}$ collect_i x, where

collect₀ $x = \emptyset$ collect_{i+1} $x = \text{Fset}_1 (\text{unf } x) \cup \bigcup_{y \in \text{Fset}_2 (\text{unf } x)} \text{collect}_i y$

Theorem (IF, IFmap, IFset, 2^{Fbd}) *is an BNF*

(Co)datatype (Co)nstruction ○○○○● Conclusion O

Preservation of BNF Properties $\beta = (\alpha, \beta) F$

- IFmap f =iter (fld \circ Fmap f id)
- IFset = iter collect, where

collect
$$z = Fset_1 z \cup \bigcup Fset_2 z$$

• JFmap *f* = coiter (Fmap *f* id ∘ unf)

• JFset
$$x = \bigcup_{i \in \mathbb{N}} \text{ collect}_i x$$
, where

collect₀ $x = \emptyset$ collect_{i+1} $x = \text{Fset}_1 (\text{unf } x) \cup \bigcup_{y \in \text{Fset}_2 (\text{unf } x)} \text{collect}_i y$

Theorem (IF, IFmap, IFset, 2^{Fbd}) *is an BNF* Theorem (JF, JFmap, JFset, Fbd^{Fbd}) *is an BNF*

(Co)datatype (Co)nstruction

Conclusion

Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

(Co)datatype (Co)nstruction

Conclusion

Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

• Framework for defining types in HOL

(Co)datatype (Co)nstruction

Conclusion

Foundational, Compositional (Co)datatypes for Higher-Order Logic Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- · Characteristic theorems are derived, not stated as axioms

Foundational, Compositional (Co)datatypes for Higher-Order Logic

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested (co)recursion involving arbitrary combinations of datatypes, codatatypes, and custom BNFs.

Foundational, Compositional (Co)datatypes for Higher-Order Logic Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested (co)recursion involving arbitrary combinations of datatypes, codatatypes, and custom BNFs.
- Adapt insights from category theory in HOL's restrictive type system

Thank you for your attention! Questions?

Foundational, Compositional (Co)datatypes for Higher-Order Logic Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Christian Blanchette

November 13, 2015

