Foundational, Compositional (Co)datatypes for
Higher-Order Logic
Category Theory Applied to Theorem Proving

Dmitriy Traytel ~Andrei Popescu Jasmin Christian Blanchette

November 13, 2015

Technische Universitat Minchen

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000 o

Outline

Introduction

Bounded Natural Functors

(Co)datatype (Co)nstruction

Conclusion

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
@000 0000000 000000 o

Motivation

datatype alist = Nil | Cons « (« list)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
@000 0000000 000000

Motivation

datatype alist = Nil | Cons « (« list)

Resolve B =unit+a xB minimally

Conclusion
o

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
@000 0000000 000000

Motivation

datatype alist = Nil | Cons « (« list)

Resolve B =unit+a xB minimally

@ Nil Vx xs. ¢ xs = ¢ (Cons x xs)
VXs. ¢ xs

Prove

Conclusion
o

Introduction
°

Motivation

datatype a list = Nil | Cons @ (« list)
codatatype atree; = Node (lab: @) (sub: (atree))list)

Resolve B =unit+a xg minimally

@ Nil Vx xs. ¢ xs = ¢ (Cons x xs)
VXs. ¢ xs

Prove

Introduction
°

Motivation
datatype a list = Nil | Cons @ (« list)

codatatype atree; = Node (lab: @) (sub: (atree))list)

Resolve B =unit+a xg minimally
and y=a Xy list maximally

@ Nil Vx xs. ¢ xs = ¢ (Cons x xs)
VXs. ¢ xs

Prove

Introduction
°

Motivation

datatype a list = Nil | Cons @ (« list)
codatatype atree; = Node (lab: @) (sub: (atree))list)

Resolve B =unit+a xg minimally

and y=a Xy list maximally
Prove @ Nil Vx xs. ¢ xs = ¢ (Cons x xs)
Vxs. ¢ xs
Yyt
and Vxy. ¢ xy=labx=lab yAlist_pred y (sub x) (sub y)

h=10t

Introduction
°

Motivation

datatype a list = Nil | Cons @ (« list)
codatatype a tree; = Node (lab: @) (sub: (atree))fset)

Resolve B =unit+a xg minimally

and v =a Xy fset maximally
Prove @ Nil Vx xs. ¢ xs = ¢ (Cons x xs)
VXs. ¢ xs
Ut
and Vxy. ¢ xy=labx=lab yAfset predy (sub x) (suby)

h==0t

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
0000 0000000 000000

Higher-Order Logic

e Simply typed set theory with ML-style polymorphism
e Cannot handle proper classes

Conclusion
o

Introduction
°

Higher-Order Logic

e Simply typed set theory with ML-style polymorphism
e Cannot handle proper classes
e Primitive type definitions

Existing type

Uqo

New type Representing set

Introduction
°

Higher-Order Logic

Simply typed set theory with ML-style polymorphism

Cannot handle proper classes

Primitive type definitions

Existing type

Uqo

New type Representing set

Goal: Reduce (co)datatype specification to primitive type definitions

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000 o

(Co)datatypes in interactive theorem provers

e PVS: axiomatic, monolithic (co)datatypes
e Agda, Coq: built-in (co)datatypes
e HOL based provers: definitional datatypes

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 000000 (O o

(Co)datatypes in interactive theorem provers

e PVS: axiomatic, monolithic (co)datatypes
e Agda, Coq: built-in (co)datatypes
e HOL based provers: definitional datatypes

e Melham—-Gunter approach
e Fixed universe for recursive, freely generated datatypes

e Simulates nested recursion by mutual recursion
e Used in HOL4, HOL Light, Isabelle/HOL, ...

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
000e® 0000000 000000 o

Beyond Melham—Gunter

Codatatypes

Mixture of codatatypes and datatypes

Non-free structures (e.g. fset)

“Real” nested recursion

Bounded Natural Functors
°

Type constructors are not just operators on types!

Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0@00000 000000 o

Type Constructors are Functors

Fmap: (a—ad)—= (B—f)— (a,8)F— (,f)F

(.B)F (o, B)) F

Bounded Natural Functors (Co)datatype (Co)nstruction
0@00000 000000

Type Constructors are Functors

Fmap: (¢« —»a') = (B—pF)— (a,B)F— (,B)F

Fmap f g fa
————————————————— > fa1
gb
(a,8)F (o/.B')F
Fmapidid = id

Fmap f; hboFmapgi g = Fmap (fiogs) (Logs)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 00@0000 000000 o

Type Constructors are Containers

Fseti : (a,B) F — a set

Fsety : (@, B) F — B set

--7 a set

(a.B) F

B set

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 00@0000 000000 o

Type Constructors are Containers

Fseti : (a,B) F — a set
Fsety : (@, B) F — B set

- a set

(o, B) F

B set

FsetioFmap f; ,, = image fjoFset;

Bounded Natural Functors (Co)datatype (Co)nstruction
000@000 000000

Type Constructors Act on Sets

Fin Ay A = {Z | Fset; z C A; AFset, z C Ag}

Ay aset Az : (B set

\ /

*\ Action of Fin ,”
Y »

Fin Ay Ao : (0/,,8) F set

Bounded Natural Functors (Co)datatype (Co)nstruction
000@000 000000

Type Constructors Act on Sets

Fin Ay A = {Z | Fset; z C A; AFset, z C Ag}

Ay aset Az : (B set

\ /

*\ Action of Fin ,”
Y »

Fin Ay Ao : (0/,,8) F set

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 000@000 000000 o

Type Constructors Act on Sets

Fin Ay A = {Z ‘ Fset; z C A; AFset, z C Ag}

Ay aset Az : (B set

\ /

*\ Action of Fin ,”
Y »

Fin Ay As : (0/,,8) F set

Vie{1,2}. VxcFsetiz. ix=9g;x = Fmapfifhz=Fmapgs g»z

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
0000 0000®00 000000

Type Constructors are Bounded

Fbd: infinite cardinal

(.B)F

a set B set

Conclusion
o

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
0000 0000®00 000000

Type Constructors are Bounded

Fbd: infinite cardinal

(.B)F

// \\
Fset4 /' \\Fsetg
4 X
a set B set

Conclusion
o

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000®00 000000 o

Type Constructors are Bounded

Fbd: infinite cardinal

(e, B) F A a set Ao : B set

/ \ \ /

*\ Action of Fin ,”

a set B set
Fin Ay Ao : (a,,B) F set

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000®00 000000 o

Type Constructors are Bounded

Fbd: infinite cardinal

(a,B) F As :a set As : B set
Fset; /// \\\Fsetg \\‘Action of Fin’/
‘ @
a set B set
Fin Ay Ao : (a,,B) F set
|Fset; z| < Fbd
IFin Ay A2| < (|Aq| +|Az| +2)™

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000080 000000 o

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

(F, Fmap) is a binary functor.

For all 1, Fsety is a natural transformation between ((a1, _) F, Fmap)
and (set, image).

For all ay, Fset; is a natural transformation between ((_, @) F, Fmap)
and (set, image).

If Va € Fset; x. fia=gjaforallic {1,2}, then

Fmap fi b, x = Fmap g1 g» x.

The following cardinal-bound conditions hold:
a. Vx: (ai,a2) F. |Fset; x| < Fbd forie {1,2};
b. |Fin Ay Ag| < (JA¢| + |Az| +2)™.

(F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
o

0000

00000e0 000000

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

(F, Fmap) is a binary functor.

For all @y, Fsety is a natural transformation between ((a1, _) F, Fmap)
and (set, image).

For all ay, Fset; is a natural transformation between ((_, @) F, Fmap)
and (set, image).

If Va € Fset; x. fia=gjaforallic {1,2}, then

Fmap fi b, x = Fmap g1 g» x.

The following cardinal-bound conditions hold:
a. Vx: (ai,a2) F. |Fset; x| < Fbd forie {1,2};
b. |Fin Ay Ag| < (JA¢| + |Az| +2)™.

(F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

(F, Fmap) is a binary functor.

For all 1, Fsety is a natural transformation between ((a1, _) F, Fmap)
and (set, image).

For all ay, Fset; is a natural transformation between ((_, @) F, Fmap)
and (set, image).

If Va € Fset; x. fia=g;aforall i€ {1,2}, then

Fmap f; fo x = Fmap g1 g» x.

The following cardinal-bound conditions hold:
a. Vx: (ai,a2) F. |Fset; x| < Fbd forie {1,2};
b. |Fin Ay Ag| < (JA¢| + |Az| +2)™.

(F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
o

0000

00000e0 000000

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

(F, Fmap) is a binary functor.
For all 1, Fsety is a natural transformation between ((a1, _) F, Fmap)
and (set, image).
For all ay, Fset; is a natural transformation between ((_, @) F, Fmap)
and (set, image).
If Va € Fset; x. fia=gjaforallic {1,2}, then
Fmap fi b, x = Fmap g1 g» x.
The following cardinal-bound conditions hold:
a. Vx:(aq,a2) F. |Fset; x| < Fbd forie {1,2};
b. |Fin Ay As| < (JA¢| + |Az| +2)™.
(F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Type Constructors are Bounded Natural Functors

binary BNF is a tuple (F, Fmap, Fset, Fbd) satisfying

(F, Fmap) is a binary functor.

For all 1, Fsety is a natural transformation between ((a1, _) F, Fmap)
and (set, image).

For all ay, Fset; is a natural transformation between ((_, @) F, Fmap)
and (set, image).

If Va € Fset; x. fia=gjaforallic {1,2}, then

Fmap fi b, x = Fmap g1 g» x.

The following cardinal-bound conditions hold:
a. Vx: (ai,a2) F. |Fset; x| < Fbd forie {1,2};
b. |Fin Ay Ag| < (JA¢| + |Az| +2)™.

(F, Fmap) preserves weak pullbacks.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000008 000000 o

What are BNFs good for?

They ...

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 000000® 000000 o

What are BNFs good for?

They ...
e cover basic type constructors (e.g. +, X, unit, and o — g for fixed «)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 000000® 000000 o

What are BNFs good for?

They ...
e cover basic type constructors (e.g. +, X, unit, and o — g for fixed «)
e cover non-free type constructors (e.g. fset, cset)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 000000® 000000 o

What are BNFs good for?

They ...
e cover basic type constructors (e.g. +, X, unit, and o — g for fixed «)
e cover non-free type constructors (e.g. fset, cset)

e are closed under composition

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 000000® 000000

What are BNFs good for?

They ...
e cover basic type constructors (e.g. +, X, unit, and o — g for fixed «)
e cover non-free type constructors (e.g. fset, cset)
e are closed under composition
e admit initial algebras and final coalgebras

Bounded Natural Functors
°

What are BNFs good for?

They ...

cover basic type constructors (e.g. +, X, unit, and o — g for fixed @)
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras and final coalgebras

are closed under initial algebras and final coalgebras

Bounded Natural Functors
°

What are BNFs good for?

They ...

cover basic type constructors (e.g. +, X, unit, and o — g for fixed @)
cover non-free type constructors (e.g. fset, cset)

are closed under composition

admit initial algebras and final coalgebras

are closed under initial algebras and final coalgebras

make initial algebras and final coalgebras expressible in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

From user specifications to (co)datatypes

e datatype a list = Nil | Cons a (« list)
e Abstractto f = unit+a x g

e Prove (a,) F = unit+a x B is BNF

e Define F-algebras

e Construct initial algebra (« IF, fld)

e Define iterator iter

e Prove characteristic theorems

e Prove that IF is a BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 ©00000 o

From user specifications to (co)datatypes

e codatatype « llist = Nil | Cons « (e llist)
e Abstractto f = unit+a x

e Prove (@, B) F = unit+a x B is BNF

e Define F-coalgebras

e Construct final coalgebra (a JF, unf)

e Define coiterator coiter

e Prove characteristic theorems

e Prove that JF is a BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 0®0000 o

Algebras, Coalgebras & Morphisms

In category theory:

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 0®0000 o

Algebras, Coalgebras & Morphisms

In category theory:

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 0®0000 o

Algebras, Coalgebras & Morphisms

In category theory:

FA A
s s
\4 A4

A FA

Introduction Bounded Natural Functors
0000 0000000

(Co)datatype (Co)nstruction Conclusion
0®0000 o

Algebras, Coalgebras & Morphisms

In category theory:

A
s
\
FA
f
e REEEEEEEEE - B
SAE ESB
Y F(f v
FA———————(—) ————— - FB

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 0®0000 o

Algebras, Coalgebras & Morphisms

B=(a.B)F
In HOL.:
FinU, A A
s s
v v
A FinU, A
Fmapidf _ f
Fln U(y """"" > F|n U(l B A —————————————— > B
SA 3 3 SB SA i i SB
' f \ v Fmapid f v
A-------------- - B FinU, A-------- -~ FinU, B

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 00®000 o

Initial Algebras & Final Coalgebras
B=(a.B)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

Introduction

0000

Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

0000000 00@000 o

Initial Algebras & Final Coalgebras

weakly initial:
initial:
weakly final:
final:

B=(a.p)F

exists morphism to any other algebra

exists unique morphism to any other algebra
exists morphism from any other coalgebra

exists unique morphism from any other coalgebra

Product of all algebras is weakly initial

Suffices to consider algebras over types
of certain cardinality

Minimal subalgebra of weakly initial

algebra is initial

Introduction Natural Functors (Co)datatype (Co)nstruction Conclusion

Initial Algebras & Final Coalgebras

B=(a.p)F
weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra

® Product of all algebras is weakly initial

e Suffices to consider algebras over types
of certain cardinality

® Minimal subalgebra of weakly initial
algebra is initial

® Construct minimal subalgebra from
below by transfinite recursion

= Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F =« IF)

(Co)datatype (Co)nstruction
°

Initial Algebras & Final Coalgebras
B=(a.B)F

weakly initial: exists morphism to any other algebra

initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra

final: exists unique morphism from any other coalgebra

® Product of all algebras is weakly initial ® Sum of all coalgebras is weakly final

e Suffices to consider algebras over types e Suffices to consider coalgebras over
of certain cardinality types of certain cardinality

® Minimal subalgebra of weakly initial ® Quotient of weakly final coalgebra to the
algebra is initial greatest bisimulation is final

® Construct minimal subalgebra from
below by transfinite recursion

= Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F =« IF)

(Co)datatype (Co)nstruction
°

Initial Algebras & Final Coalgebras

Sum of all coalgebras is weakly final

B=(a.p)F
weakly initial: exists morphism to any other algebra
initial: exists unique morphism to any other algebra
weakly final: exists morphism from any other coalgebra
final: exists unique morphism from any other coalgebra
® Product of all algebras is weakly initial °
e Suffices to consider algebras over types (]

=

of certain cardinality

Minimal subalgebra of weakly initial °
algebra is initial

Construct minimal subalgebra from °
below by transfinite recursion

Have a bound for its cardinality =

Suffices to consider coalgebras over
types of certain cardinality

Quotient of weakly final coalgebra to the
greatest bisimulation is final

Use concrete weakly final coalgebra
(elements are tree-like structures)

Have a bound for its cardinality

= (@ IF,fld: (o, @ IF) F =« IF) = (e JF,unf: @ JF — (@, a JF) F)

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000®00 o

Iteration & Coiteration
B=(a.B)F

e Givens: (a,8)F—p

Introduction
0000 0000000

Bounded Natural Functors (Co)datatype (Co)nstruction
000®00

Iteration & Coiteration
B=(a.B)F

e Givens: (a,8)F—p
e QObtain unique morphism iter s
from (« IF, fld) to (Ug, s)

Conclusion
o

Bounded Natural Functors (Co)datatype (Co)nstruction

Conclusion
000®00 o

Introduction
0000 0000000

Iteration & Coiteration
B=(a.B)F

e Givens: (a,f)F—=p e Givens:f— (a,B)F
e QObtain unique morphism iter s
from (« IF, fld) to (Ug, s)

Introduction

(Co)datatype (Co)nstruction Conclusion
000800 o

Iteration & Coiteration
B=(a.B)F

e Givens: (a,8)F—p
e QObtain unique morphism iter s
from (« IF, fld) to (Ug, s)

e Givens:f— (a,B8)F
e (Obtain unique morphism coiter s
from (Ug, s) to (a JF, unf)

B-----m - > o IF
s i i unf
v Fmap id (coiter s) Y
(a,B)F--------- > (a,aIF)F

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000080 o

Induction & Coinduction
B=(a.B)F

e Given ¢ : a IF — bool

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
0000 0000000 000080

Induction & Coinduction
B=(a.B)F

e Given ¢ : a IF — bool
e Abstract induction principle

Vz. (Vx € Fsetp z. ¢ x) = ¢ (fld 2)
Vx. ¢ x

Conclusion
o

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000080 o

Induction & Coinduction
B=(a.B)F

e Given ¢ : a IF — bool e Giveny : a JF — a JF — bool
e Abstract induction principle

Vz. (Vx € Fsetp z. ¢ x) = ¢ (fld 2)
Vx. ¢ x

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Induction & Coinduction

B=(a.p)F
e Given ¢ : a IF — bool e Giveny : a JF — a JF — bool
e Abstract induction principle e Abstract coinduction principle

Vz. (Vx €Fsetp z. ¢ x) = ¢ (fldz) Vxy. ¢ x y = Fpred Eqy (unf x) (unf y)
VX. ¢ x VXy. uxy=x=y

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
0000 0000000 00000®

Preservation of BNF Properties
B=(a.p)F

e [Fmap f =iter (fld o Fmap f id)
o |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z

Conclusion
o

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction
0000 0000000 00000®

Preservation of BNF Properties
B=(a.p)F

e [Fmap f =iter (fld o Fmap f id)
o |Fset = iter collect, where

collect z=Fset; zU|_J Fset, z

Theorem
(IF, IFmap, IFset, 2M9) is an BNF

Conclusion
o

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Preservation of BNF Properties
B=(a.p)F

e [Fmap f =iter (fld o Fmap f id) e JFmap f = coiter (Fmap fid o unf)
o |Fset = iter collect, where e JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U | J collect; y
y€Fsety (unf x)

Theorem
(IF, IFmap, IFset, 2M9) is an BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion

Preservation of BNF Properties
B=(a.p)F

e [Fmap f =iter (fld o Fmap f id) e JFmap f = coiter (Fmap fid o unf)
o |Fset = iter collect, where e JFset x = |J collect; x, where
ieN
collect z=Fset; zU|_J Fset, z collecty x=0

collecti1 x=Fset; (unf x) U | J collect; y
y€Fsety (unf x)

Theorem Theorem
(IF, IFmap, IFset, 2M9) is an BNF (JF, JFmap, JFset, Fbd™) is an BNF

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000]

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000]

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

e Framework for defining types in HOL

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000 °

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

e Framework for defining types in HOL
e Characteristic theorems are derived, not stated as axioms

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000 °

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

e Framework for defining types in HOL
e Characteristic theorems are derived, not stated as axioms

e Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

Introduction Bounded Natural Functors (Co)datatype (Co)nstruction Conclusion
0000 0000000 000000 °

Foundational, Compositional (Co)datatypes for
Higher-Order Logic

Category Theory Applied to Theorem Proving

Framework for defining types in HOL
Characteristic theorems are derived, not stated as axioms

Mutual and nested (co)recursion involving arbitrary combinations of
datatypes, codatatypes, and custom BNFs.

Adapt insights from category theory in HOLs restrictive type system

Thank you for your attention!
Questions?

Foundational, Compositional (Co)datatypes for
Higher-Order Logic
Category Theory Applied to Theorem Proving

Dmitriy Traytel ~Andrei Popescu Jasmin Christian Blanchette

November 13, 2015

Technische Universitat Minchen

	Appendix

