
Extending Hindley-Milner Type Inference with
Coercive Structural Subtyping (long version)

Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

Abstract. We investigate how to add coercive structural subtyping to a
type system for simply-typed lambda calculus with Hindley-Milner poly-
morphism. Coercions allow to convert between different types, and their
automatic insertion can greatly increase readability of terms. We present
a type inference algorithm that, given a term without type information,
computes a type assignment and determines at which positions in the
term coercions have to be inserted to make it type-correct according to
the standard Hindley-Milner system (without any subtypes). The algo-
rithm is sound and, if the subtype relation on base types is a disjoint
union of lattices, also complete. Also, a sound but incomplete exten-
sion of the algorithm to type classes is given. The algorithm has been
implemented in the proof assistant Isabelle.

1 Introduction

The main idea of subtype polymorphism, or simply subtyping, is to allow the pro-
grammer to omit type conversions, also called coercions. Inheritance in object-
oriented programming languages can be viewed as a form of subtyping.

Although the ability to omit coercions is important to avoid unnecessary clut-
ter in programs, subtyping is not a common feature in functional programming
languages, such as ML or Haskell. The main reason for this is the increase in
complexity of type inference systems with subtyping compared to Milner’s well-
known algorithm W [7]. In contrast, the theorem prover Coq supports coercive
subtyping, albeit in an incomplete manner. Our contributions to this extensively
studied area are:

– a comparatively simple type and coercion inference algorithm with
– soundness and completeness results improving on related work (see the be-

ginning of §3 and the end of §6), and
– a practical implementation in the Isabelle theorem prover. This extension is

very effective, for example, in the area of numeric types (nat, int, real etc),
which require coercions that used to clutter up Isabelle text.

Our work does not change the standard Hindley-Milner type system (and hence
leaves the Isabelle kernel unchanged!) but infers where coercions need to be
inserted to make some term type correct.

2 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

The rest of this paper is structured as follows. In §2 we introduce terms, types,
coercions and subtyping. §3 presents our type inference algorithm for simply-
typed lambda calculus with coercions and Hindley-Milner polymorphism, while
§4 examines the extension of this algorithm to type classes. In §5, we provide a
proof of the total correctness of our algorithm. Further, §6 discusses restrictions
on the subtype relation that are needed to ensure completeness of the algorithm
without type classes and provides a proof of completeness. An outline of related
research is given in §7.

2 Notation and terminology

2.1 Terms and types

The types and terms of simply-typed lambda calculus are given by the following
grammars:

τ = α | T | C τ . . . τ

t = x | c[α7→τ] | (λx : τ. t) | t t

A type can be a type variable (denoted by α, β, . . .), a base type (denoted by
S, T , U , . . .), or a compound type, which is a type constructor (denoted by
C, D, . . .) applied to a list of type arguments. The number of arguments of a
type constructor C, which must be at least one, is called the arity of C. The
function type is a special case of a binary type constructor. We use the common
infix notation τ → σ in this case. Terms can be variables (denoted by x, y, . . .),
abstractions, or applications. In addition, a term can contain constants (denoted
by c, d, . . .) of polymorphic type. All terms are defined over a signature Σ that
maps each constant to a schematic type, i.e. a type containing variables. In every
occurrence of a constant c, the variables in its schematic type can be instantiated
in a different way, for which we use the notation c[α7→τ], where α denotes the
vector of free variables in the type of c (ordered in a canonical way), and τ
denotes the vector of types that the free variables are instantiated with. The
type checking rules for terms are shown in Figure 1.

x : τ ∈ Γ
Γ ` x : τ

Ty-Var
Σ(c) = σ

Γ ` c[α7→τ] : σ[α 7→ τ]
Ty-Const

Γ, x : τ ` t : σ

Γ ` λx : τ. t : τ → σ
Ty-Abs

Γ ` t1 : τ → σ Γ ` t2 : τ

Γ ` t1 t2 : σ
Ty-App

Fig. 1. Type checking rules

Coercive Subtyping 3

2.2 Subtyping and coercions

We write τ <: σ to denote that τ is a subtype of σ. The subtyping relation that
we consider in this paper is structural : if τ <: σ, then τ and σ can only differ in
their base types. For example, we may have C T <: C U , but not C T <: S. Type
checking rules for systems with subtypes are often presented using a so-called
subsumption rule

Γ ` t : τ τ <: σ

Γ ` t : σ

allowing a term t of type τ to be used in a context where a term of the supertype σ
would be expected. The problem of deciding whether a term is typable using the
subsumption rule is equivalent to the problem of deciding whether this term can
be made typable without the subsumption rule by inserting coercion functions
in appropriate places in the term. Rather than extending our type system with
a subsumption rule, we therefore introduce a new judgement Γ ` t u : τ
that, given a context Γ and a term t, returns a new term u augmented with
coercions, together with a type τ , such that Γ ` u : τ holds. We write τ <:c σ
to mean that c is a coercion of type τ → σ. Coercions can be built up from
a set of coercions C between base types, and from a set of map functions M
for building coercions between constructed types from coercions between their
argument types as shown in Figure 2. The sets C and M are parameters of our
setup. We restrictM to contain at most one map function for a type constructor.

Definition 1 (Map function). Let C be an n-ary type constructor. A function
f of type

τ1 → · · · → τn → C α1 . . . αn → C β1 . . . βn

where τi ∈ {αi → βi, βi → αi}, is called a map function for C. If τi = αi → βi,
then C is called covariant in the i-th argument wrt. f , otherwise contravariant.

τ <:id τ
Gen-Refl

Σ(c) = T → U c ∈ C
T <:c U

Gen-Base

T <:c1 U U <:c2 S

T <:λx:T.c2 (c1 x) S
Gen-Trans

mapC : (δ1 → ρ1)→ · · · → (δn → ρn)→ C α1 . . . αn → C β1 . . . βn ∈M
θ = {α 7→ τ , β 7→ σ} ∀1 ≤ i ≤ n. θ(δi) <:ci θ(ρi)

C τ1 . . . τn <:θ(mapC c1 ... cn) C σ1 . . . σn
Gen-Cons

Fig. 2. Coercion generation

For the implementation of type checking and inference algorithms, the sub-
sumption rule is problematic, because it is not syntax directed. However, it can

4 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

be shown that any derivation of Γ ` t : σ using the subsumption rule can be
transformed into a derivation of Γ ` t : τ with τ <: σ, in which the subsumption
rule is only applied to function arguments [13, §16.2]. Consequently, the coer-
cion insertion judgement shown in Figure 3 only inserts coercions in argument
positions of functions by means of the Coerce-App rule.

x : τ ∈ Γ
Γ ` x x : τ

Coerce-Var
Σ(c) = σ

Γ ` c[α7→τ] c[α7→τ] : σ[α 7→ τ]
Coerce-Const

Γ, x : τ ` t u : σ

Γ ` λx : τ. t λx : τ. u : τ → σ
Coerce-Abs

Γ ` t1 u1 : τ11 → τ12 Γ ` t2 u2 : τ2 τ2 <:c τ11

Γ ` t1 t2 u1 (c u2) : τ12
Coerce-App

Fig. 3. Coercion insertion

2.3 Type substitutions and unification

A central component of type inference systems is a unification algorithm for
types. Implementing such an algorithm for the type expressions introduced in
§2.1 is straightforward, since this is just an instance of first-order unification. We
write mgu for the function computing the most general unifier. It produces a type
substitution, denoted by θ, which is a function mapping type variables to types
such that θα 6= α for only finitely many α. We will sometimes use the notation
{α1 7→ τ1, . . . , αn 7→ τn} to denote such substitutions. Type substitutions are
extended to types, terms, and any other data structures containing type variables
in the usual way. The function mgu is overloaded: it can be applied to pairs of
terms, where θτ = θσ if θ = mgu(τ, σ), to (finite) sets of equality constraints,
where θτi = θσi if θ = mgu{τ1

.
= σ1, . . . , τn

.
= σn}, as well as to (finite) sets of

types, where θτ1 = · · · = θτn if θ = mgu{τ1, . . . , τn}.

3 Type Inference with Coercions

In a system without coercions, type inference means to find a type substitution
θ and a type τ for a given term t and context Γ such that t becomes typable,
i.e. θΓ ` θt : τ . In a system with coercions, type inference also has to insert
coercions into the term t in appropriate places, yielding a term u for which
θΓ ` θt u : τ and θΓ ` u : τ holds. A naive way of doing type inference in this
setting would be to compute the substitution θ and insert the coercions on-the-
fly, as suggested by Luo [6]. The idea behind Luo’s type inference algorithm is to

Coercive Subtyping 5

try to do standard Hindley-Milner type inference first, and locally repair typing
problems by inserting coercions only if the standard algorithm fails. However,
this approach has a serious drawback: the success or failure of the algorithm
depends on the order in which the types of subterms are inferred. To see why
this is the case, consider the following example.

Example 1. Let Σ = {leq : α → α → B, n : N, i : Z} be the signature containing a
polymorphic predicate leq (e.g. less-or-equal), as well as a natural number constant n
and an integer constant i. Moreover, assume that the set of coercions C = {int : N→ Z}
contains a coercion from natural numbers to integers, but not from integers to natural
numbers, since this would cause a loss of information. As shown in Figure 4, the terms
leq [α 7→β] i n and leq [α 7→β] n i can both be made type correct by applying the type
substitution {β 7→ Z} and inserting coercions, but the naive algorithm can only infer
the type of the first term. Since the term is an application, the algorithm would first
infer (using standard Hindley-Milner type inference) that the function denoted by the
subterm leq [α 7→β] i has type Z → B with the type substitution {β 7→ Z}. Similarly,
for the subterm n the type N is inferred. Since the argument type Z of the function
does not match the type N of its argument, the algorithm inserts the coercion int to
repair the typing problem, yielding the term leq [α7→Z] i (int n) with type B. In contrast,
when inferring the type of the term leq [α7→β] n i, the algorithm would first infer that
the subterm leq [α 7→β] n has type N → B, using the type substitution {β 7→ N}. The
subterm i is easily seen to have type Z, which does not match the argument type N of
the function. However, in this case, the type mismatch cannot be repaired, since there
is no coercion from Z to N, and so the algorithm fails.

Σ(leq) = α→ α→ B
Γ ` leq [α 7→Z] leq [α 7→Z] : Z→ Z→ B

Σ(i) = Z
Γ ` i i : Z Z <:id Z

Γ ` leq [α 7→Z] i leq [α 7→Z] i : Z→ B
Σ(n) = N

Γ ` n n : N
int : N→ Z ∈ C

N <:int Z
Γ ` leq [α7→Z] i n leq [α7→Z] i (int n) : B

Σ(leq) = α→ α→ B
Γ ` leq [α 7→Z] leq [α 7→Z] : Z→ Z→ B

Σ(n) = N
Γ ` n n : N

int : N→ Z ∈ C
N <:int Z

Γ ` leq [α 7→Z] n leq [α 7→Z] (int n) : Z→ B
Σ(i) = Z

Γ ` i i : Z Z <:id Z
Γ ` leq [α7→Z] n i leq [α7→Z] (int n) i : B

Fig. 4. Examples for coercion insertion

The strategy for coercion insertion used in the Coq proof assistant (originally
due to Säıbi [16], who provides no soundness or completeness results) suffers
from similar problems, which the reference manual describes as the “normal”
behaviour of coercions [3, §17.12]. Our goal is to provide a complete algorithm
that does not fail in cases such as the above.

6 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

3.1 Coercive subtyping using subtype constraints

The algorithm presented here generates subtype constraints first, and postpones
their solution as well as the insertion of coercions to a later stage of the algorithm.
The set of all constraints provides us with a global view on the term that we are
processing, and therefore avoids the problems of a local algorithm.

The algorithm can be divided into four major phases. First, we generate
subtype constraints by recursively traversing the term. Then, we simplify these
constraints, which can be inequalities between arbitrary types, until the con-
straint set contains only inequalities between base types and variables. The next
step is to organize these atomic constraints in a graph and solve them, which
means to find a type substitution. Applying this substitution to the whole con-
straint set results in inequalities that are consistent with the given partial order
on base types. Finally, the coercions are inserted by traversing the term for the
second time. A visualization of the main steps of the algorithm in form of a
control flow is shown in Figure 5.

Input

term t,
context Γ

Constraint
generation

Γ ` t : τ B S

Weak unification test

S weakly unifiable?

Constraint simplification

(S, ∅) =⇒!
simp (S′, θsimp)

Build constraint graph

(G(S′), θsimp) =⇒!
cyc (G, θcyc)

Constraint resolution

(G, θcyc) =⇒!
sol (G′, θsol)

Unification

(G′[TV (G′)], θsol) =⇒!
unif ((∅, ∅), θ)

Coercion genera-
tion and insertion

θΓ ` θt u : θτ

Output

term u,
type θτ ,

context θΓ

Fig. 5. Top-level control flow of the subtyping algorithm

3.2 Constraint generation

The algorithm for constraint generation is described by a judgement Γ ` t : τBS
defined by the rules shown in Figure 6. Given a term t and a context Γ , the
algorithm returns a type τ , as well as a set of equality and subtype constraints
S denoted by infix “

.
=” and “<:”, respectively. The equality constraints are

solved using unification, whereas the subtype constraints are simplified to atomic

Coercive Subtyping 7

constraints and then solved using the graph-based algorithm mentioned above.
The only place where new constraints are generated is the rule SubCT-App for
function applications t1 t2. It generates an equality constraint ensuring that the
type of t1 is actually a function type, as well as a subtype constraint ensuring
that the type of t2 is a subtype of the argument type of t1.

x : τ ∈ Γ
Γ ` x : τ B ∅

SubCT-Var
Σ(c) = σ

Γ ` c[α7→τ] : σ[α 7→ τ]B ∅
SubCT-Const

Γ, x : τ ` t : σ B S

Γ ` λx : τ. t : τ → σ B S
SubCT-Abs

Γ ` t1 : τ B S1 Γ ` t2 : σ B S2 α, β fresh

Γ ` t1 t2 : β B S1 ∪ S2 ∪ {τ
.
= α→ β, σ <: α}

SubCT-App

Fig. 6. Constraint generation rules

Note that as a first step not shown here, the type-free term input by the user
is augmented with type variables: λx. t becomes λx : β. t and c becomes c[α7→β],
where all the βs must be distinct and new.

3.3 Constraint simplification

The constraints generated in the previous step are now simplified by repeatedly
applying the transformation rules shown in Figure 7. The states that the trans-
formation operates on are pairs whose first component contains the current set of
constraints, while the second component is used to accumulate the substitutions
computed during the transformation. As a starting state of the transformation,
we use the pair (S, ∅). The rule Decompose splits up inequations between com-
plex types into simpler inequations or equations according to the variance of the
outermost type constructor. For this purpose, we introduce a variance operator,
which is defined as follows.

Definition 2 (Variance operator). Let mapC be a map function for the type
constructor C of arity n in the set M. We use the abbreviation

var iC(τ, σ) =

{
τ <: σ if C is covariant in the i-th argument wrt. mapC
σ <: τ if C is contravariant in the i-th argument wrt. mapC

for 1 ≤ i ≤ n. If there is no such mapC , then we define for 1 ≤ i ≤ n:

var iC(τ, σ) = τ
.
= σ.

Thus, if no map function is associated with a particular type constructor,
it is considered to be invariant, causing the algorithm to generate equations

8 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

instead of inequations. Equations are dealt with by rule Unify using ordinary
unification. Since our subtyping relation is structural, an inequation having a
type variable on one side, and a complex type on the other side can only be
solved by instantiating the type variable with a type whose outermost type
constructor equals that of the complex type on the other side. This is expressed
by the two symmetric rules Expand-L and Expand-R. Finally, inequations with
an atomic type on both sides are eliminated by rule Eliminate, provided they
conform to the subtyping relation.

Decompose
({C τ1 . . . τn <: C σ1 . . . σn}] S, θ) =⇒simp

({
var iC (τi, σi) | i = 1 . . . n

}
∪ S, θ

)
Unify
({τ .

= σ}] S, θ) =⇒simp (θ′S, θ′ ◦ θ)
where θ′ = mgu(τ, σ)

Expand-L
({α <: C τ1 . . . τn}] S, θ) =⇒simp (θ′ ({α <: C τ1 . . . τn} ∪ S) , θ′ ◦ θ)

where θ′ = {α 7→ C α1 . . . αn}
and α1 . . . αn are fresh variables

Expand-R
({C τ1 . . . τn <: α}] S, θ) =⇒simp (θ′ ({C τ1 . . . τn <: α} ∪ S) , θ′ ◦ θ)

where θ′ = {α 7→ C α1 . . . αn}
and α1 . . . αn are fresh variables

Eliminate
({U <: T}] S, θ) =⇒simp (S, θ)

where U, T are base types
and U <: T

Fig. 7. Rule-based constraint simplification =⇒simp

We apply these rules repeatedly to the constraint set until none of the rules
is applicable. Therefore, we use the notation =⇒!

simp .

Definition 3. (Normal form) For a relation =⇒ we write

X =⇒! X ′

if X =⇒∗ X ′ and X ′ is in normal form wrt. =⇒.

Definition 4 (Atomic constraint). We call a subtype constraint atomic if it
corresponds to one of the following constraints (α, β are type variables, T is a
base type):

α <: β α <: T T <: α

Coercive Subtyping 9

If none of the rules is applicable, the algorithm terminates in a state (S′, θsimp),
where S′ either consists only of atomic constraints, or S′ contains an inequation
C1 τ <: C2 σ with C1 6= C2 or an inequation T <: U for base types T and U
such that T is not a subtype of U or an equation τ

.
= σ such that τ and σ are

not unifiable. In the latter three cases, the type inference algorithm fails.
An interesting question is whether such a state or a failure is always reached

after a finite number of iterations. It is obvious that the simplification of the
constraint α <: C α will never terminate. Bourdoncle and Merz [2] have pointed
out that checking whether the initial constraint set has a weak unifier is sufficient
to avoid nontermination. We provide a proof for this statement in §5. Weak
unification differs from standard unification in that it identifies base types, which
is necessary since two types τ and σ with τ <: σ need to be equal up to their
base types.

Definition 5 (Weak unification). A set of constraints S is called weakly
unifiable if there exists a substitution θ such that dθτe = dθσe for all τ <: σ ∈ S,
and θτ = θσ for all τ

.
= σ ∈ S, where

dαe = α
dT e = T0
dC τ1 . . . τne = C dτ1e . . . dτne

and T0 is a fixed base type not used elsewhere. In this case, θ is called a weak
unifier of S, and mgudSe is called weak most general unifier of S.

Weak unification is merely used as a termination-test in our algorithm before
constraint simplification (see Figure 5).

3.4 Solving subtype constraints on a graph

An efficient and logically clean way to reason about atomic subtype constraints
is to represent the types as nodes of a directed graph with arcs given by the
constraints themselves. Concretely, this means that a subtype constraint σ <: τ
is represented by the arc (σ, τ). This allows us to speak of predecessors and
successors of a type.

Definition 6 (Constraint graph). For a constraint set S, we denote by

G(S) = (
⋃
{{τ, σ} | τ <: σ ∈ S}, {(τ, σ) | τ <: σ ∈ S})

the constraint graph corresponding to S.

Given a graph G = (V,E), the subgraph induced by a vertex set X ⊆ V is
denoted by G[X] = (X, (X×X)∩E). The set of type variables contained in the
vertex set of G is denoted by TV (G).

In what follows, we write σ �: τ for the subtyping relation on base types
induced by the set of coercions C, which is defined by

�: = {(T,U) | c : T → U ∈ C}∗

10 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

Definition 7 (Solution). A type substitution θ is a solution of the constraint
set S iff for all τ

.
= σ ∈ S it holds θτ = θσ and for all τ <: σ ∈ S there exists a

coercion c such that θτ <:c θσ holds.
Moreover, we say that a type substitution θ is a solution of the constraint

graph G = (V,E) iff for all (σ, τ) ∈ E it holds that θσ �: θτ .

Lemma 1 (Equivalence of the solution notions). θ is a solution of the
atomic constraint set S iff θ is a solution of G(S).

Proof. S is an atomic constraint set. Hence, it does not contain unification con-
straints. By the definition of G(S) the edges of G(S) corresponding exactly to
the subtype constraints in S. Thus, both notions of a solving substitution are
equivalent. ut

Graph construction Building such a constraint graph is straightforward. We
only need to watch out for cycles. Since the subtype relation is a partial order
and therefore antisymmetric, at most one base type should occur in a cycle. In
other words, if the elements of the cycle are not unifiable, the inference will fail.
Unifiable cycles should be eliminated with the iterated application of the rule
Cycle-Elim shown in Figure 8.

Cycle-Elim
((V,E) , θ) =⇒cyc ((V \K ∪ {τK}, E′ ∪ P × {τK} ∪ {τK} × S) , θK ◦ θ)

where K is a cycle in (V,E)
and θK = mgu(K)
and {τK} = θKK
and E′ = {(τ, σ) ∈ E | τ /∈ K,σ /∈ K}
and P = {τ | ∃σ ∈ K. (τ, σ) ∈ E} \K
and S = {σ | ∃τ ∈ K. (τ, σ) ∈ E} \K

Fig. 8. Rule-based cycle elimination =⇒cyc

Figure 9 visualizes an example of cycle elimination. We call the substitution
obtained from cycle elimination θcyc .

Constraint resolution Now we must find an assignment for all variables that
appear in the graph G = (V,E). We use an algorithm that is based on the
approach presented in [20]. First, we define some basic lattice-theoretic notions.

Definition 8. Let S, T, T ′ denote base types and X a set of base types. With
respect to the given subtype relation �: we define:

– T = {T ′ | T �: T ′}, the set of supertypes
– T = {T ′ | T ′ �: T}, the set of subtypes
– T t S ∈ T ∩ S and ∀U ∈ T ∩ S. T t S �: U , the supremum of S and T

Coercive Subtyping 11

p p

p

c
c

c

c
c

c

c

c

s

s

=⇒cyc

p p

p

c

s

s

Fig. 9. Collapse of a cycle in a graph

– T u S ∈ T ∩ S and ∀L ∈ T ∩ S. L �: T u S, the infimum of S and T
–
⊔
X ∈

⋂
T∈X

T and ∀U ∈
⋂
T∈X

T .
⊔
X �: U , the supremum of X

–
d
X ∈

⋂
T∈X

T and ∀L ∈
⋂
T∈X

T . L �:
d
X, the infimum of X.

Note that, depending on �:, suprema or infima may not exist.
Given a type variable α in the constraint graph G = (V,E), we define:

– PGα = {T | (T, α) ∈ E+}, the set of all base type predecessors of α

– SGα = {T | (α, T) ∈ E+}, the set of all base type successors of α.

E+ is the transitive closure of the edges of G.

The algorithm assigns base types to type variables that have base type successors
or predecessors until no such variables are left using the rules shown in Figure 10.
The resulting substitution is referred to as θsol .

The original algorithm described by Wand and O’Keefe [20] is designed to be
complete for subtype relations that form a tree. It only uses the rules Assign-
Inf and Fail-Inf without the check if SGα is empty. It assigns each type variable
α the infimum

d
SGα of its upper bounds, and then checks whether the assigned

type is greater than all lower bounds PGα . If
d
SGα does not exist, their algorithm

fails. If SGα is empty, its infimum only exists if there is a greatest type, which
exists in a tree but not in a forest. In order to avoid this failure in the absence
of a greatest type, our algorithm does not compute the infimum/supremum of
the empty set, and is symmetric in successors/predecessors.

After constraint resolution, unassigned variables can only occur in the result-
ing graph in weakly connected components that do not contain any base types.
As we do not want to annotate the term with unresolved subtype constraints, all
variables in a single weakly connected component should be unified. This is done
by the rule Unify-WCC shown in Figure 11 and produces the final substitution
θ.

Example 2. Going back to Example 1, we apply our algorithm to the term leq [α7→α3]
n i.

Figure 12 shows the derivation of the initial constraint set. Simplifying the generated

12 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

Assign-Sup
(G, θ) =⇒sol

(
{α 7→

⊔
PGα }G, {α 7→

⊔
PGα } ◦ θ

)
if α ∈ TV (G) ∧ PGα 6= ∅ ∧ ∃

⊔
PGα ∧ ∀T ∈ SGα .

⊔
PGα �: T

Fail-Sup
(G, θ) =⇒sol FAIL

if α ∈ TV (G) ∧ PGα 6= ∅ ∧ (@
⊔
PGα ∨ ∃T ∈ SGα .

⊔
PGα 6�: T)

Assign-Inf
(G, θ) =⇒sol

(
{α 7→

d
SGα }G, {α 7→

d
SGα } ◦ θ

)
if α ∈ TV (G) ∧ SGα 6= ∅ ∧ ∃

d
SGα ∧ ∀T ∈ PGα . T �:

d
SGα

Fail-Inf
(G, θ) =⇒sol FAIL

if α ∈ TV (G) ∧ SGα 6= ∅ ∧ (@
d
SGα ∨ ∃T ∈ PGα . T 6�:

d
SGα)

Fig. 10. Rule-based constraint resolution =⇒sol

Unify-WCC
(G, θ) =⇒unif (G[V \W],mgu(W) ◦ θ)

where W is a weakly connected component of G = (V,E)

Fig. 11. Rule-based WCC-unification =⇒unif

constraints yields the substitution θsimp = {α1 7→ α3, α2 7→ α3, β1 7→ B, β2 7→ α3 → B}
and the atomic constraint set {N <: α3,Z <: α3}. This yields the constraint graph
shown in Figure 13. The constraint resolution algorithm assigns α3 the least upper
bound of {N,Z}, which is Z. The resulting substitution is θsol = {α1 7→ Z, α2 7→
Z, α3 7→ Z, β1 7→ B, β2 7→ Z → B}. Since there are no unassigned variables in the
remaining constraint graph, Unify-WCC is inapplicable and θ, the final result, is θsol .

Σ(leq) = α→ α→ B
Γ ` leq [α 7→α3]

: α3 → α3 → BB ∅
Σ(n) = N

Γ ` n : NB ∅ α2, β2 fresh

Γ ` leq [α 7→α3]
n : β2 B {α3 → α3 → B .

= α2 → β2,N <: α2}
Σ(i) = Z

Γ ` i : ZB ∅ α1, β1 fresh

Γ ` leq [α 7→α3]
n i : β1 B {α3 → α3 → B .

= α2 → β2, β2
.
= α1 → β1,N <: α2,Z <: α1}

Fig. 12. Example for constraint generation

Coercive Subtyping 13

N

α3

Z

Fig. 13. Constraint graph of leq [α7→α3]
n i

In §6 we will see that the constraint resolution algorithm defined in this
subsection is not complete in general but is complete if the partial order on base
types is a disjoint union of lattices.

3.5 Coercion insertion

Finally, we have a solving substitution θ. Applying this substitution to the initial
term will produce a term that can always be coerced to a type correct term by
means of the coercion insertion judgement shown in Figure 3. We inspect this
correctness statement and the termination of our algorithm in §5.

4 Interaction with type classes

4.1 Type classes in Isabelle

The type system of the Isabelle proof assistant is a simply typed lambda calcu-
lus with Hindley-Milner polymorphism and type classes. Our extension of type
inference with subtyping interacts in a rather subtle way with the type class
system of Isabelle. The type class system is described in [10] and [21]. For our
purpose it suffices to abstract the system to the following facts.

Type classes represent sets of types. The intersection of finitely many type
classes is called a sort. Sorts are quasi-ordered (we call the relation “v”) and
a maximal sort > exists. > contains all types. All type variables are annotated
with sorts. We use the notation α :: S for this. A type T can be tested for
membership in a sort S via the judgement `sort T : S. Further, a function
arity(C, S) is given. arity takes a type constructor C of arity n and a sort S

as input and returns a tuple of n sorts (S1, . . . , Sn). The interpretation of this
function is that `sort C τ1 . . . τn : S holds only if `sort τi : Si holds ∀i = 1 . . . n.
arity(C, S) can fail if C constructs types that do not belong to sort S. Also, a
unification algorithm that respects the type classes is required[11]. For example,
α :: S and X are not unifiable if `sort X : S does not hold and the unifier of α :: S
and β :: T is a type variable annotated with the intersection of the sorts S and
T.

4.2 Interaction with constraint preprocessing

The constraint generation rules are not dramatically affected by type classes. We
only need to pass the variable annotations around. Fresh variables get annotated
with >.

14 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

As we use the weak unification test only to ensure the termination of con-
straint simplification we will not need to check sort consistency at this point.
So, exactly the same test on subtype constraints as in §3 is enough.

During constraint simplification we need to ensure correct sort annotation
when we replace a variable with a constructed type. Therefore, we update the
simplification rules Expand-L and Expand-R as shown in Figure 14.

Expand-L
({α :: S <: C τ1 . . . τn}] S, θ) =⇒simp (θ′ ({α :: S <: C τ1 . . . τn} ∪ S) , θ′ ◦ θ)

where θ′ = {α 7→ C (α1 :: S1) . . . (αn :: Sn)}
and arity(C, S) = (S1, . . . , Sn)
and α1 . . . αn are fresh variables

Expand-R
({C τ1 . . . τn <: α :: S}] S, θ) =⇒simp (θ′ ({C τ1 . . . τn <: α :: S} ∪ S) , θ′ ◦ θ)

where θ′ = {α 7→ C (α1 :: S1) . . . (αn :: Sn)}
and arity(C, S) = (S1, . . . , Sn)
and α1 . . . αn are fresh variables

Fig. 14. Rule-based constraint simplification, extended to handle type classes

4.3 Interaction with constraint resolution

Assuming a new unification function that respects sort annotations, the process
of building the constraint graph and eliminating cycles works the same way as
before. Constraint resolution is more problematic. Here, every assignment must
be “sort-correct”.

Example 3. Consider the following two examples in Figure 15. In example (a) our
algorithm would try to assign the type N to α :: Field . This, however, is wrong since N
does not belong to the sort Field . Instead, the “smallest” supertype of N that is of sort
Field should be assigned to α . In our case this is R. Example (b) demonstrates another
kind of influence of sorts on the assignment of variables. In this case α is annotated
with > which would not contradict the assignment of N to α. Still this assignment is
wrong because N does not have any subtypes that belong to the sort Field which is
required for the assignment of β :: Field . To get the right assignment we need to find
a supertype of N that has a subtype of sort Field . Again the solution is R.

We integrate the observations in our algorithm by defining a new supremum
and infimum that depend on the sort of the variable to be assigned and a set of
sorts belonging to the predecessors/successors of this variable.

Definition 9. Let S, T, T ′, T ′′ denote base types, X a set of base types, S a sort
and X a set of type variables. We define wrt. the given subtype relation �::

Coercive Subtyping 15

N

α :: Field

N

α :: >

β :: Field N

R

C

Field type class

Constraint graph (a) Constraint graph (b)
Partial order
on base types

Fig. 15. Examples for type class-subtype interference

– T
X

S = {T ′ | T �: T ′,`sort T ′ : S,

∀β :: T ∈ X. ∃T ′′.
(
∀U ∈ PGβ . U �: T ′′

)
, T ′′ �: T ′,`sort T ′′ : T},

the set of supertypes that are of sort S and have valid subtypes for every
type variable in X

– TX
S = {T ′ | T ′ �: T,`sort T ′ : S,

∀β :: T ∈ X. ∃T ′′. (∀U ∈ Sβ . T ′′ �: U) , T ′ �: T ′′,`sort T ′′ : T},
the set of subtypes that are of sort S and have valid supertypes for every
type variable in X

– T tXS S ∈ TX

S ∩ S
X

S and ∀U ∈ TX

S ∩ S
X

S . T tXS S �: U , the supremum of S
and T

– T uXS S ∈ T
X
S ∩ S

X
S and ∀L ∈ TX

S ∩ S
X
S . L �: T uXS S the infimum of S and

T
–
⊔X

S X ∈
⋂
T∈X

T
X
S and ∀U ∈

⋂
T∈X

T
X
S .
⊔X

S X �: U , the supremum of X

–
dX

S X ∈
⋂
T∈X

TXS and ∀L ∈
⋂
T∈X

TXS . L �:
dX

S X, the infimum of X.

Further let α be a type variable in the constraint graph G = (V,E). We denote
the transitive closure of edges of G by E+ and define:

– PGα = {T | (T, α :: S) ∈ E+, T base type}
the set of all base type predecessors of α :: S

– SGα = {T | (α :: S, T) ∈ E+, T base type}
the set of all base type successors of α :: S

– PGα = {β :: T | (β :: T, α :: S) ∈ E+}
the set of all type variable predecessors of α :: S

– SGα = {β :: T | (α :: S, β :: T) ∈ E+}
the set of all type variable successors of α :: S.

Figure 16 shows the constraint resolution rules updated according to the new
notion of the supremum/infimum.

16 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

Assign-Sup

(G, θ) =⇒sol

(
{α 7→

⊔PGα
S PGα }G, {α 7→

⊔PGα
S PGα } ◦ θ

)
if α :: S ∈ TV (G) ∧ PGα 6= ∅ ∧ ∃

⊔PGα
S PGα ∧ ∀T ∈ SGα .

⊔PGα
S PGα �: T

Fail-Sup
(G, θ) =⇒sol FAIL

if α :: S ∈ TV (G) ∧ PGα 6= ∅ ∧ (@
⊔PGα

S PGα ∨ ∃T ∈ SGα .
⊔PGα

S PGα 6�: T)

Assign-Inf

(G, θ) =⇒sol

(
{α 7→

dSGα
S SGα }G, {α 7→

dSGα
S SGα } ◦ θ

)
if α :: S ∈ TV (G) ∧ SGα 6= ∅ ∧ ∃

dSGα
S SGα ∧ ∀T ∈ PGα . T �:

dSGα
S SGα

Fail-Inf
(G, θ) =⇒sol FAIL

if α :: S ∈ TV (G) ∧ SGα 6= ∅ ∧ (@
dSGα

S SGα ∨ ∃T ∈ PGα . T 6�:
dSGα

S SGα)

Fig. 16. Rule-based constraint resolution (type classes) =⇒sol

After integrating those extensions, the algorithm still always terminates and
is sound. However, completeness can not be reached even with very strong re-
strictions of the base type poset, without further assumptions about the sort
quasi-order. We discuss some examples for incompleteness in §6.

5 Total correctness

To prove total correctness, we need to show that for any input t and Γ , the
algorithm either returns a substitution θ, a well-typed term u together with its
type θτ or indicates a failure. Failures may occur at any computation of a most
general unifier, a sort arity, during the weak unification test, or explicitly at
the reduction steps Fail-Sup and Fail-Inf in the constraint resolution phase.
Below we discuss correctness and termination. Since the reduction rules in each
phase are applied nondeterministically, the algorithm may output different sub-
stitutions for the same input term t and context Γ . By AlgSol(Γ , t) we denote
the set of all such substitutions.

Theorem 1 (Correctness). For a given term t in the context Γ , assume θ ∈
AlgSol(Γ, t). Then there exist a term u and a type τ , such that θΓ ` θt u : τ
and θΓ ` u : τ .

Instead of working with the notion AlgSol and the whole algorithm as a
black box, we reformulate the correctness theorem to give names to the inter-
mediate results. Then, we can show correctness statements about each phase of
the algorithm separately.

Coercive Subtyping 17

Theorem 2 (Correctness). Suppose that a given term t in the context Γ
passes the phases of the presented algorithm without failure:

Γ ` t : τ B S, (1)

(S, ∅) =⇒!
simp (S′, θsimp), (2)

(G(S′), θsimp) =⇒!
cyc (G, θcyc), (3)

(G, θcyc) =⇒!
sol (G′, θsol), (4)

(G′[TV (G′)], θsol) =⇒!
unif ((∅, ∅), θ). (5)

Then there exists a term u, such that

θΓ ` θt u : θτ , (6)

θΓ ` u : θτ . (7)

Proof. In Lemma 3, we prove that (7) follows from (6).
In order to prove (6), we observe that any solution of the constraint set S

produced in (1), has the needed property. This is shown in Lemma 4. Thus, we
need to show that θ is a solution of S. We achieve this by proving that each
reduction phase results in a substitution that solves a certain part of the restric-
tions induced by the constraint set. More precisely, there exists a substitution
δ4 such that θ = δ4 ◦ θsol and δ4 solves G′[TV (G′)] provided (5), which is shown
in Lemma 8. Clearly, δ4 also solves G′, since in G′ there are no edges between
simple types and a type variables.

Further, in Lemma 7 we show that (4) implies the existence of a δ3 such that
θsol = δ3 ◦ θcyc and δ3 extends a solution of G′ to a solution of G, Lemma 6 and
Lemma 1 show that there exists a substitution δ2 such that θcyc = δ2 ◦ θsimp

and δ2 extends a solution of G to a solution of S′ provided (3), and finally
Lemma 5 shows that θsimp extends a solution of S′ to a solution of S provided
(2). Concatenating these results implies the fact that θ = δ4 ◦δ3 ◦δ2 ◦θsimp solves
S. ut

Lemma 2 (Correctness of coercion generation). If τ <:c σ then ∅ ` c :
τ → σ.

Proof. A straightforward induction on the derivation of the coercion generation
τ <:c σ. ut

Lemma 3 (Correctness of coercion insertion). If Γ ` t u : τ then
Γ ` u : τ .

Proof. A straightforward induction on the derivation of the coercion insertion
Γ ` t u : τ additionally using Lemma 2. ut

Lemma 4 (Non-failure of coercion insertion). Given a term t and context
Γ , if Γ ` t : τ B S and θ is a solution of the constraint set S, then there exists
a term u such that θΓ ` θt u : θτ .

18 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

Proof. A straightforward induction on the derivation of the constraint generation
Γ ` t : τ B S. ut

Lemma 5 (Correctness of =⇒!
simp). Assume (S, θ) =⇒!

simp (S′, θ′). Let θ′′ be
a substitution that solves S′. Then there exists a substitution δ such that θ′ = δ◦θ
and θ′′ ◦ δ solves S.

Proof. First, we prove a related property for a single application of a simplifica-
tion rule, from which the above property follows by an induction on the number
of simplification steps.

Assume (S, θ) =⇒simp (S′, θ′) and θ′′ is a solving substitution for S′. We
show that in that case there exists a substitution δ such that θ′ = δ ◦θ and θ′′ ◦δ
is a solving substitution for S by case distinction on the rules for =⇒simp .

Decompose In this case θ′ = θ implies δ = ∅. Therefore, we need to show that
θ′′ ◦ δ = θ′′ is a solution for {C τ1 . . . τn <: C σ1 . . . σn}] S. As we know, θ′′

solves the constraints
{

var iC (τi, σi) | i = 1 . . . n
}
∪ S.

If there is a known map function m for C, then for all i = 1 . . . n there exists ci
such that either θ′′τi <:ci θ

′′σi or θ′′τi <:ci θ
′′σi holds according to the variance

of the constructor C. Hence, θ′′ (C τ1 . . . τn) <:m c1...cn θ
′′ (C σ1 . . . σn) holds.

Otherwise, if no map function for C is known, the fact that θ′′ solves
var iC (τi, σi) implies θ′′τi = θ′′σi for all i = 1 . . . n. Hence, θ′′ (C τ1 . . . τn) <:id
θ′′ (C σ1 . . . σn), because the constructed terms are equal after the application
of θ′′.

Thus, θ′′ solves {C τ1 . . . τn <: C σ1 . . . σn}] S.

Unify It is easy to see that δ = mgu {τ, σ}. Therefore, we have to prove that
θ′′ ◦δ is a solving substitution for {τ .

= σ}]S, provided that θ′′ solves δS. Then,
there must be only already ”solved” constraints in θ′′(δS) = (θ′′ ◦ δ)S. It follows
that θ′′ ◦ δ solves the constraints in S

Since δ is the most general unifier of τ and σ, it holds: (θ′′ ◦ δ)τ = θ′′(δτ) =
θ′′(δσ) = (θ′′ ◦ δ)σ. Hence, θ′′ ◦ δ also solves the constraint τ

.
= σ.

Expand-L and Expand-R Both rules, Expand-L and Expand-R, behave in
the same way.

We observe that δ = {α 7→ C α1 . . . αn}1 and S′ = δS. Since θ′′ is a solving
substitution for S′, θ′′(δS) = (θ′′ ◦ δ)S contains only “solved” constraints. Thus,
θ′′ ◦ δ is solution for S.

Eliminate This step is eliminating already solved constraints. With δ = ∅,
θ′′ ◦ δ = θ′′ still solves S together with the eliminated constraint U <: T since
θ′′U = U and θ′′T = T . ut

Lemma 6 (Correctness of =⇒!
cyc). Assume (G, θ) =⇒!

cyc (G′, θ′). Let θ′′ be a
substitution that solves G′. Then there exists a substitution δ such that θ′ = δ ◦ θ
and θ′′ ◦ δ solves G.
1 or {α 7→ C (α1 :: S1) . . . (αn :: Sn)} in the case with type classes

Coercive Subtyping 19

Proof. The proof idea is the same as in Lemma 5 with a degenerate case dis-
tinction for the only rule.

Cycle-Elim Assuming that θ′′ is a solving substitution for
(V \K ∪ {τK}, E′ ∪ P × {τK} ∪ {τK} × S), we need to show that θ′′ ◦ θK
is a solution for (V,E) with θK = mgu(K). That is, for all (τ, σ) ∈ E it must
hold: (θ′′ ◦ θK)τ �: (θ′′ ◦ θK)σ.

To prove this statement, we distinguish between four different edge categories.
Note that it holds ∀τ ∈ K. θKτ = τK and ∀τ ∈ V \K. θKτ = τ since there are
only variables and base types in V .

1. τ ∈ V \K,σ ∈ V \K. Then (τ, σ) ∈ E′, such that:

(θ′′ ◦ θK)τ = θ′′(θKτ) = θ′′τ �: θ′′σ = θ′′(θKσ) = (θ′′ ◦ θK)σ.

2. τ ∈ K,σ ∈ V \K. Then (τ, σ) ∈ {τK} × S, such that:

(θ′′ ◦ θK)τ = θ′′τK �: θ′′σ = (θ′′ ◦ θK)σ.

3. τ ∈ V \K,σ ∈ K. Then (τ, σ) ∈ P × {τK}, such that:

(θ′′ ◦ θK)τ = θ′′τ �: θ′′τK = (θ′′ ◦ θK)σ.

4. τ ∈ K,σ ∈ K. Then it holds:

(θ′′ ◦ θK)τ = θ′′τK = (θ′′ ◦ θK)σ.
ut

Lemma 7 (Correctness of =⇒!
sol). Assume (G, θ) =⇒!

sol (G′, θ′). Let θ′′ be a
substitution that solves G′. Then there exists a substitution δ such that θ′ = δ ◦ θ
and θ′′ ◦ δ solves G.

Proof. Once again, the proof idea is the same as before. =⇒sol has two non-
failing cases, but since they are symmetric to each other, we consider only
Assign-Sup rule of the case with type classes.

Assign-Sup We write in the following, δ for the substitution {α 7→
⊔PGα

S PGα }.
Assuming that θ′′ is a solving substitution for δG and the given side conditions

α :: S ∈ TV (G), PGα 6= ∅, ∃
⊔PGα

S PGα , and ∀T ∈ SGα .
⊔PGα

S PGα �: T , we need
to show that θ′′ ◦ δ is a solving substitution for G = (V,E). Therefore, we we
distinguish between three categories for the edge (τ, σ) ∈ E.

1. τ ∈ V \ {α}, σ ∈ V \ {α}. Then (τ, σ) ∈ δG, such that:

(θ′′ ◦ δ)τ = θ′′τ �: θ′′σ = (θ′′ ◦ δ)σ.

2. τ = α, σ ∈ V \{α}. Then, because of the side condition ∀T ∈ SGα .
⊔PGα

S PGα �:
T and θ′′ being a solving substitution, it holds:

(θ′′ ◦ δ)τ =
⊔PGα

S
PGα �: θ′′σ = (θ′′ ◦ δ)σ.

20 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

3. τ ∈ V \ {α}, σ = α. Then, because of the definition of the supremum of PGα
and θ′′ being a solving substitution, it holds:

(θ′′ ◦ δ)τ = θ′′τ �:
⊔PGα

S
PGα = (θ′′ ◦ δ)σ.

ut

Lemma 8 (Correctness of =⇒!
unif). Assume (G, θ) =⇒!

unif ((∅, ∅), θ′). Then,
there exists a substitution δ such that θ′ = δ ◦ θ and δ solves G.

Proof. This proof uses again the very same technique as the previous ones. As
in the proof of the correctness of =⇒!

cyc , there is only one rule.

Unify-WCC Assuming that θ′′ solvesG[V \W], we need to show that θ′′◦mgu(W)
solves G = (V,E). Remembering that W denotes a weakly connected component
of G, we distinguish between two categories for the edge (τ, σ) ∈ E. It holds
∀τ ∈W. mgu(W)τ =: τW and ∀τ ∈ V \W. mgu(W)τ = τ .

1. τ ∈ V \W,σ ∈ V \W . Then (τ, σ) ∈ G[V \W], such that:

(θ′′ ◦mgu(W))τ = θ′′τ �: θ′′σ = (θ′′ ◦mgu(W))σ.

2. τ ∈W,σ ∈W . Then it holds:

(θ′′ ◦mgu(W))τ = θ′′τW = (θ′′ ◦mgu(W))σ.
ut

Thus, we know that if the algorithm terminates successfully, it returns a well-
typed term. Moreover, it terminates for any input:

Theorem 3 (Termination). The algorithm terminates for any input t and Γ .

Proof. The derivations using constraint generation and coercion generation and
insertion typing rules clearly terminate since these rules are compositional, that
is depending only on their subexpressions.

The termination of the weak unification test follows from the termination of
the standard unification algorithm.

Less obvious is the termination of the repeated application of the reduction
rules. We show that in the non-failing case the normal form is reached after a
finite number of reduction steps by specifying a measure for each phase that
decreases with every application of any rule belonging to this phase.

Termination of =⇒!
simp assuming the weak unifiability of the original constraint

set S (Proof based on the proof of lemma 13 in [2])
First of all, we show that after the application of any rule the resulting

constraint set is weakly unifiable if the original constraint set was weakly unifi-
able. Let Si be the constraint set in step i, and θi be a weak unifier for Si.
If we apply rule Decompose or rule Eliminate, θi is still a weak substitu-
tion for the resulting constraint set. The application of rule Expand-L to the

Coercive Subtyping 21

subtype constraint α <: C τ1 τ2 . . . τn introduces new variables α1, . . . , αn
and applies the substitution {α 7→ C α1 α2 . . . αn} to the whole constraint
set. Since α <: C τ1 τ2 . . . τn ∈ Si and θi is a weak unifier of Si, it fol-
lows that θiα = C σ1 . . . σn, where σj = dθiτje for all 1 ≤ j ≤ n. Thus,
θi+1 = {α1 7→ σ1, . . . , αn 7→ σn} ◦ θi is a weak unifier of Si+1. By a similar argu-
ment, it can also be shown that the rule Expand-R preserves weak unifiability.
It is part of the algorithm to test whether the initial constraint set is weakly
unifiable. We will only start simplifying the constraints if they pass the test. By
induction, we obtain weak unifiability for every subtype constraint set produced
by our simplification algorithm.

Now, we can define the decreasing measure. Let #(τ) be the following recur-
sively defined number:

#(τ) =

1 if τ is a type variable or base type

1 +
n∑
i=1

#(τi) if τ = C τ1 τ2 . . . τn

Furthermore, we define two measures for a weakly unifiable subtype con-
straint set Si:

|Si| =
∑

τCσ∈Si

#(τ) + #(σ) and |Si|TV =
∑

x∈TV (Si)

#(θix)

where θi is a weak most general unifier for Si, TV (Si) denotes the type variables
occurring in Si, and C stands for either <: or

.
=.

Consider the lexicographic order on tuples (|Si|TV , |Si|) for the coercion sets
Si in any step i. If rules Decompose or Eliminate are applied, then |Si|TV =
|Si+1|TV holds because TV (Si) = TV (Si+1) and θi = θi+1 obviously hold. Note
that θi and θi+1 (weak most general unifiers for Si and Si+1) must exist, since
Si and Si+1 are weakly unifiable. On the other hand, |Si| = |Si+1| + 2 holds
because the rules are either removing exactly two type constructors or exactly
two base types.

If Expand-L is applied to the constraint α <: C τ1 τ2 . . . τn, we notice
that the weak unifiers θi and θi+1 only differ in the variables α and α1, . . . , αn.
Furthermore, since θi and θi+1 are weak most general unifiers, it holds that
θiα = θi+1(C α1 α2 . . . αn). Now, we can conclude

#(θiα) = #(θi+1(C α1 α2 . . . αn))

= 1 +

n∑
j=1

#(θi+1αj)

>

n∑
j=1

#(θi+1αj)

which together with the fact TV (Si+1) = (TV (Si) \ {α}) ∪ {α1, . . . , αn}
implies |Si|TV > |Si+1|TV . The reasoning for rule Expand-R is similar.

22 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

If rule Unify is applied, we first consider the case where no variable is as-
signed during unification. Then TV (Si) = TV (Si+1) and θi = θi+1 hold and
imply |Si|TV = |Si+1|TV . Furthermore, |Si| > |Si+1| holds because a constraint
gets removed. The other case is that some set of variables α gets assigned. Then
TV (Si+1) = TV (Si) \α and the fact that θi and θi+1 only differ concerning the
variables from the set α implies |Si|TV > |Si+1|TV .

In all cases it holds either |Si|TV > |Si+1|TV or |Si|TV = |Si+1|TV and
|Si| > |Si+1|. Thus ∀i > 0. (|Si|TV , |Si|) > (|Si+1|TV , |Si+1|) holds.

Termination of =⇒!
cyc The application of the Cycle-Elim rule decreases the

number of cycles of the constraint graph. The normal form is reached when this
number is zero, that is the graph is a DAG.

Termination of =⇒!
sol The application of the Assign-Sup and Assign-Inf rules

decreases the number of unassigned variables in the constraint graph. The normal
form is reached when type variables only occur in weakly connected components
of the constraint graph that don’t contain base types.

Termination of =⇒!
unif The application of the Unify-WCC rule decreases the

number of vertices of the remaining constraint graph. The normal form is reached
when the remaining graph is empty. ut

6 Completeness

In this section we provide a completeness result for the algorithm described in §3.
For the extension to type classes, described in §4, we don’t have a similar result,
without certain assumptions on the quasi-order of sorts. Since our goal was to
build the coercion inference on top of Isabelle without changing the underlying
type system, we will not embed such assumptions on the sort structure in our
reasoning about the algorithm.

6.1 Some examples for incompleteness

So far, we have only made statements about termination and correctness of our
algorithm. It is equally important that the algorithm does not fail for a term
that can be coerced to a well-typed term. An algorithm with this property is
called complete. As mentioned earlier, our algorithm is not complete for arbitrary
posets of base types. This is shown by some simple examples. First, we consider
the algorithm for the language without type classes as described in §3.

Example 4. Figure 17 shows a constraint graph and base type order where our algo-
rithm may fail, although {α 7→ C, β 7→ N} is a solving substitution. If during constraint
resolution the type variable α is assigned first, it will receive value R. Then, the as-
signment of β will fail, since the infimum R uN does not exist in the given poset. The
fact that our algorithm does find the solution if β is assigned before α is practically
irrelevant because we cannot possibly exhaust all nondeterministic choices.

Coercive Subtyping 23

R

α

β

N

N R

C

Constraint graph Partial order on base types

Fig. 17. Problematic example without type classes

Before we reason about a possible solution of the completeness problem we
consider a second example now involving type classes.

Example 5. Some problems also occur in the solvable constraint graph in Figure 18.
{α 7→ Q} is a solving substitution. The presented algorithm tries to assign α to⊔∅

Field{N}. This supremum does not exist, since R 6�: Q and Q 6�: R. Thus, the al-
gorithm fails.

N

α :: Field

P

N Z

QR

C

Field type class

Constraint graph Partial order on base types

Fig. 18. Problematic example with type classes

In both cases, the problem is the non-existence of a supremum or infimum.
The solution to this problem in the case without sorts is to require a certain
lattice structure for the partial order on base types. Alternatively we could try
and generalize our algorithm, but this is unappealing for complexity theoretic
reasons.

6.2 Complexity and completeness

Tiuryn and Frey [19,4] showed that the general constraint satisfaction problem
is PSPACE-complete. Tiuryn [19] also shows that satisfiability can be tested in
polynomial time if the partial order on base types is a disjoint union of lattices.

24 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

Unfortunately, Tiuryn only gives a decision procedure that does not compute
a solution. Nevertheless, most if not all approaches in the literature adopt the
restriction to (disjoint unions of) lattices, but propose algorithms that are ex-
ponential in the worst case. This paper is no exception. Just like Simonet [18]
we argue that in practice the exponential nature of our algorithm does not show
up. Our implementation in Isabelle confirms this.

All phases of our algorithm have polynomial complexity except for constraint
simplification: a cascade of applications of Expand-L or Expand-R may pro-
duce an exponential number of new type variables. Restricting to disjoint union
of lattices does not improve the complexity but guarantees completeness of
our algorithm because it guarantees the existence of the necessary infima and
suprema for constraint resolution.

6.3 Proof of completeness in the case without type classes

In the following proof we assume that the base type poset is a disjoint union of
lattices.

To formulate the completeness theorem, we need some further notation.

Definition 10 (Equality modulo coercions). Two substitutions θ and θ′ are
equal modulo coercions wrt. the type variable set X, if for all x ∈ X there exists
a coercion c such that either θ(x) <:c θ

′(x) or θ′(x) <:c θ(x) holds. We write
θ ≈X θ′.

Definition 11 (Subsumed). The substitution θ′ is subsumed modulo coer-
cions wrt. to the type variable set X by the substitution θ, if there exists a sub-
stitution δ such that θ′ ≈X δ ◦ θ. We write θ .X θ′.

Definition 12 (Invariant). The constraint set S is invariant under the sub-
stitution θ if for all τ C σ ∈ S it holds θτ = τ and θσ = σ.

The constraint graph G is invariant under the substitution θ if for all α ∈
TV (G) it holds θα = α.

Let TV (τ) and TV (t) be the sets of type variables that occur in τ and the
type annotations of t. For a context Γ = {x1 : τ1, . . . , xn : τn}, we denote by

TV (Γ) the set
n⋃
i=1

TV (τi).

Theorem 4 (Completeness). If θ′Γ ` θ′t u : τ ′, then AlgSol(Γ, t) 6= ∅ and
for all θ ∈ AlgSol(Γ, t) it holds that θ .TV (Γ)∪TV (t) θ

′.

Again, we reformulate the above theorem to have a closer look at the internals
of our algorithm.

Coercive Subtyping 25

Theorem 5 (Completeness). Suppose that θ′Γ ` θ′t u : τ ′ and Γ ` t :
τ B S. Then, there exist S′, G,G′, θsimp , θcyc , θsol , θ such that:

τ ′ = θ′τ, (8)

S is weakly unifiable, (9)

(S, ∅) =⇒!
simp (S′, θsimp), (10)

(G(S′), θsimp) =⇒!
cyc (G, θcyc), (11)

(G, θcyc) =⇒!
sol (G′, θsol), (12)

(G′[TV (G′)], θsol) =⇒!
unif ((∅, ∅), θ). (13)

Further, for any such S′, G,G′, θsimp , θcyc , θsol , θ, independent of the nonde-
terministic choices of the algorithm, it holds:

θ .TV (Γ)∪TV (t) θ
′. (14)

Proof. From Lemma 9 and Lemma 10 we obtain (8), (9) and a substitution δ
such that δ ◦ θ′ solves S. By induction on the transitive closure of =⇒simp , we
obtain (10) and substitutions δ′ and δsimp such that δ ◦ θ′ = δsimp ◦ θsimp and
δ′ ◦ δ ◦ θ′ solves S′, and therefore G(S′) using Lemma 11 and Lemma 12 for
the induction step. By induction on the transitive closure of =⇒cyc , we obtain
(11) and a substitution δcyc such that δ′ ◦ δ ◦ θ′ = δcyc ◦ θcyc and δ′ ◦ δ ◦ θ′
solves G using Lemma 13 and Lemma 14 for the induction step. From both
inductions, we also know that δ affects only variables that were introduced in
the constraint generation and δ′ affects only variables that were introduced in
the constraint simplification. Thus, δ′◦δ◦θ′ restricted to the free variables of the
input TV (Γ)∪TV (t) equals the substitution θ′. Thus θ′ ≈TV (Γ)∪TV (t) δcyc◦θcyc .
By induction on the transitive closure of =⇒sol , we obtain (12) and a substitution
δsol such that δcyc ◦ θcyc ≈TV (Γ)∪TV (t) δsol ◦ θsol and δsol ◦ θsol solves G′, and
therefore G′[TV (G′)] using Lemma 15 and Lemma 16 for the induction step. By
induction on the transitive closure of =⇒unif , we obtain (13) and a substitution
δunif such that δsol ◦ θsol ≈TV (Γ)∪TV (t) δunif ◦ θ using Lemma 17 and Lemma 18
for the induction step. Finally, we have θ′ ≈TV (Γ)∪TV (t) δunif ◦ θ, and therefore
(14). ut

Lemma 9. Suppose that θ′Γ ` θ′t u : τ ′ and Γ ` t : τ BS. Then there exists
a substitution δ such that τ ′ = (δ ◦ θ′)τ and δ ◦ θ′ solves S. Moreover, δ is a
substitution that affects only fresh variables that were generated in the constraint
generation.

Proof. By induction on the constraint generation for an arbitrary θ′.

SubCT-Var (x : τ ∈ Γ) Using θ′Γ ` θ′x u : τ ′, we derive that τ ′ = θ′τ .
Moreover, every substitution solves the generated empty constraint set. Thus,
the choice δ = ∅ proves this base case.

SubCT-Const (Σ(c) = σ) Using θ′Γ ` θ′c[a 7→τ] u : τ ′, we derive that
τ ′ = θ′ (σ[a 7→ τ]). Again, θ′ solves the generated empty constraint set. Thus,
the choice δ = ∅ also proves this base case.

26 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

SubCT-Abs (Γ, x : τ1 ` t : σ B S) Since the judgement θ′Γ ` θ′(λx : τ1. t)
u : τ ′ must have been derived via the Coerce-Abs rule, there exist τ2 and u′

such that θ′(Γ, x : τ1) ` θ′t u′ : τ2 and τ ′ = θ′τ1 → τ2. From the induction
hypothesis, we obtain a δ such that δ ◦ θ′ solves the constraint set S and τ2 =
(δ ◦ θ′)σ. The rule SubCT-Abs does not generate any new constraints. Also,
δ affects only variables that are introduced by the constraint generation. Thus,
(δ ◦ θ′)τ1 = θ′τ1. It follows that τ ′ = (δ ◦ θ′)(τ1 → σ) and δ ◦ θ′ solves the same
constraint set S that is generated from the term λx : τ1. t in the context Γ .

SubCT-App (Γ ` f : τ B Sf , Γ ` t : σ B St) Since the judgement θ′Γ `
θ′(f t) u : τ ′ must have been derived via the Coerce-App rule, there exist
τf , uf , τt, ut, and c such that θ′Γ ` θ′f uf : τf → τ ′, θ′Γ ` θ′t ut : τt and
τt <:c τf . From the induction hypothesis for f , we obtain a δf such that δf ◦ θ′
solves Sf , τf → τ ′ = (δf ◦θ′)τ . Since δf affects only variables that are introduced
in the derivation of Sf , θ′Γ and θ′t are invariant under the application of δf .
Thus, (δf ◦ θ′)Γ ` (δf ◦ θ′)t ut : τt holds. From the induction hypothesis for
t, we obtain a δt such that δt ◦δf ◦θ′ solves St and τt = (δt ◦δf ◦θ′)σ. Finally, we
need to solve the newly generated constraints {τ .

= α→ β, σ <: α} providing an
adequate substitution of the fresh variables α and β. Let δ = {α 7→ τf , β 7→ τ ′}.
Then, together with the fact that δt affects only variables that are introduced
in the derivation of St, we know that (δ ◦ δt ◦ δf) ◦ θ′ solves Sf ∪ St ∪ {τ

.
=

α → β, σ <: α}. This is the case, because δf ◦ θ′ already solves Sf , δt ◦ δf ◦ θ′
already solves St, (δ ◦ δt ◦ δf ◦ θ′)τ = τf → τ ′ = (δ ◦ δt ◦ δf ◦ θ′)(α → β) and
(δ ◦δt ◦δf ◦θ′)σ = τt <:c τf = (δ ◦δt ◦δf ◦θ′)α. Moreover, ((δ ◦δt ◦δf)◦θ′)β = τ ′

such that δ ◦ δt ◦ δf fulfils the needed properties. ut

Lemma 10 (Weak unifiability). If S has a solution, then S is weakly unifi-
able.

Proof. Assuming τ <:c σ, a straightforward induction on the coercion generation
provides the result dτe = dσe.

Suppose θ solves S. Hence, for all τ <: σ ∈ S there exists a coercion c such
that it holds θτ <:c θσ, and therefore dθτe = dθσe. Since θ also solves all equality
constraints in S, it is a weak unifier of S. ut

Lemma 11 (Progress of =⇒simp). Suppose that θ′′ solves S. Then either S
is atomic or for all θ there exist S′, θ′ such that (S, θ) =⇒simp (S′, θ′).

Proof. Assume S is not atomic. Since our subtyping is structural and S is solv-
able, constraints of the forms, C τ1 . . . τn <: T , T <: C τ1 . . . τn, and
C τ1 . . . τn <: D τ1 . . . τm where n > 0, m > 0, and C 6= D do not oc-
cur in S. Thus, there are five kinds of constraints in S, each kind corresponding
to a simplification rule. To prove the possibility of making a reduction step with
=⇒simp , we have to show that the side conditions of the rules hold. Those are
the existence of the most general unifier of τ and σ in the rule Unify and the
compatibility of the base types T and U with the subtype relation in the rule
Eliminate. Both hold since S is solvable. ut

Coercive Subtyping 27

Lemma 12 (Preservation of solvability by =⇒simp). Suppose that
(S, θ) =⇒simp (S′, θ′), θ′′ solves S, there exists δ such that θ′′ = δ ◦ θ, and
S is invariant under θ.

Then there exists a δ′, δ′′ such that θ′′ = δ′ ◦ θ′, δ′′ ◦ θ′′ solves S′, and S′ is
invariant under θ′. Moreover, δ′′ is a substitution that affects only fresh variables
that were generated in that particular step of constraint simplification.

Proof. By case distinction on the constraint generation.

Decompose Since θ′′ = δ ◦ θ solves {C τ1 . . . τn <: C σ1 . . . σn}] S,
by definition of var it also solves {var iC(τi, σi) | i = 1 . . . n} ∪ S. More-
over, {var iC(τi, σi) | i = 1 . . . n} contains exactly the same type variables as
{C τ1 . . . τn <: C σ1 . . . σn} such that {var iC(τi, σi) | i = 1 . . . n} ∪ S is
invariant under θ. Finally, with θ′ = θ the case follows for δ′′ = ∅, δ′ = δ.

Unify Since θ′′ = δ ◦ θ solves {τ .
= σ}] S and {τ .

= σ}] S is invariant under
θ, it holds δτ = θ′′τ = θ′′σ = δσ. Thus, δ is a unifier for {τ, σ} and we obtain a
δ1 where δ = δ1 ◦mgu{τ, σ} = δ′ ◦ θ′. It follows that θ′′ = δ ◦ θ = δ1 ◦ (θ′ ◦ θ).

We can assume the idempotence of the most general unifier such that θ′S is
invariant under θ′. Further, the range of θ′ is a subset of TV (τ) ∪ TV (σ), such
that the type variables of θ′S are a subset of the type variables of {τ .

= σ}] S.
Since {τ .

= σ}]S is invariant under θ, θ′S must also be invariant under θ. Thus,
θ′S is invariant under θ′ ◦ θ.

Moreover, with θ(θ′S) = θ′S, the idempotence of θ′ and θS = S, it follows:

θ′′(θ′S) = (δ1 ◦ θ′ ◦ θ)(θ′S)

= (δ1 ◦ θ′)(θ′S)

= (δ1 ◦ θ′)S
= (δ1 ◦ θ′ ◦ θ)S
= θ′′S

Hence, as θ′′ solves S, it also solves θ′S. The case follows for δ′′ = ∅, δ′ = δ1.

Expand-L Since our subtyping is structural, θ′′ = δ◦θ solves {α <: C τ1 . . . τn}
and {α <: C τ1 . . . τn}] S is invariant under θ, there exist σ1 . . . σn where
θ′′α = δα = C σ1 . . . σn. Let δ1 be the substitution {αi 7→ σi | i = 1 . . . n}. As
the αi are freshly introduced by the algorithm, we can rewrite δ as an instance
of θ′ = {α 7→ C α1 . . . αn. We obtain a δ2 such that δ = δ2 ◦ δ1 ◦ θ′, and
therefore θ′′ = δ ◦ θ = δ2 ◦ δ1 ◦ (θ′ ◦ θ). Further, it is easy to see that δ1 ◦ θ′′ solves
θ′({α <: C τ1 . . . τn}∪S) using once again the facts that αi are fresh variables
and θ′′ solves {α <: C τ1 . . . τn}] S.

Finally, we have to show that θ′({α <: C τ1 . . . τn} ∪ S) is invariant under
θ′ ◦ θ. Since the variables in the range of θ′ are fresh, and therefore unaffected
by θ, it is enough to show that θ′ ◦ θ({α <: C τ1 . . . τn} ∪ S) is invariant under
θ′. From the fact that {α <: C τ1 . . . τn} ∪ S is invariant under θ, it follows
that θ′ ◦ θ({α <: C τ1 . . . τn} ∪ S) = θ′({α <: C τ1 . . . τn} ∪ S). Clearly, θ′ is

28 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

idempotent such that θ′({α <: C τ1 . . . τn} ∪S) is invariant under θ′. The case
follows for δ′ = δ2 ◦ δ1 and δ′′ = δ1.

Expand-R Analogously to the Expand-L case.

Eliminate Since θ′′ = δ ◦ θ solves {U <: T}] S, it of course also solves just S.
Further, with θ′ = θ the case follows for δ′′ = ∅, δ′ = δ. ut

Lemma 13 (Progress of =⇒cyc). Suppose that θ′′ solves G. Then either G is
a DAG or for all θ there exist G′, θ′ such that (G, θ) =⇒cyc (G′, θ′).

Proof. Assume G is not a DAG. Thus, there is a cycle K = {τ1 . . . τn} in G.
Since θ′′ solves G, it must hold θ′′τ1 �: . . . �: θ′′τn �: θ′′τ1, and therefore
θ′′τ1 = . . . = θ′′τn. From this, we know that the computation of mgu(K) in the
Cycle-Elim rule will not fail and we obtain the transformed graph G′ and the
new substitution θ′ = mgu(K) ◦ θ. ut

Lemma 14 (Preservation of solvability by =⇒cyc). Suppose that
(G, θ) =⇒cyc (G′, θ′), θ′′ solves G, there exists δ such that θ′′ = δ ◦ θ, and
G is invariant under θ.

Then there exists a δ′ such that θ′′ = δ′ ◦θ′, θ′′ solves G′, and G′ is invariant
under θ′.

Proof. By a degenerated case distinction on the cycle elimination.

Cycle-Elim Let K = {τ1 . . . τn} be the eliminated cycle in G. As θ′′ solves G,
it must hold θ′′τ1 = . . . = θ′′τn. Then, it follows that θ′′ is also a solution for G′

by construction of E′, P and S.
Since G is invariant under θ, θ′′ = δ ◦ θ and it holds θ′′τ1 = . . . = θ′′τn, we

have δτ1 = . . . = δτn. Hence, δ is a unifier for K. For the most general unifier
θK = mgu(K) we obtain a δ′ where δ = δ′ ◦ θK . Thus, θ′′ = δ ◦ θ = δ′ ◦ θK ◦ θ =
δ′ ◦ θ′.

Finally, we have to show that G′ is invariant under θ′ = θK ◦θ. G′ is invariant
under θ, since TV (G′) ⊆ TV (G) and G is invariant under θ. Moreover, G′ is
invariant under θK , since θKτK = τK by idempotence of the most general unifier
and for all α ∈ TV (V \ K) it holds θKα = α. The latter is the case, because
there would be a more general unifier than θK , if it would affect variables that
are not in K. Ultimately, it follows that G′ is invariant under θ′. ut

Lemma 15 (Progress of =⇒sol). Suppose that G is a DAG and θ′′ solves G.
Then either for all type variables α ∈ TV (G) it holds PGα ∪ SGα = ∅ or for all θ
there exist G′, θ′ such that (G, θ) =⇒sol (G′, θ′).

Proof. Assume that there is an α such that PGα ∪ SGα 6= ∅. Without loss of
generality, we may assume that PGα 6= ∅. Since θ′′ is a solution for G, for all
T ∈ SGα and for all S ∈ PGα it holds θ′′α �: T and S �: θ′′α. It follows that θ′′α ∈⋂
T∈PGα

T . Then, all types in
⋂

T∈PGα
T must belong to a single weakly connected

Coercive Subtyping 29

component of the base type poses, because otherwise this would contradict the
existence of common subtypes in PGα . Together with our assumption about the
base type poset being a disjoint union of lattices,

⋂
T∈PGα

T must have a smallest

element. Hence,
⊔
PGα exists. Further, for all T ∈ SGα it holds

⊔
PGα �: θ′′α �: T .

Thus, the rule Assign-Sup and not Fail-Sup is applicable and provides us the
necessary G′ and θ′. ut

Lemma 16 (Preservation of solvability by =⇒sol). Suppose that
(G, θ) =⇒sol (G′, θ′), δ ◦ θ solves S and G is invariant under θ.

Then there exists a δ′ such that δ ◦ θ ≈X δ′ ◦ θ′, δ′ ◦ θ′ solves G′ and G′ is
invariant under θ′.

Proof. By case distinction on the constraint resolution.

Assign-Sup For the assigned variable α ∈ TV (G), we know that PGα 6= ∅,
∃
⊔
PGα and for all T ∈ SGα it holds

⊔
PGα <: T .

Clearly, θ′ = {α 7→
⊔
PGα } is idempotent, and therefore θ′G invariant un-

der θ′. Further, θ′G is invariant under θ because G is invariant under θ and
TV (θ′G) ⊆ TV (G). Thus, θ′G is invariant under θ′ ◦ θ.

Since G is invariant under θ and δ ◦ θ solves G, δ also solves G.
Let G = (V,E). We define the substitution δ′ as following:

δ′β =

{
δβ u

⊔
PGα if (β, α) ∈ E+

δβ otherwise

This definition makes sense, because the types δβ and
⊔
PGα belong to the

same weakly connected component of the base type poset (which is, as we re-
quired, a disjoint union of lattices), and therefore their infimum exists.

From the definition of the supremum and the fact that (δ ◦ θ)α must be an
upper bound for PGα to solve the constraint graph, we have (δ′◦θ′◦θ)α =

⊔
PGα �:

(δ ◦ θ)α. Together with the definition of δ′, for all X it holds δ ◦ θ ≈X δ′ ◦ θ′ ◦ θ.
Furthermore, we claim that δ′ ◦ θ′ ◦ θ solves G′. To prove this, it is enough

to show that δ′ solves G′. δ′ operates on constraints between vertices of G′, that
do not contain a type variable predecessor of α in exactly the same way as δ,
such that for those the solvability is preserved.

Assume that β is a type variable predecessor of α, i.e. (β, α) ∈ E+. Now we
show that all the constraints involving β are fulfilled. There are four different
kinds of constraints that we have to consider: constraints between the new as-
signment of α and β, constraints between predecessors of α, i.e. (β′, β) ∈ E+,
constraints between β and a base type predecessor T of β, i.e. (T, β) ∈ E+, and
constraints between β and successors τ of β, i.e. (β, τ) ∈ E+, where τ is either
a base type U or a type variable γ that is not a predecessor of α. Constraints of
the form (β, α) ∈ E+ are solved by δ′, since α is assigned the type

⊔
PGα , and

δ′β = δβ u
⊔
PGα �:

⊔
PGα . To see why constraints of the form (β′, β) ∈ E+ are

solved by δ′, note that δβ′ �: δβ, otherwise δ would not have been a solution of
G. Therefore, we have that δβ′u

⊔
PGα �: δβu

⊔
PGα by monotonicity, which, by

30 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

definition of δ′, is equivalent to δ′β′ �: δ′β. Constraints of the form (T, β) ∈ E+

still hold, because T ∈ PGβ ⊆ PGα , and therefore T �:
⊔
PGα . Since δ is a solu-

tion of the original constraint set, we also have that T �: δβ, so it follows that
T �: δβ u

⊔
PGα . Finally, constraints of the form (β, τ) ∈ E+ are still solved by

δ′, because δ′β �: δβ, and either δβ �: U if τ = U , or δ′γ = δγ and δβ �: δγ if
τ = γ, so δ′β �: δ′τ trivially holds.

Thus, our defined δ′ proves this case.

Assign-Inf Analogously to the Assign-Sup case. ut

Lemma 17 (Progress of =⇒unif). Suppose that all vertices of G are type
variables and θ′′ solves G. Then either G = (∅, ∅) or for all θ there exist G′, θ′

such that (G, θ) =⇒sol (G′, θ′).

Proof. Assume G 6= (∅, ∅). Then, there exists a non-empty weakly connected
component W of G. W is unifiable, because it consists only of type variables.
Thus, the application of the rule Unify-WCC does not fail. ut

Lemma 18 (Preservation of solvability by =⇒unif). Suppose that
(G, θ) =⇒unif (G′, θ′), δ ◦ θ solves G and G is invariant under θ.

Then there exists a δ′ such that δ ◦ θ ≈X δ′ ◦ θ′, δ′ ◦ θ′ solves G′ and G′ is
invariant under θ′.

Proof. By a degenerated case distinction on the unification of weakly connected
components.

Unify-WCC G′ = G[V \W] is invariant under θ, since G is invariant under θ.
Moreover, G′ is invariant under mgu(W), since mgu(W) only affects variables
in W . Thus, G′ is invariant under θ′ = mgu(W) ◦ θ.

Let {αW } = mgu(W)W . Then, αW ∈ W must hold. Since our subtyping is
structural and δ solves W and the base type poset is a disjoint union of lattices,
either all types in δW are equal to a single type variable from W or they are all
base types. Define

δ′ =

{
αW 7→

{
α′W δW = {α′W }⊔

(δW) otherwise

}

Now, we can show that for allX it holds δ◦θ ≈X δ◦δ′◦θ′. Assume that α ∈ X.
If α /∈W holds, then (δ◦θ)α = δα = (δ◦δ′◦θ′)α holds using the above invariance
statements. Otherwise, it holds (δ◦θ)α = δα and (δ◦δ′◦θ′)α = δ(δ′αW). Now, if
δW = {α′W } holds, then δ(δ′αW) = α′W = δα holds for all α ∈ W by definition
of δ′. Otherwise, δ(δ′αW) =

⊔
(δW) �: δα holds for all α ∈W by the definitions

of δ′ and the supremum. Thus, δ ◦ θ ≈X (δ ◦ δ′) ◦ θ′.
Further, using the above invariance statements once again, we have (δ ◦ δ′ ◦

θ′)G′ = (δ ◦ δ′ ◦mgu(W) ◦ θ)G[V \W] = (δ ◦ θ)G[V \W]. Together with the fact
that δ ◦ θ solves G, and therefore G[V \W], this implies that (δ ◦ δ′) ◦ θ′ solves
G′. ut

Coercive Subtyping 31

It is instructive to consider a case where our algorithm is not able to reconstruct
a particular substitution but only a subsumed one.

Example 6. Let Σ = {id : α→ α,n : N, sin : R→ R} be a signature and let C = {int :
N→ Z, real : Z→ R} be a set of coercions. Now consider the term sin (id [α7→α1] n) in
the empty context. The constraint resolution phase will be given the atomic constraints
{N <: α1, α1 <: R} and will assign α1 the tightest bound either with respect to its
predecessors or its successors: AlgSol(∅, sin (id [α7→α1] n)) = {{α1 7→ N}, {α1 7→ R}}.

The substitution {α1 7→ Z} is also solution of the typing problem, i.e. {α1 7→ Z}∅ `
{α1 7→ Z}(sin (id [α 7→α1] n)) sin (real (id [α7→Z] (int n))) : R. It is itself not a pos-
sible output of the algorithm, but it is subsumed modulo coercions by both of the
substitutions that the algorithm can return.

The completeness theorem tells us that the algorithm never fails if there is a
solution. The example shows us that the algorithm may fail to produce some
particular solution. The completeness theorem also tells us that any solution is
an instance of the computed solution, but only up to coercions. In practice this
means that the user may have to provide some coercions (or type annotations)
explicitly to obtain what she wants. This is not the fault of the algorithm but
is unavoidable if the underlying type system does not provide native subtype
constraints.

Compared with the work by Säıbi we have a completeness result. On the
other hand he goes beyond coercions between atomic types, something we have
implemented but not yet released. Luo also proves a completeness result, but
his point of reference is a modified version of the Hindley-Milner system where
coercions are inserted on the fly, which is weaker than our inference system. In
most other papers the type system comes with subtype constraints built in (not
an option for us) and unrestricted completeness results can be obtained.

6.4 Incompleteness of the case with type classes

Example 5 demonstrates why a stronger restriction is necessary for the algorithm
extended with type classes. In that example, the given poset of base types is a
lattice but the supremum does not exist if we consider only base types that
belong to the sort Field . The first idea to solve this problem is to require any
restriction of our base type poset (P,�:) with any sort S to (PS,�:) where
PS = {τ ∈ P |`sort τ : S} to be a disjoint union of lattices. This restriction
extends Tiuryn’s restriction, since every type belongs to the sort > so that
P = P> holds.

Unfortunately, this restriction is not strong enough. Example 7 demonstrates
a problem that occurs even though the poset of base types restricted to any sort
is a lattice. The reason for this is the fact that in the algorithm the poset of
assignment candidates2 is not only constrained with a single sort but also to
the types that must have super-/subtypes belonging to some type classes. The
structure of such a constrained poset could be almost random. At least, we can

2 E.g. when we compute
dX

S X the assignment candidates are
⋂
T∈X

TX
S

32 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

not expect the needed supremum/infimum to exist. In some sense, type class
restrictions cut out arbitrary3 type sets from the assignment candidates.

Example 7. Assume, the constraint resolution algorithm is applied to the following
constraint set: {α :: All but rational <: C, α :: All but rational <: β :: Rational}

P

N Z

Q

C

P

N Z

All but rational
type class

Rational
type class

Partial order on base types
Assignment candidates⋂
T∈{C}

T
{Rational}
All but rational

Fig. 19. Assignment candidates resulting from computation of
d{Rational}

All but rational{C}

Figure 19 shows that the assignment candidates do not have a maximal element.
So, the infimum does not exist and the algorithm fails.

Even if it will not lead us to a completeness result, let us consider a restriction
of the base type poset, that guarantees the existence of a supremum/infimum for
any set of assignment candidates, that can occur in a solvable constraint graph.

Definition 13 (Sort-respecting subtype relation). We call a poset (P,�:)
sort-respecting if for all A,B ∈ P it holds:

– if `sort A : S and `sort B : S, then A u∅S B exists, and for all U such that

`sort U : T, T 6= S and U �: A, U �: B we have that U �: A u∅S B, and
dually

– if `sort A : S and `sort B : S, then A t∅S B exists, and for all U such that

`sort U : T, T 6= S and A �: U , B �: U we have that A t∅S B �: U .

Lemma 19 (Monotonicity I). Let A,B,X be base types from a sort-respecting
poset with `sort A : S and `sort B : S. Then it holds:

– A �: X ∧B �: X ⇒ A t∅S B �: X

3 Actually, it is not completely arbitrary. If a type τ has no supertype in the class
S, then no supertype of τ has a supertype in the class S. Nevertheless, the supre-
mum/infimum could be cut out.

Coercive Subtyping 33

– X �: A ∧X �: B ⇒ X �: A u∅S B

Proof. If `sort X : S both implications hold because of the minimal-
ity/maximality of the supremum/infimum within a sort. Otherwise the definition
of sort-respecting gives us exactly the required. ut

Lemma 20 (Monotonicity II). Let A,B,X,Y be base types from a sort-respecting
poset with `sort A : S, `sort B : S,`sort X : T and `sort Y : T. Then it holds:

A �: X ∧B �: Y ⇒ A t∅S B �: X t∅T Y

Proof. Obviously, A �: X t∅T Y and B �: X t∅T Y hold. The claim follows
immediately by Lemma 19. ut

Lemma 21 (Unambigousness). In a sort-respecting poset (P,�:), for all sets
of base types X ⊆ P, sets of type variables X, and sorts S it holds:

– if
⋂
T∈X

TX
S 6= ∅ then

⋂
T∈X

TX
S has a greatest element, and dually

– if
⋂
T∈X

T
X

S 6= ∅ then
⋂
T∈X

T
X

S has a smallest element

Proof. We show only one the first of the two symmetric claims. Assume⋂
T∈X

TX
S 6= ∅. If

⋂
T∈X

TX
S contains only one element, then we are done. Other-

wise, let A,B ∈
⋂
T∈X

TX
S . By Definition 9, `sort A : S, `sort B : S holds. In a

sort-respecting poset the supremum At∅SB exists. Further, `sort At∅SB : S and

for all T ∈ X it holds by monotonicity: At∅SB �: T . Moreover, for all β :: T ∈ X

we have base types U, V such that A �: U,B �: V,`sort U : T,`sort V : T. By
Lemma 20 it holds A t∅S B �: U t∅S V . Thus, for all β :: T ∈ X there exists a

supertype of A t∅S B of sort T, namely U t∅T V . Hence A t∅S B ∈
⋂
T∈X

TX
S . But

if for any two types from the intersection their supremum is contained in the
intersection, then the intersection has a greatest element. ut

The last lemma assures that in a sort-respecting poset of base types for every
type variable of a solvable constraint set the supremum/infimum of its succes-
sors/predecessors is well-defined. Unfortunately, the local existence of a supre-
mum/infimum, that was enough in the case without sorts, does not establish
completeness of the alorithm with sorts. The following example demonstrates
this.

Example 8. If the poset is a disjoint union of linear orders, it is also sort-respecting
because cutting out a set of types from a linear order results again in a linear or-
der that, of course, has a maximal/minimal element. Let us consider the linear or-
der of base types and the constraint graph that are shown in Figure 20. Clearly,
θ = {γ 7→ F, β 7→ E, α 7→ D} is a solution of the constraint graph. Now, assume γ is the

variable that is assigned first. It is assigned the type
⊔{β::,α::T}

U {A}, which happens to
be C. Unfortunately, after this assignment the constraint graph becomes unsolvable.

34 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

γ :: U

β :: S

α :: T

A A

B

C

D

E

F

S type
class

T type
class

U type
class

Constraint graph Partial order on base types

Fig. 20. Problematic example with a linear order subtype relation

There is no stronger restriction of the base type poset than a disjoint union
of linear orders. Even with this restriction our algorithm is not complete for
arbitrary sort quasi-orders. However, we have seen that our algorithm is complete
if no type classes (i.e. only the type-class >) are involved. Further, in case of a
sort-respecting poset, the algorithm shows a satisfactory behaviour in practice
even on input terms that involve type classes.

7 Related work

Type inference with automatic insertion of coercions in the context of functional
programming languages was first studied by Mitchell [8,9]. First algorithms for
type inference with subtypes were described by Fuh and Mishra [5] as well as
Wand and O’Keefe [20]. The algorithm for constraint simplification presented
in this paper resembles the MATCH algorithm by Fuh and Mishra. However, in
order to avoid nontermination due to cyclic substitutions, they build up an extra
data structure representing equivalence classes of atomic types, whereas we use
a weak unification check suggested by Bourdoncle and Merz [2]. The seemingly
simple problem of solving atomic subtype constraints has also been the subject
of extensive studies. In their paper [5], Fuh and Mishra also describe a second
algorithm CONSISTENT for solving this problem, but they do not mention
any conditions for the subtype order on atomic types, so it is unclear whether
their algorithm works in general. Pottier [14] describes a sound but incomplete
simplification procedure for subtype constraints. Simonet [18] presents general

Coercive Subtyping 35

subtype constraint solvers and simplifiers for lattices designed for practical ef-
ficiency. Benke [1], as well as Pratt and Tiuryn [15] study the complexity of
solving atomic constraints for a variety of different subtype orders. Extensions
of Haskell with subtyping have been studied by Shields and Peyton Jones [17],
as well as Nordlander [12].

7.1 Conclusion

Let us close with a few remarks on the realization of our algorithm in Isabelle.
The abstract algorithm returns a set of results because coercion inference is
ambiguous. For example, the term sin(n+n), where + : α→ α→ α, sin : R→ R
and n : N has two type-correct completions with the coercion real : N → R:
sin(real(n + n)) and sin(real n + real n). Our deterministic implementation
happens to produce the first one. If the user wanted the second term, he would
have to insert at least one real coercion. Because Isabelle is a theorem prover
and because we did not modify its kernel, we do not have to worry whether
the two terms are equivalent (this is known as coherence): in the worst case the
system picks the wrong term and the proof one is currently engaged in fails or
proves a different theorem, but it will still be a theorem.

To assess the effectiveness of our algorithm, we picked a representative Isa-
belle theory from real analysis (written at the time when all coercions had to be
present) and removed as many coercions from it as our algorithm would allow
— remember that some coercions may be needed to resolve ambiguity. Of 1061
coercions, only 221 remained. In contrast, the on-the-fly algorithm by Säıbi and
Luo (see the beginning of §3) still needs 666 coercions. The subtype lattice in
this theory is a linear order of the 3 types nat, int, real.

We have not mentioned let so far because it does not mesh well with coercive
subtyping. Consider the term t = let f = s in u where u = (Suc(f(0)), f(0.0)),
0 : N, Suc : N → N, 0.0 : R, and s is a term that has type α → α under the
constraints {α �: R, α �: β, N �: β}. For example s = λx. if x = 0 ∧ sin(x) =
0.0 then x else x) where = : α → α → B and sin : R → R. Constraint
resolution can produce the two substitutions {α 7→ N, β 7→ N} and {α 7→ R, β 7→
R}, i.e. s can receive the two types N → N and R → R. A simple-minded
extension of our algorithm to let might choose one of the two substitutions to
type u and would necessarily fail. However, if we consider u[s/f] instead of
t, our algorithm can insert suitable coercions to make the term type correct.
Unfortunately this is not a shortcoming of the hypothetical extension of our
algorithm but of coercive subtyping in general: there is no way to insert coercions
into t to make it type correct according to Hindley-Milner. If you want subtyping
without extending the Hindley-Milner type system, there is no complete typing
algorithm for let terms that simply inserts coercions. You may need to expand
or otherwise transform let first.

36 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

References

1. Benke, M.: Complexity of type reconstruction in programming languages with
subtyping. Ph.D. thesis, Warsaw University (1997)

2. Bourdoncle, F., Merz, S.: On the integration of functional programming, class-
based object-oriented programming, and multi-methods. Research Report 26, Cen-
tre de Mathématiques Appliquées, Ecole des Mines de Paris (Mar 1996)

3. Coq development team: The Coq proof assistant reference manual. INRIA (2010),
http://coq.inria.fr, version 8.3

4. Frey, A.: Satisfying subtype inequalities in polynomial space. Theor. Comput. Sci.
277(1-2), 105–117 (2002)

5. Fuh, Y.C., Mishra, P.: Type inference with subtypes. In: ESOP, LNCS 300. pp.
94–114 (1988)

6. Luo, Z.: Coercions in a polymorphic type system. Mathematical Structures in
Computer Science 18(4), 729–751 (2008)

7. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978)

8. Mitchell, J.C.: Coercion and type inference. In: POPL. pp. 175–185 (1984)
9. Mitchell, J.C.: Type inference with simple subtypes. J. Funct. Program. 1(3), 245–

285 (1991)
10. Nipkow, T.: Order-sorted polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.)

Logical Environments. pp. 164–188. CUP (1993)
11. Nipkow, T., Prehofer, C.: Type reconstruction for type classes. Journal of Func-

tional Programming 5(2), 201–224 (1995)
12. Nordlander, J.: Polymorphic subtyping in O’Haskell. Sci. Comput. Program. 43(2-

3), 93–127 (2002)
13. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge, MA,

USA (2002)
14. Pottier, F.: Simplifying subtyping constraints: a theory. Information & Computa-

tion 170(2), 153–183 (Nov 2001)
15. Pratt, V.R., Tiuryn, J.: Satisfiability of inequalities in a poset. Fundam. Inform.

28(1-2), 165–182 (1996)
16. Säıbi, A.: Typing algorithm in type theory with inheritance. In: POPL. pp. 292–301

(1997)
17. Shields, M., Peyton Jones, S.: Object-oriented style overloading for Haskell.

In: First Workshop on Multi-language Inferastructure and Interoperability (BA-
BEL’01), Firenze, Italy (Sep 2001)

18. Simonet, V.: Type inference with structural subtyping: A faithful formalization of
an efficient constraint solver. In: APLAS, LNCS 2895. pp. 283–302 (2003)

19. Tiuryn, J.: Subtype inequalities. In: LICS. pp. 308–315 (1992)
20. Wand, M., O’Keefe, P.: On the complexity of type inference with coercion. In:

FPCA ’89: Functional programming languages and computer architecture. pp. 293–
298. ACM, New York, NY, USA (1989)

21. Wenzel, M.: Type classes and overloading in higher-order logic. In: TPHOLs. pp.
307–322 (1997)

http://coq.inria.fr

	Extending Hindley-Milner Type Inference with Coercive Structural Subtyping (long version)

