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Resolve B =unit+a xg minimally
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Motivation

datatype a list = Nil | Cons @ (« list)
codatatype a tree; = Node (lab: @) (sub: (atree))fset)

Resolve B =unit+a xg minimally

and v =a Xy fset maximally
Prove @ Nil Vx xs. ¢ xs = ¢ (Cons x xs)
VXs. ¢ xs
Ut
and Vxy. ¢ xy=labx=lab yAfset predy (sub x) (suby)

h==0t
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Higher-Order Logic

Simply typed set theory with ML-style polymorphism

Cannot handle proper classes

Primitive type definitions

Existing type

Uqo

New type Representing set

Goal: Reduce (co)datatype specification to primitive type definitions
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(Co)datatypes in interactive theorem provers

e PVS: axiomatic, monolithic (co)datatypes
e Agda, Coq: built-in (co)datatypes
e HOL based provers: definitional datatypes

e Melham—-Gunter approach
e Fixed universe for recursive, freely generated datatypes

e Simulates nested recursion by mutual recursion
e Used in HOL4, HOL Light, Isabelle/HOL, ...
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Beyond Melham—Gunter

Codatatypes

Mixture of codatatypes and datatypes

Non-free structures (e.g. fset)

“Real” nested recursion
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Type constructors are not just operators on types!
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Fmap: (a—ad)—= (B—f)— (a,8)F— (,f)F

(.B)F (o, B)) F
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Type Constructors are Functors

Fmap: (¢« —»a') = (B—pF)— (a,B)F— (,B)F

Fmap f g fa
————————————————— > fa1
gb
(a,8)F (o/.B')F
Fmapidid = id

Fmap f; hboFmapgi g = Fmap (fiogs) (Logs)
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Fsety : (@, B) F — B set

--7 a set

(a.B) F

B set
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Type Constructors are Containers

Fseti : (a,B) F — a set
Fsety : (@, B) F — B set

- a set

(o, B) F

B set

FsetioFmap f; ,, = image fjoFset;
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Type Constructors Act on Sets

Fin Ay A = {Z ‘ Fset; z C A; AFset, z C Ag}

Ay aset Az : (B set

\ /

*\ Action of Fin ,”
Y »

Fin Ay As : (0/,,8) F set

Vie{1,2}. VxcFsetiz. ix=9g;x = Fmapfifhz=Fmapgs g»z
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Fbd: infinite cardinal

(e, B) F A a set Ao : B set

/ \ \ /

*\ Action of Fin ,”

a set B set
Fin Ay Ao : (a,,B) F set
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Type Constructors are Bounded

Fbd: infinite cardinal

(a,B) F As :a set As : B set
Fset; /// \\\Fsetg \\‘Action of Fin’/
‘ @
a set B set
Fin Ay Ao : (a,,B) F set
|Fset; z| < Fbd
IFin Ay A2| < (|Aq| +|Az| +2)™
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(F, Fmap) is a binary functor.

For all 1, Fsety is a natural transformation between ((a1, _) F, Fmap)
and (set, image).

For all ay, Fset; is a natural transformation between ((_, @) F, Fmap)
and (set, image).

If Va € Fset; x. fia=gjaforallic {1,2}, then

Fmap fi b, x = Fmap g1 g» x.

The following cardinal-bound conditions hold:
a. Vx: (ai,a2) F. |Fset; x| < Fbd forie {1,2};
b. |Fin Ay Ag| < (JA¢| + |Az| +2)™.

(F, Fmap) preserves weak pullbacks.
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What are BNFs good for?

They ...

cover basic type constructors (e.g. +, X, unit, and o — g for fixed @)
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras and final coalgebras

are closed under initial algebras and final coalgebras

make initial algebras and final coalgebras expressible in HOL
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From user specifications to (co)datatypes

e datatype a list = Nil | Cons a (« list)
e Abstractto f = unit+a x g

e Prove (a, ) F = unit+a x B is BNF

e Define F-algebras

e Construct initial algebra (« IF, fld)

e Define iterator iter

e Prove characteristic theorems

e Prove that IF is a BNF
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From user specifications to (co)datatypes

e codatatype « llist = Nil | Cons « (e llist)
e Abstractto f = unit+a x

e Prove (@, B) F = unit+a x B is BNF

e Define F-coalgebras

e Construct final coalgebra (a JF, unf)

e Define coiterator coiter

e Prove characteristic theorems

e Prove that JF is a BNF
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\4 A4
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Algebras, Coalgebras & Morphisms

In category theory:

A
s
\
FA
f
e REEEEEEEEE - B
SAE ESB
Y F(f v
FA———————(—) ————— - FB
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Algebras, Coalgebras & Morphisms

B=(a.B)F
In HOL.:
FinU, A A
s s
v v
A FinU, A
Fmapidf _ f
Fln U(y """"" > F|n U(l B A —————————————— > B
SA 3 3 SB SA i i SB
' f \ v Fmapid f v
A-------------- - B FinU, A-------- -~ FinU, B
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Initial Algebras & Final Coalgebras
B=(a.B)F

weakly initial:  exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final:  exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra
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Initial Algebras & Final Coalgebras

weakly initial:
initial:
weakly final:
final:

B=(a.p)F

exists morphism to any other algebra

exists unique morphism to any other algebra
exists morphism from any other coalgebra

exists unique morphism from any other coalgebra

Product of all algebras is weakly initial

Suffices to consider algebras over types
of certain cardinality

Minimal subalgebra of weakly initial

algebra is initial
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B=(a.p)F
weakly initial:  exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final:  exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

® Product of all algebras is weakly initial

e Suffices to consider algebras over types
of certain cardinality

® Minimal subalgebra of weakly initial
algebra is initial

® Construct minimal subalgebra from
below by transfinite recursion

= Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F =« IF)
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Initial Algebras & Final Coalgebras
B=(a.B)F

weakly initial:  exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final:  exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

® Product of all algebras is weakly initial ® Sum of all coalgebras is weakly final

e Suffices to consider algebras over types e Suffices to consider coalgebras over
of certain cardinality types of certain cardinality

® Minimal subalgebra of weakly initial ® Quotient of weakly final coalgebra to the
algebra is initial greatest bisimulation is final

® Construct minimal subalgebra from
below by transfinite recursion

= Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F =« IF)
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Initial Algebras & Final Coalgebras

Sum of all coalgebras is weakly final

B=(a.p)F
weakly initial:  exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final:  exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra
® Product of all algebras is weakly initial °
e Suffices to consider algebras over types (]

=

of certain cardinality

Minimal subalgebra of weakly initial °
algebra is initial

Construct minimal subalgebra from °
below by transfinite recursion

Have a bound for its cardinality =

Suffices to consider coalgebras over
types of certain cardinality

Quotient of weakly final coalgebra to the
greatest bisimulation is final

Use concrete weakly final coalgebra
(elements are tree-like structures)

Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F =« IF) = (e JF,unf: @ JF — (@, a JF) F)
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Iteration & Coiteration
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e Givens: (a,f)F—=p e Givens:f— (a,B)F
e QObtain unique morphism iter s
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Iteration & Coiteration
B=(a.B)F

e Givens: (a,8)F—p
e QObtain unique morphism iter s
from (« IF, fld) to (Ug, s)

e Givens:f— (a,B8)F
e (Obtain unique morphism coiter s
from (Ug, s) to (a JF, unf)

B-----m - > o IF
s i i unf
v Fmap id (coiter s) Y
(a,B)F--------- > (a,aIF)F
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Induction & Coinduction
B=(a.B)F

e Given ¢ : a IF — bool
e Abstract induction principle

Vz. (Vx € Fsetp z. ¢ x) = ¢ (fld 2)
Vx. ¢ x

Conclusion
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Induction & Coinduction
B=(a.B)F

e Given ¢ : a IF — bool e Giveny : a JF — a JF — bool
e Abstract induction principle
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Induction & Coinduction

B=(a.p)F
e Given ¢ : a IF — bool e Giveny : a JF — a JF — bool
e Abstract induction principle e Abstract coinduction principle

Vz. (Vx €Fsetp z. ¢ x) = ¢ (fldz) Vxy. ¢ x y = Fpred Eqy (unf x) (unf y)
VX. ¢ x VXy. uxy=x=y
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e [Fmap f =iter (fld o Fmap f id)
o |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z

Conclusion
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Theorem
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B=(a.p)F

e [Fmap f =iter (fld o Fmap f id) e JFmap f = coiter (Fmap fid o unf)
o |Fset = iter collect, where e JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U | J collect; y
y€Fsety (unf x)

Theorem
(IF, IFmap, IFset, 2M9) is an BNF
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B=(a.p)F

e [Fmap f =iter (fld o Fmap f id) e JFmap f = coiter (Fmap fid o unf)
o |Fset = iter collect, where e JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U | J collect; y
y€Fsety (unf x)

Theorem Theorem
(IF, IFmap, IFset, 2M9) is an BNF (JF, JFmap, JFset, Fbd™) is an BNF
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Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Framework for defining types in HOL
Characteristic theorems are derived, not stated as axioms

Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

Adapt insights from category theory in HOLs restrictive type system



Thank you for your attention!
Questions?
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