
Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Christian Blanchette

November 13, 2015

λ
→

∀
=Is

ab
el
le

β

α

 β=unit+α×β

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Outline

Introduction

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)

codatatype α tree I = Node (lab: α) (sub: (α tree I))

Resolve β= unit+α×β minimally
and γ = α×γ maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)

codatatype α tree I = Node (lab: α) (sub: (α tree I))

Resolve β= unit+α×β minimally

and γ = α×γ maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)

codatatype α tree I = Node (lab: α) (sub: (α tree I))

Resolve β= unit+α×β minimally

and γ = α×γ maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node (lab: α) (sub: (α tree I) list)

Resolve β= unit+α×β minimally

and γ = α×γ maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node (lab: α) (sub: (α tree I) list)

Resolve β= unit+α×β minimally
and γ = α×γ list maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node (lab: α) (sub: (α tree I) list)

Resolve β= unit+α×β minimally
and γ = α×γ list maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ list_pred ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Motivation

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node (lab: α) (sub: (α tree I) fset)

Resolve β= unit+α×β minimally
and γ = α×γ fset maximally

Prove
ϕ Nil ∀x xs. ϕ xs⇒ ϕ (Cons x xs)

∀xs. ϕ xs

and
ψ t1 t2

∀x y . ψ x y ⇒ lab x = lab y ∧ fset_pred ψ (sub x) (sub y)
t1 = t2

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Higher-Order Logic

• Simply typed set theory with ML-style polymorphism

• Cannot handle proper classes

• Primitive type definitions

New type

Uα

Representing set

Uβ
Existing type

Repα : α→ β

Absα : β→ α

• Goal: Reduce (co)datatype specification to primitive type definitions

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Higher-Order Logic

• Simply typed set theory with ML-style polymorphism

• Cannot handle proper classes

• Primitive type definitions

New type

Uα

Representing set

Uβ
Existing type

Repα : α→ β

Absα : β→ α

• Goal: Reduce (co)datatype specification to primitive type definitions

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Higher-Order Logic

• Simply typed set theory with ML-style polymorphism

• Cannot handle proper classes

• Primitive type definitions

New type

Uα

Representing set

Uβ
Existing type

Repα : α→ β

Absα : β→ α

• Goal: Reduce (co)datatype specification to primitive type definitions

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

(Co)datatypes in interactive theorem provers

• PVS: axiomatic, monolithic (co)datatypes

• Agda, Coq: built-in (co)datatypes

• HOL based provers: definitional datatypes

• Melham–Gunter approach
• Fixed universe for recursive, freely generated datatypes
• Simulates nested recursion by mutual recursion
• Used in HOL4, HOL Light, Isabelle/HOL, . . .

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

(Co)datatypes in interactive theorem provers

• PVS: axiomatic, monolithic (co)datatypes

• Agda, Coq: built-in (co)datatypes

• HOL based provers: definitional datatypes

• Melham–Gunter approach
• Fixed universe for recursive, freely generated datatypes
• Simulates nested recursion by mutual recursion
• Used in HOL4, HOL Light, Isabelle/HOL, . . .

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Beyond Melham–Gunter

• Codatatypes

• Mixture of codatatypes and datatypes

• Non-free structures (e.g. fset)

• “Real” nested recursion

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type constructors are not just operators on types!

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Functors

Fmap : (α→ α′)→ (β→ β′)→ (α, β) F→ (α′, β′) F

a1

a2

b
f a1

f a2

g b

(α, β) F (α′, β′) F

Fmap f g

Fmap id id = id

Fmap f1 f2 ◦Fmap g1 g2 = Fmap (f1 ◦g2) (f2 ◦g2)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Functors

Fmap : (α→ α′)→ (β→ β′)→ (α, β) F→ (α′, β′) F

a1

a2

b
f a1

f a2

g b

(α, β) F (α′, β′) F

Fmap f g

Fmap id id = id

Fmap f1 f2 ◦Fmap g1 g2 = Fmap (f1 ◦g2) (f2 ◦g2)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Containers

Fset1 : (α, β) F→ α set

Fset2 : (α, β) F→ β set

a1

a2

b

a1

a2

b
(α, β) F

α set

β set

Fset1

Fset2

Fseti ◦Fmap f1 f2 = image fi ◦Fseti

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Containers

Fset1 : (α, β) F→ α set

Fset2 : (α, β) F→ β set

a1

a2

b

a1

a2

b
(α, β) F

α set

β set

Fset1

Fset2

Fseti ◦Fmap f1 f2 = image fi ◦Fseti

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors Act on Sets

Fin A1 A2 = {z | Fset1 z ⊆ A1∧Fset2 z ⊆ A2}

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

∀i ∈ {1, 2}. ∀x ∈ Fseti z. fi x = gi x ⇒ Fmap f1 f2 z = Fmap g1 g2 z

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors Act on Sets

Fin A1 A2 = {z | Fset1 z ⊆ A1∧Fset2 z ⊆ A2}

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

∀i ∈ {1, 2}. ∀x ∈ Fseti z. fi x = gi x ⇒ Fmap f1 f2 z = Fmap g1 g2 z

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors Act on Sets

Fin A1 A2 = {z | Fset1 z ⊆ A1∧Fset2 z ⊆ A2}

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

∀i ∈ {1, 2}. ∀x ∈ Fseti z. fi x = gi x ⇒ Fmap f1 f2 z = Fmap g1 g2 z

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded

Fbd: infinite cardinal

a1
a2

b

a1
a2

b

(α, β) F

α set β set

Fset1 Fset2

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

|Fseti z| ≤ Fbd

|Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded

Fbd: infinite cardinal

a1
a2

b

a1
a2

b

(α, β) F

α set β set

Fset1 Fset2

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

|Fseti z| ≤ Fbd

|Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded

Fbd: infinite cardinal

a1
a2

b

a1
a2

b

(α, β) F

α set β set

Fset1 Fset2

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

|Fseti z| ≤ Fbd

|Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded

Fbd: infinite cardinal

a1
a2

b

a1
a2

b

(α, β) F

α set β set

Fset1 Fset2

a1
a2

b

a1
a2

b

a2
a1

b

Action of Fin

A1 : α set A2 : β set

Fin A1 A2 : (α, β) F set

|Fseti z| ≤ Fbd

|Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

• (F, Fmap) is a binary functor.

• For all α1, Fset1 is a natural transformation between ((α1, _) F, Fmap)
and (set, image).

• For all α2, Fset2 is a natural transformation between ((_, α2) F, Fmap)
and (set, image).

• If ∀a ∈ Fseti x . fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x .

• The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x | ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

• (F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

• (F, Fmap) is a binary functor.

• For all α1, Fset1 is a natural transformation between ((α1, _) F, Fmap)
and (set, image).

• For all α2, Fset2 is a natural transformation between ((_, α2) F, Fmap)
and (set, image).

• If ∀a ∈ Fseti x . fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x .

• The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x | ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

• (F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

• (F, Fmap) is a binary functor.

• For all α1, Fset1 is a natural transformation between ((α1, _) F, Fmap)
and (set, image).

• For all α2, Fset2 is a natural transformation between ((_, α2) F, Fmap)
and (set, image).

• If ∀a ∈ Fseti x . fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x .

• The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x | ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

• (F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

• (F, Fmap) is a binary functor.

• For all α1, Fset1 is a natural transformation between ((α1, _) F, Fmap)
and (set, image).

• For all α2, Fset2 is a natural transformation between ((_, α2) F, Fmap)
and (set, image).

• If ∀a ∈ Fseti x . fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x .

• The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x | ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

• (F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

• (F, Fmap) is a binary functor.

• For all α1, Fset1 is a natural transformation between ((α1, _) F, Fmap)
and (set, image).

• For all α2, Fset2 is a natural transformation between ((_, α2) F, Fmap)
and (set, image).

• If ∀a ∈ Fseti x . fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x .

• The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x | ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

• (F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

• (F, Fmap) is a binary functor.

• For all α1, Fset1 is a natural transformation between ((α1, _) F, Fmap)
and (set, image).

• For all α2, Fset2 is a natural transformation between ((_, α2) F, Fmap)
and (set, image).

• If ∀a ∈ Fseti x . fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x .

• The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x | ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

• (F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

What are BNFs good for?

They ...

• cover basic type constructors (e.g. +,×, unit, and α→ β for fixed α)

• cover non-free type constructors (e.g. fset, cset)

• are closed under composition

• admit initial algebras and final coalgebras

• are closed under initial algebras and final coalgebras

• make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

From user specifications to (co)datatypes

• datatype α list = Nil | Cons α (α list)

• Abstract to β= unit+α×β
• Prove (α, β) F = unit+α×β is BNF

• Define F-algebras

• Construct initial algebra (α IF, fld)

• Define iterator iter

• Prove characteristic theorems

• Prove that IF is a BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

From user specifications to (co)datatypes

• codatatype α llist = Nil | Cons α (α llist)

• Abstract to β= unit+α×β
• Prove (α, β) F = unit+α×β is BNF

• Define F-coalgebras

• Construct final coalgebra (α JF, unf)

• Define coiterator coiter

• Prove characteristic theorems

• Prove that JF is a BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Algebras, Coalgebras & Morphisms

β= (α, β) F

In category theory:

A

FA

s

A B

FA FB

f

sBsA

F(f)

A

FA

s

A B

FA FB

f

sBsA

F(f)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Algebras, Coalgebras & Morphisms

β= (α, β) F

In category theory:

A

FA

s

A B

FA FB

f

sBsA

F(f)

A

FA

s

A B

FA FB

f

sBsA

F(f)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Algebras, Coalgebras & Morphisms

β= (α, β) F

In category theory:

A

FA

s

A B

FA FB

f

sBsA

F(f)

A

FA

s

A B

FA FB

f

sBsA

F(f)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Algebras, Coalgebras & Morphisms

β= (α, β) F

In category theory:

A

FA

s

A B

FA FB

f

sBsA

F(f)

A

FA

s

A B

FA FB

f

sBsA

F(f)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Algebras, Coalgebras & Morphisms
β= (α, β) F

In HOL:

A

Fin Uα A

s

A B

Fin Uα A Fin Uα B

f

sBsA

Fmap id f

A

Fin Uα A

s

A B

Fin Uα A Fin Uα B

f

sBsA

Fmap id f

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Initial Algebras & Final Coalgebras
β= (α, β) F

weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

• Product of all algebras is weakly initial

• Suffices to consider algebras over types
of certain cardinality

• Minimal subalgebra of weakly initial
algebra is initial

• Construct minimal subalgebra from
below by transfinite recursion

⇒ Have a bound for its cardinality

⇒ (α IF, fld : (α, α IF) F→ α IF)

• Sum of all coalgebras is weakly final

• Suffices to consider coalgebras over
types of certain cardinality

• Quotient of weakly final coalgebra to the
greatest bisimulation is final

• Use concrete weakly final coalgebra
(elements are tree-like structures)

⇒ Have a bound for its cardinality

⇒ (α JF, unf : α JF→ (α, α JF) F)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Initial Algebras & Final Coalgebras
β= (α, β) F

weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

• Product of all algebras is weakly initial

• Suffices to consider algebras over types
of certain cardinality

• Minimal subalgebra of weakly initial
algebra is initial

• Construct minimal subalgebra from
below by transfinite recursion

⇒ Have a bound for its cardinality

⇒ (α IF, fld : (α, α IF) F→ α IF)

• Sum of all coalgebras is weakly final

• Suffices to consider coalgebras over
types of certain cardinality

• Quotient of weakly final coalgebra to the
greatest bisimulation is final

• Use concrete weakly final coalgebra
(elements are tree-like structures)

⇒ Have a bound for its cardinality

⇒ (α JF, unf : α JF→ (α, α JF) F)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Initial Algebras & Final Coalgebras
β= (α, β) F

weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

• Product of all algebras is weakly initial

• Suffices to consider algebras over types
of certain cardinality

• Minimal subalgebra of weakly initial
algebra is initial

• Construct minimal subalgebra from
below by transfinite recursion

⇒ Have a bound for its cardinality

⇒ (α IF, fld : (α, α IF) F→ α IF)

• Sum of all coalgebras is weakly final

• Suffices to consider coalgebras over
types of certain cardinality

• Quotient of weakly final coalgebra to the
greatest bisimulation is final

• Use concrete weakly final coalgebra
(elements are tree-like structures)

⇒ Have a bound for its cardinality

⇒ (α JF, unf : α JF→ (α, α JF) F)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Initial Algebras & Final Coalgebras
β= (α, β) F

weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

• Product of all algebras is weakly initial

• Suffices to consider algebras over types
of certain cardinality

• Minimal subalgebra of weakly initial
algebra is initial

• Construct minimal subalgebra from
below by transfinite recursion

⇒ Have a bound for its cardinality

⇒ (α IF, fld : (α, α IF) F→ α IF)

• Sum of all coalgebras is weakly final

• Suffices to consider coalgebras over
types of certain cardinality

• Quotient of weakly final coalgebra to the
greatest bisimulation is final

• Use concrete weakly final coalgebra
(elements are tree-like structures)

⇒ Have a bound for its cardinality

⇒ (α JF, unf : α JF→ (α, α JF) F)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Initial Algebras & Final Coalgebras
β= (α, β) F

weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

• Product of all algebras is weakly initial

• Suffices to consider algebras over types
of certain cardinality

• Minimal subalgebra of weakly initial
algebra is initial

• Construct minimal subalgebra from
below by transfinite recursion

⇒ Have a bound for its cardinality

⇒ (α IF, fld : (α, α IF) F→ α IF)

• Sum of all coalgebras is weakly final

• Suffices to consider coalgebras over
types of certain cardinality

• Quotient of weakly final coalgebra to the
greatest bisimulation is final

• Use concrete weakly final coalgebra
(elements are tree-like structures)

⇒ Have a bound for its cardinality

⇒ (α JF, unf : α JF→ (α, α JF) F)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Iteration & Coiteration
β= (α, β) F

• Given s : (α, β) F→ β

• Obtain unique morphism iter s
from (α IF, fld) to (Uβ, s)

α IF β

(α, α IF) F (α, β) F

iter s

sfld

Fmap id (iter s)

• Given s : β→ (α, β) F

• Obtain unique morphism coiter s
from (Uβ, s) to (α JF, unf)

α IFβ

(α, α IF) F(α, β) F

coiter s

s unf

Fmap id (coiter s)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Iteration & Coiteration
β= (α, β) F

• Given s : (α, β) F→ β

• Obtain unique morphism iter s
from (α IF, fld) to (Uβ, s)

α IF β

(α, α IF) F (α, β) F

iter s

sfld

Fmap id (iter s)

• Given s : β→ (α, β) F

• Obtain unique morphism coiter s
from (Uβ, s) to (α JF, unf)

α IFβ

(α, α IF) F(α, β) F

coiter s

s unf

Fmap id (coiter s)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Iteration & Coiteration
β= (α, β) F

• Given s : (α, β) F→ β

• Obtain unique morphism iter s
from (α IF, fld) to (Uβ, s)

α IF β

(α, α IF) F (α, β) F

iter s

sfld

Fmap id (iter s)

• Given s : β→ (α, β) F

• Obtain unique morphism coiter s
from (Uβ, s) to (α JF, unf)

α IFβ

(α, α IF) F(α, β) F

coiter s

s unf

Fmap id (coiter s)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Iteration & Coiteration
β= (α, β) F

• Given s : (α, β) F→ β

• Obtain unique morphism iter s
from (α IF, fld) to (Uβ, s)

α IF β

(α, α IF) F (α, β) F

iter s

sfld

Fmap id (iter s)

• Given s : β→ (α, β) F

• Obtain unique morphism coiter s
from (Uβ, s) to (α JF, unf)

α IFβ

(α, α IF) F(α, β) F

coiter s

s unf

Fmap id (coiter s)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Induction & Coinduction
β= (α, β) F

• Given ϕ : α IF→ bool

• Abstract induction principle

∀z. (∀x ∈ Fset2 z. ϕ x)⇒ ϕ (fld z)
∀x . ϕ x

• Given ψ : α JF→ α JF→ bool

• Abstract coinduction principle

∀x y . ψ x y ⇒ Fpred Eq ψ (unf x) (unf y)
∀x y . ψ x y ⇒ x = y

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Induction & Coinduction
β= (α, β) F

• Given ϕ : α IF→ bool

• Abstract induction principle

∀z. (∀x ∈ Fset2 z. ϕ x)⇒ ϕ (fld z)
∀x . ϕ x

• Given ψ : α JF→ α JF→ bool

• Abstract coinduction principle

∀x y . ψ x y ⇒ Fpred Eq ψ (unf x) (unf y)
∀x y . ψ x y ⇒ x = y

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Induction & Coinduction
β= (α, β) F

• Given ϕ : α IF→ bool

• Abstract induction principle

∀z. (∀x ∈ Fset2 z. ϕ x)⇒ ϕ (fld z)
∀x . ϕ x

• Given ψ : α JF→ α JF→ bool

• Abstract coinduction principle

∀x y . ψ x y ⇒ Fpred Eq ψ (unf x) (unf y)
∀x y . ψ x y ⇒ x = y

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Induction & Coinduction
β= (α, β) F

• Given ϕ : α IF→ bool

• Abstract induction principle

∀z. (∀x ∈ Fset2 z. ϕ x)⇒ ϕ (fld z)
∀x . ϕ x

• Given ψ : α JF→ α JF→ bool

• Abstract coinduction principle

∀x y . ψ x y ⇒ Fpred Eq ψ (unf x) (unf y)
∀x y . ψ x y ⇒ x = y

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Preservation of BNF Properties
β= (α, β) F

• IFmap f = iter (fld ◦ Fmap f id)

• IFset = iter collect, where

collect z=Fset1 z ∪
⋃

Fset2 z

Theorem
(IF, IFmap, IFset, 2Fbd) is an BNF

• JFmap f = coiter (Fmap f id ◦ unf)

• JFset x =
⋃

i∈N
collecti x , where

collect0 x= /0

collecti+1 x=Fset1 (unf x)∪
⋃

y∈Fset2 (unf x)

collecti y

Theorem
(JF, JFmap, JFset, FbdFbd) is an BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Preservation of BNF Properties
β= (α, β) F

• IFmap f = iter (fld ◦ Fmap f id)

• IFset = iter collect, where

collect z=Fset1 z ∪
⋃

Fset2 z

Theorem
(IF, IFmap, IFset, 2Fbd) is an BNF

• JFmap f = coiter (Fmap f id ◦ unf)

• JFset x =
⋃

i∈N
collecti x , where

collect0 x= /0

collecti+1 x=Fset1 (unf x)∪
⋃

y∈Fset2 (unf x)

collecti y

Theorem
(JF, JFmap, JFset, FbdFbd) is an BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Preservation of BNF Properties
β= (α, β) F

• IFmap f = iter (fld ◦ Fmap f id)

• IFset = iter collect, where

collect z=Fset1 z ∪
⋃

Fset2 z

Theorem
(IF, IFmap, IFset, 2Fbd) is an BNF

• JFmap f = coiter (Fmap f id ◦ unf)

• JFset x =
⋃

i∈N
collecti x , where

collect0 x= /0

collecti+1 x=Fset1 (unf x)∪
⋃

y∈Fset2 (unf x)

collecti y

Theorem
(JF, JFmap, JFset, FbdFbd) is an BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Preservation of BNF Properties
β= (α, β) F

• IFmap f = iter (fld ◦ Fmap f id)

• IFset = iter collect, where

collect z=Fset1 z ∪
⋃

Fset2 z

Theorem
(IF, IFmap, IFset, 2Fbd) is an BNF

• JFmap f = coiter (Fmap f id ◦ unf)

• JFset x =
⋃

i∈N
collecti x , where

collect0 x= /0

collecti+1 x=Fset1 (unf x)∪
⋃

y∈Fset2 (unf x)

collecti y

Theorem
(JF, JFmap, JFset, FbdFbd) is an BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

• Framework for defining types in HOL

• Characteristic theorems are derived, not stated as axioms

• Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

• Adapt insights from category theory in HOL’s restrictive type system

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

• Framework for defining types in HOL

• Characteristic theorems are derived, not stated as axioms

• Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

• Adapt insights from category theory in HOL’s restrictive type system

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

• Framework for defining types in HOL

• Characteristic theorems are derived, not stated as axioms

• Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

• Adapt insights from category theory in HOL’s restrictive type system

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

• Framework for defining types in HOL

• Characteristic theorems are derived, not stated as axioms

• Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

• Adapt insights from category theory in HOL’s restrictive type system

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

• Framework for defining types in HOL

• Characteristic theorems are derived, not stated as axioms

• Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

• Adapt insights from category theory in HOL’s restrictive type system

Thank you for your attention!
Questions?

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Christian Blanchette

November 13, 2015

λ
→

∀
=Is

ab
el
le

β

α

 β=unit+α×β

	Appendix

