
Optimal Proofs for Linear Temporal Logic on Lasso Words

David Basin, Bhargav Nagaraja Bhatt, and Dmitriy Traytel

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

Abstract. Counterexamples produced by model checkers can be hard to grasp.
Often it is not even evident why a trace violates a specification. We show how to
provide easy-to-check evidence for the violation of a linear temporal logic (LTL)
formula on a lasso word, based on a novel sound and complete proof system for
LTL on lasso words. Valid proof trees in our proof system follow the syntactic
structure of the formula and provide insight on why each Boolean or temporal
operator is violated or satisfied. We introduce the notion of optimal proofs with
respect to a user-specified preference order and identify sufficient conditions for
efficiently computing optimal proofs. We design and evaluate an algorithm that
performs this computation, demonstrating that it can produce optimal proofs for
complex formulas in under a second.

1 Introduction

Model checking is a successful formal verification technique. Designing an error-free
system using a model checker follows the cycle: 1) model the system and formulate
the specification it should adhere to, 2) run the model checker, 3) if the tool finds an
error, determine whether the error is in the model or the specification, and 4) go back to
Step 1 and change the model or the specification accordingly. Our focus in this paper is
on Step 3, which can be extremely challenging and time-consuming. To succeed there,
the user must understand the interaction between the model, the specification, and the
counterexample. Many prior approaches focus on explaining the interaction between
the model and the counterexample [3, 12–14], while neglecting the specification.

In many cases, the interaction between the specification and the counterexample
is non-trivial to understand. Hence the question “Why does this counterexample vio-
late this specification?” may be a hard one. Our work focuses on this question in the
context of model checking properties expressed in linear temporal logic with past and
future (LTL), where counterexamples are finite words or infinite but ultimately periodic
words (also called lasso words). In this paper, we restrict our attention to lasso word
counterexamples, although it is possible to transfer most of our results to finite words.

Given our restriction, we refine the question that we investigate to “Why does the
counterexample uvω violate the LTL formula ϕ?” This question is independent of the
specific model checking technique used to find the counterexample. Ignoring the “Why”
in the question, we obtain the LTL path-checking problem [21], a core decision prob-
lem in for runtime verification. A decision procedure for this problem, namely a path-
checking algorithm, computes a Boolean result which provides no insight into why the
formula is violated. However, the algorithm itself knows why the formula is violated.

To expose the internal knowledge of an LTL path-checking algorithm, we must fix
a suitable representation of this information. Our approach is to devise a proof system

for LTL on lasso words, where proof search amounts to solving LTL path checking.
Then, proof trees (or just proofs) in this setting capture the knowledge of the proof
search algorithm and are the data structure that we output to explain violations. To be
understandable, the proof system’s rules must be as simple and as close to the standard
semantics of LTL as possible. In particular, they should not be tainted with algorithmic
details such as LTL’s unrolling equations used in many path-checking algorithms.

Typically there are multiple (often infinitely many) different proof trees for a given
formula and lasso word. Each proof tree represents a different way to explain the vi-
olation. Deciding which proof among the set of all valid proofs helps the user best
understand the violation depends on the application scenario and the user. If the user’s
objective is to identify the most severe violation given an ordering of severity on atomic
events, then he or she may be interested in proofs that focus on the particular events.
For example, consider the formula �(PipeSealed∧LightsOn), stating that the pipe is
always sealed and the light is always turned on. When there are different violations,
we might prefer learning about the more severe cases of pipe leakage than about the
lights being switched off. In addition, it is useful to learn about the earliest point in time
when the pipe started to leak. The proofs in our proof system can represent this infor-
mation. Moreover, it might be preferable to give the user a concise proof. To flexibly
handle different scenarios, we allow the user to specify a preference order on proofs. For
preference orders that satisfy some monotonicity conditions, we devise a proof search
algorithm that computes an optimal proof with respect to the order.

In summary, we make the following contributions. We describe a sound and com-
plete proof system for LTL on lasso words, where proof search amounts to path-check-
ing (§3). We define a notion of optimal proofs in our proof system with respect to a
user-specified preference order. Since computing optimal proofs can be intractable for
arbitrary orders, we identify sufficient conditions on the preference order for which an
optimal proof can be efficiently computed (§4) and we use these conditions to devise an
algorithm that computes an optimal proof (§5). Taken together, these contributions pro-
vide a new approach to explaining counterexamples generated by LTL model checkers.
Finally, we evaluate and demonstrate the effectiveness of a prototype implementation
of our algorithm on realistic examples (§6). We postpone the discussion of related work
until after the presentation of our technical contributions (§7).

2 Linear Temporal Logic

We briefly recapitulate the syntax and semantics of linear temporal logic (LTL). The set
of LTL formulas over a set of atomic propositions P is defined inductively:

ϕ= p | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ϕS ϕ | ϕU ϕ,

where p ∈ P. Along with the standard Boolean operators, LTL includes the temporal
operator S (since) and U (until), which may be nested freely. For simplicity, we omit
next and previous; however, all results in this paper can be easily extended to accom-
modate them. LTL formulas are evaluated on words over the alphabet Σ = 2P. A word
is an infinite sequence ρ= ρ(0), ρ(1), ρ(2), . . ., where each ρ(i) ∈ 2P. Whether an LTL
formula is satisfied at time-point i for a fixed word ρ is defined inductively as follows.

a ∈ ρ(i)
i `+ a

ap+
i `− ϕ

i `+ ¬ϕ ¬
+

a /∈ ρ(i)
i `− a

ap−
i `+ ϕ

i `− ¬ϕ ¬
−

i `+ ϕ1

i `+ ϕ1∨ϕ2
∨+L

i `+ ϕ2

i `+ ϕ1∨ϕ2
∨+R

i `− ϕ1 i `− ϕ2

i `− ϕ1∨ϕ2
∨−

i `+ ϕ1 i `+ ϕ2

i `+ ϕ1∧ϕ2
∧+

i `− ϕ1

i `− ϕ1∧ϕ2
∧−L

i `− ϕ2

i `− ϕ1∧ϕ2
∧−R

j≤ i j `+ ϕ2 ∀k ∈ (j, i]. k `+ ϕ1

i `+ ϕ1 S ϕ2
S+

j≤ i j `− ϕ1 ∀k ∈ [j, i]. k `− ϕ2

i `− ϕ1 S ϕ2
S−

j≥ i j `+ ϕ2 ∀k ∈ [i, j). k `+ ϕ1

i `+ ϕ1 U ϕ2
U+

j≥ i j `− ϕ1 ∀k ∈ [i, j]. k `− ϕ2

i `− ϕ1 U ϕ2
U−

∀k ∈ [0, i]. k `− ϕ2

i `− ϕ1 S ϕ2
S−∞

∀k ∈ [i, max(i, |u|+hp(ϕ2)×|v|)+ |v|). k `− ϕ2

i `− ϕ1 U ϕ2
U−∞

Fig. 1. Proof system for a fixed lasso word ρ= uvω

i |= p iff p ∈ ρ(i) i |= ¬ϕ iff i 6|= ϕ
i |= ϕ1∨ϕ2 iff i |= ϕ1 or i |= ϕ2 i |= ϕ1∧ϕ2 iff i |= ϕ1 and i |= ϕ2
i |= ϕ1 S ϕ2 iff j |= ϕ2 for some j≤ i and k |= ϕ1 for all j < k ≤ i
i |= ϕ1 U ϕ2 iff j |= ϕ2 for some j≥ i and k |= ϕ1 for all i≤ k < j

Note that here, and in subsequent definitions, the dependence on ρ is left implicit.
A lasso (word) has the form ρ= uvω, where u and v are finite words over the alpha-

bet 2P and |v| 6= 0. We refer to u as the prefix and v as the loop of the lasso word ρ.
Let SF(ϕ) denote the set of ϕ’s strict subformulas (i.e., excluding ϕ) defined as

usual. We pick some well-founded total order< over SF(ϕ) that respects the subformula
ordering: if ϕ1 ∈ SF(ϕ2), then ϕ1 < ϕ2. For a formula ϕ, the past height hp(ϕ) and
the future height h f (ϕ) are defined as the number of nested past operators and future
operators in ϕ, respectively. The temporal height h(ϕ) is defined as hp(ϕ)+h f (ϕ).

3 Proof System for LTL on Lasso Words

We introduce a proof system for LTL path checking. Proofs in this system witness
the satisfaction or violation of an LTL formula with respect to a given lasso ρ = uvω.
Although we are primarily interested in violations, in the presence of negation it is
convenient to reason about satisfaction as well. Our proof system therefore consists of
two mutually dependent judgments: `+ (satisfaction) and `− (violation), and is defined
as the least relation satisfying the deduction rules shown in Figure 1. The names of the
satisfaction and violation judgment rules are suffixed by + and −, respectively.

The satisfaction rules ap+, ¬+, ∨+L , ∨+R , ∧+,U+, andS+ directly follow the seman-
tics of the corresponding LTL operators. For example, in the case ofS+, the premise for
i `+ ϕ1 S ϕ2 includes a witness time-point j such that j `+ ϕ2 and a finite sequence of

satisfaction proofs of ϕ1 for all k ∈ (j, i]. The violation rules for the non-temporal oper-
ators ap−, ¬−, ∨−, ∧−L , and ∧−R are dual. The violation rules for the temporal operators
are more interesting. To arrive at S− and S−∞ , we negate and rewrite the semantics of S:

i 6|= ϕ1 S ϕ2 iff ∀ j≤ i. j 6|= ϕ2∨ (∃k ∈ (j, i]. k 6|= ϕ1)
iff (∃ j≤ i. j 6|= ϕ1 ∧ (∀k ∈ [j, i]. k 6|= ϕ2)) ∨ (∀k ≤ i. k 6|= ϕ2) (Eq. ≡S)

The rules S− and S−∞ correspond to the two disjuncts in the last right-hand side. Using
this particular format for the rules (as opposed, for example, to the first right hand
side, which requires deciding between two choices for all previous time-points) is a
deliberate design decision. The violation proof j `− ϕ1 in S− allows us to disregard
all the previous time-points at which ϕ2 held, since these previous time-points cannot
witness the satisfaction of ϕ1 S ϕ2 exactly because of j `− ϕ1. The second rule S−∞
covers the case when there is no such j with j `− ϕ1. Then, to violate ϕ1 S ϕ2 at i, the
formula ϕ2 must have previously always been violated.

For the future operator U, we consider the dual semantic equation:

i 6|= ϕ1 U ϕ2 iff (∃ j≥ i. j 6|= ϕ1 ∧ (∀k ∈ [i, j]. k 6|= ϕ2)) ∨ (∀k ≥ i. k 6|= ϕ2) (Eq. ≡U)

The rules U− and U−∞ model the two disjuncts. Yet the assumption in U−∞ appears to
be much weaker than what the right disjunct demands: instead of providing infinitely
many violation proofs for ϕ2 for every time-point ≥ i, the rule requires only a finite
number (that depends on the past height of ϕ2, |u| and |v|) of violation proofs for ϕ2.
This rule’s soundness follows by taking the cyclic nature of the fixed lasso word into
account. To see this, we recall a theorem from Markey and Schnoebelen [21] that states
that the satisfiability of ϕ is periodic on lasso words after a certain threshold time-point.

Lemma 1. Fix a lasso ρ = uvω. For all ϕ and k > |u|+ hp(ϕ) · |v|, we have k |= ϕ iff
k+ |v| |= ϕ.

Proof. By structural induction on ϕ with an arbitrary k. ut

Another induction extends this result to cover all time-points modulo |v|, starting from
the threshold.

Corollary 1. Fix a lasso ρ = uvω. For all ϕ, n ∈ N, and k > |u|+ hp(ϕ) · |v|, we have
k |= ϕ iff k+n · |v| |= ϕ.

Proof. Induction over n with an arbitrary k using Lemma 1 in the induction step. ut

Corollary 1 yields that if k 6|= ϕ for k ∈ [thr, thr+ |v|) (where thr≥ |u|+hp(ϕ)×|v|),
then ∀k ≥ thr. k 6|= ϕ. Intuitively, if we can prove often enough that a formula does not
hold, then it will never hold. From this, the soundness of U−∞ follows easily. So does the
soundness and completeness of the entire proof system.

Theorem 1. Fix a lasso ρ = uvω. For all ϕ and i ∈ N, we have i `+ ϕ iff i |= ϕ and
i `− ϕ iff i 6|= ϕ.

Proof. (=⇒, Soundness): Mutual induction over the structure of the derivations `+ and
`− using the Equations ≡U and ≡S for the temporal operators and Corollary 1.
(⇐=, Completeness): Induction over the structure of ϕ for an arbitrary i. ut

We conclude this section with an example.

Example 1. Let ρ= {a,c}({a,b}{c})ω and ϕ= aU (b∧ c). Here is a proof of 0 6|= ϕ:

b /∈ {a,c}
0 `− b

ap−

0 `− b∧ c
∧−L

c /∈ {a,b}
1 `− c

ap−

1 `− b∧ c
∧−R

b /∈ {c}
2 `− b

ap−

2 `− b∧ c
∧−L

0 `− aU (b∧ c)
U−∞

Such proofs explain why a formula is satisfied or violated on a lasso word. In this ex-
ample, we immediately see that the U operator is violated because its second argument
b∧ c is always violated. The proof provides witnesses for the violation of b∧ c at the
first three time-points.

4 Proof Trees

To manipulate and compare proofs in the above system, we make them explicit. Namely,
we define an inductive syntax for satisfying (sp) and violating (vp) proofs built using
the rules in our proof system.

sp = ap+(N,Σ) | ¬+(vp) | ∧+(sp,sp) | ∨+L (sp) | ∨
+
R (sp) | S

+(sp,sp) | U+(sp,sp)
vp= ap−(N,Σ) | ¬−(sp) | ∧−L (vp) | ∧

−
R (vp) | ∨−(vp,vp) | S

−(vp,vp) | U−(vp,vp)
| S−∞(vp) | U−∞(vp)

Here, sp and vp abbreviate finite sequences [sp, . . . ,sp] and [vp, . . . ,vp] of subproofs.
The proof from Example 1 can be written as P1 = U−∞([∧−L (ap−(0,b)), ∧−R (ap−(1,c)),
∧−L (ap−(2,b))]) using this syntax. In the following, we treat satisfaction and violation
proofs uniformly, operating on the disjoint union p = sp] vp. For a proof p ∈ p, we
define V(p) to be > if p ∈ sp and ⊥ otherwise.

Observe that the time-points are only stored in the proofs of the atomic propositions.
This is sufficient to associate each proof tree p with a time-point i(p). For example,
i(S+(p, [q1, . . . , qn])) is i(qn) if n> 0 and i(p) otherwise. If the proof additionally passes
a few syntactic checks with respect to a given formula ϕ (such as the constructors in the
proof match the constructors in the formula) and a lasso word ρ (for atomic proposi-
tions), we call it valid for ϕ at i(p) in ρ, written p` ϕ (again leaving the dependence on ρ
implicit). We omit the straightforward formal definitions of i(p) and p ` ϕ. It is easy to
see that when p ` ϕ, we have that V(p) implies i(p) `+ ϕ and ¬V(p) implies i(p) `− ϕ.

For a time-point i and a formula ϕ, multiple (in fact, potentially infinitely many)
valid proofs may exist. For example, two additional valid proofs for the formula and
the lasso word from Example 1 at time-point 0 are P2 = U−(ap−(2,a), [∧−L (ap−(0,b)),
∧−R (ap−(1,c)),∧−L (ap−(2,b))]) and P3 = U−(ap−(4,a), [∧−L (ap−(0,b)),∧−R (ap−(1,c)),
∧−L (ap−(2,b)),∧−R (ap−(3,c)),∧−L (ap−(4,b))]). Let us compare the three proofs. The
proof using U−∞ is smaller in size. In contrast, the proofs using U− might be preferable
as the U− rule is very close to U’s semantics and thus easy to understand (whereas
understanding U−∞ requires understanding Lemma 1). Of the two U− proofs, the shorter
one is easier to digest. Still, different proofs might be preferable in different situations.

With no reasonable way to decide which proof to present to a user, we offer users a
way to specify their preference using a well-quasi-order (wqo) �⊆ p×p. A wqo is a

well-founded preorder: a transitive and reflexive relation � for which the induced strict
relation ≺ (defined as p≺ q ⇐⇒ p� q∧q 6� p) is well-founded.

Example 2. Let w :: Σ→ N be a weight function on the set Σ of atomic predicates. We
define, the weighted size |−|w :: p→ N of a proof tree recursively as follows:

|ap+(i,a)|w = w(a) |ap−(i,a)|w = w(a)
|¬+(p)|w = 1+ |p|w |¬−(p)|w = 1+ |p|w
|∨+L (p)|w = 1+ |p|w |∧−L (p)|w = 1+ |p|w
|∨+R (p)|w = 1+ |p|w |∧−R (p)|w = 1+ |p|w
|∧+(p1, p2)|w = 1+ |p1|w + |p2|w |∨−(p1, p2)|w = 1+ |p1|w + |p2|w
|S+(p,q)|w = 1+ |p|w +∑

n
i=1 |qi|w |S−(p,q)|w = 1+ |p|w +∑

n
i=1 |qi|w

|U+(p,q)|w = 1+ |p|w +∑
n
i=1 |qi|w |U−(p,q)|w = 1+ |p|w +∑

n
i=1 |qi|w

|S−∞(q)|w = 1+∑
n
i=1 |qi|w |U−∞(q)|w = 1+∑

n
i=1 |qi|w

Here, q abbreviates [q1, . . . ,qn]. The weighted size induces a total wqo on proofs by
p�w

size q ⇐⇒ |p|w ≤ |q|w. If the weight function is the constant function w(a) = 1 for
all a ∈ Σ, then |p|w is the number of constructors occurring in p, written |p|. We write
�size for the corresponding wqo. For the above proofs for the formula and lasso word
from Example 1, we have |P1|= 7, |P2|= 8, and |P3|= 12. Hence, P1 �size P2 �size P3.

Our goal is to compute optimal proofs with respect to a user-supplied relation �.
We call p optimal for ϕ at i(p) if for all valid proofs q for ϕ at i(p), we have q⊀ p. Note
that at least one valid satisfaction or violation proof always exists by the completeness
of our proof system and (non-unique) minimal elements of non-empty sets of proofs
exist by the well-foundedness of ≺.

The existence of optimal proofs does not provide us with an algorithm to compute
them. In general, it is impossible to compute the minimal elements of an infinite set of
proofs with respect to a wqo �. As a first step towards an algorithm, we restrict our
attention to relations on which the proof constructors behave in a monotone fashion.

Definition 1. A relation � is constructor-monotone if it satisfies:

1. If i≤ j then ap+(i,a)� ap+(j,a) and ap−(i,a)� ap−(j,a) for any atom a.
2. If p � p′ then ¬+(p) � ¬+(p′), ∨+R (p) � ∨+R (p′), ∨+L (p) � ∨+L (p′), ∧−R (p) �
∧−R (p′), and ∧−L (p)� ∧−L (p′).

3. If p1� p′1 and p2� p′2 then∧+(p1, p2)�∧+(p′1, p
′
2) and∨−(p1, p2)�∨−(p′1, p

′
2).

4. If m ≤ n, p � p′, and qi � q′i for each i ∈ {1, . . . ,m} then S+(p, [q1, . . . ,qm]) �
S+(p′, [q′1, . . . ,q

′
n]), S−(p, [q1, . . . ,qm])�S−(p′, [q′1, . . . ,q

′
n]), and S−∞([q1, . . . ,qm])�

S−∞([q′1, . . . ,q′n]).
5. If m ≤ n, p � p′, and qi � q′i for each i ∈ {m, . . . ,n} then U+(p, [qm, . . . ,qn]) �
U+(p′, [q′1, . . . ,q

′
n]), U−(p, [qm, . . . ,qn])�U−(p′, [q′1, . . . ,q

′
n]), and U−∞([qm, . . . ,qn])�

U−∞([q′1, . . . ,q′n]).
Lemma 1 only guarantees the equisatisfiability of a formula at time-points k and k+ |v|,
for k suitably large. Constructor-monotonicity can be used to significantly generalize
this result to a proof comparison with respect to � at those time-points as follows.

Theorem 2. Given a lasso ρ = uvω, an LTL formula ϕ, and a constructor-monotone
relation �, if k > |u|+hp(ϕ) · |v| then for all valid proofs q of ϕ with i(q) = k+ |v| there
exists a valid proof p of ϕ with i(p) = k and p� q.

Proof. Proof by induction on structure of ϕ with an arbitrary k.

– Case ϕ= a directly follows from the constructor-monotonicity condition 1.
– Cases ϕ = ¬ψ, ϕ = ϕ1∧ϕ2, and ϕ = ϕ1∨ϕ2 directly follow from the constructor-

monotonicity conditions 2 and 3 and the induction hypotheses.
– Case ϕ = ϕ1 S ϕ2. Let thr(ϕ) = |u|+ hp(ϕ) · |v|. Suppose k + |v| |= ϕ. Let P =
S+(p, [q j+1, . . . ,qk+|v|]) be some valid proof of ϕ at k+ |v|, i.e., there exists a j ≤
k+ |v| such that p as a valid proof of ϕ2 at j and the qi are valid proofs for ϕ1 at i for
i ∈ j+1, . . . ,k+ |v|. If j≤ k then P′ =S+(p, [q j+1, . . . ,qk]) is a valid proof for ϕ at
k. Moreover, P′ � P by the constructor-monotonicity condition 4. (Here, we need
the condition to apply to finite sequences of different length.) Otherwise if k < j,
then we have j > k > thr(ϕ) >= thr(ϕ2)+ |v| and thus j− |v| > thr(ϕ2). Thus we
can use the induction hypothesis on ϕ2 (and p at j− |v|) and on ϕ1 (and each of
the qi for i ∈ { j+ 1, . . . ,k+ |v|} at i−|v|) to obtain valid proofs p′ of ϕ2 at j−|v|
and q′i for ϕ1 at i−|v| such that p′ � p and q′i � qi for each i ∈ { j+1, . . . ,k+ |v|}.
Then P′ = S+(p′, [q′j+1, . . . ,q

′
k]) is a valid proof of ϕ at k and moreover by the

constructor-monotonicity condition 4 we have P′ � P.
Similarly for the case k+ |v| 6|= ϕ, any proof P for ϕ at k+ |v| must either have the
form S−(p, [q j, . . . ,qk+|v|]) or S−∞([q0, . . . ,qk+|v|]). In the former case, the reasoning
to obtain a proof P′ � P of ϕ at k is very similar to the case where k + |v| |= ϕ.
In the latter case, it suffices to take P′ = S−∞([q0, . . . ,qk]) to obtain P′ � P by the
constructor-monotonicity condition 4.

– Case ϕ= ϕ1U ϕ2 is similar to the ϕ1 S ϕ2 case. For a valid proof P of ϕ at k+ |v|, all
immediate subproofs of P are proofs at future time-points, i.e., at least k+ |v|. Thus
the induction hypothesis is immediately applicable (unlike in the S case, where
a case distinction was required). Thus, we obtain a valid proof P′ of ϕ at k that
has exactly the same structure as P, in particular regarding the lengths of the finite
sequences of immediate subproofs in P and P′. Using the constructor-monotonicity
condition 5, we can conclude P′ � P. ut

Theorem 2 allows us to stop the search for an optimal proof after a finite number of
time-points. Thus, we could in principle compute a finite set of candidate proofs that is
guaranteed to contain an optimal one and select a minimal element from this set. Such
an algorithm would not be very efficient, as the set of candidate proofs might become
extremely large. Instead, we give an algorithm that selects minimal elements eagerly
and lifts optimal proofs of temporal connectives from time-points i−1 (for S) and i+1
(for U) to a proof at i. We first define the operator ++ that performs this lifting by
combining subproofs of temporal formulas. We thereby abbreviate [q1, . . . ,qn] by q.

S+(p,q)++r =S+(p, [q1, . . . ,qn,r]) U+(p,q)++r =U+(p, [r,q1, . . . ,qn])
S−(p,q)++r =S−(p, [q1, . . . ,qn,r]) U−(p,q)++r =U−(p, [r,q1, . . . ,qn])
S−∞(q)++r =S−∞([q1, . . . ,qn,r]) U−∞(q)++r =U−∞([r,q1, . . . ,qn])

For a valid satisfaction proof p of ϕ1 S ϕ2 at i− 1 (or ϕ1 U ϕ2 at i+ 1) and a valid
satisfaction proof r of ϕ1 at i, p++r is a valid satisfaction proof of ϕ1S ϕ2 (or ϕ1U ϕ2) at
i. Similarly, for a valid violation proof p of ϕ1S ϕ2 at i−1 (or ϕ1U ϕ2 at i+1) and a valid
violation proof r of ϕ2 at i, p++r is a valid violation proof of ϕ1 S ϕ2 (or ϕ1 U ϕ2) at i.

Constructor-monotonicity does not ensure that composing optimal proofs p and r
will yield an optimal proof p++r. We therefore further extend our requirements on �.

Definition 2. A constructor-monotone � is monotone if it additionally satisfies:

6. If p� p′ and r � r′ then p++r � p′++r′.

We conclude this section by providing some (counter)examples of monotone wqos.
The relation induced by the (weighted) size �size (Example 2) is a monotone (total)
wqo. Moreover, the relation �reach defined as p�reach q = reach(p)≤ reach(q) where
reach(p) is the largest time-point occurring in the proof p is a monotone (total) wqo.
The dual relation that maximizes the smallest occurring time-point is neither monotone
nor well-founded. Given two monotone wqos �1 and �2, the Cartesian product p �×
q ⇐⇒ (p�1 q∧ p�2 q) is a monotone wqo too. A more exotic example of a monotone
wqo is the multiset extension of a total order on atomic propositions. Finally, the relation
that compares the sets of occurring atomic propositions by inclusion is not monotone.

5 Computing Optimal Proofs

We now describe a proof search algorithm O that takes as input the prefix u and the loop
v of a lasso word ρ= uvω, an LTL formula ϕ, a time-point i, and a monotone wqo� and
computes an optimal (with respect to�) valid proof for the violation or satisfaction of ϕ
at i. The algorithm determines whether the formula is satisfied or violated during proof
search; it thereby solves the LTL path-checking problem along the way. Because our
proof system is complete, O always returns a proof of either satisfaction or violation.
This is in contrast to a previously proposed proof search algorithm for LTL [8] that
computes (non-optimal) proofs in an incomplete proof system.

Our algorithm exploits the monotonicity of the� relation to both bound the number
of proofs that must be considered and eagerly combine optimal proofs for subformulas
to obtain an optimal proof for the entire formula. In other words, we compute proofs in a
bottom-up manner (in terms of formula structure), such that proofs of ϕ are constructed
using only the optimal proofs of ϕ’s immediate subformulas. For a fixed monotone
wqo � and ρ= uvω, our algorithm consists of two mutually recursive functions O(i,ϕ)
and C(i,ϕ), shown in Figure 2. The optimal proof function O(i,ϕ) merely selects an
optimal proof from a small set of candidate proofs (computed by C) at time-point i.
The function C(i,ϕ) composes optimal proofs (computed by O) for ϕ’s subformulas at
the current time-point i and optimal proofs for ϕ at the previous (i−1) and next (i+1)
time-points, exploiting the standard unrolling equations for S and U.

The function C(i,ϕ) is defined by pattern matching on the formula ϕ’s structure.
The cases for atomic propositions and Boolean connectives are simple; for conjunction
and disjunction we use the auxiliary functions doDisj and doConj (Figure 3) to com-
pose optimal proofs of the subformulas. The precise outcome depends on whether the
subformulas are satisfied or violated. For example, for ϕ1 ∧ϕ2, we obtain a ∧+ proof
only if both subformulas are satisfied, i.e., V(p1) and V(p2) are >.

Temporal operators are more challenging to deal with. Setting the special case of
i = 0 aside, C computes for the formula ϕ1 S ϕ2 optimal proofs of ϕ1 and ϕ2 at i and

C(i,a) =
if a ∈ ρ(i) then {ap+(i,a)} else {ap−(i,a)}

C(i,¬ϕ) =
let p = O(i,ϕ) in
if V(p) then {¬−(p)} else {¬+(p)}

C(i,ϕ1∨ϕ2) =
doDisj(O(i,ϕ1),O(i,ϕ2))

C(i,ϕ1∧ϕ2) =
doConj(O(i,ϕ1),O(i,ϕ2))

C(i,ϕ1 S ϕ2) =
if i = 0 then

let p2 = O(i,ϕ2) in
if V(p2) then {S+(p2, [])} else {S−∞([p2])}

else
doSince(O(i,ϕ1), O(i,ϕ2), O(i−1,ϕ1 S ϕ2))

C(i,ϕ1 U ϕ2) =
doUntilω(i, ϕ2) ∪ doUntiln(i, ϕ1, ϕ2)

O(i,ϕ) = min�(C(i,ϕ))

doUntilω(i,ϕ2) =
if i < |u|+hp(ϕ2) · |v| then {}
else

let ps2 = [O(i,ϕ2), . . . , O(i+ |v|−1,ϕ2)] in
if ∀x ∈ ps2.¬V(x) then {U−∞(ps2)} else {}

doUntiln(i,ϕ1,ϕ2) =
if i < |u|+hp(ϕ1 U ϕ2) · |v|
then

doUntil(O(i,ϕ1), O(i,ϕ2), O(i+1,ϕ1 U ϕ2))
else

let ps1 = [O(i,ϕ1), . . . , O(i+ |v|−1,ϕ1)] in
let ps2 = [O(i,ϕ2), . . . , O(i+ |v|−1,ϕ2)] in
{U+(ps2[j], [ps1[0], . . . ,ps1[j−1]]) | j < |v|∧
V(ps2[j])∧∀k < j. V(ps1[k])}∪

{U−(ps1[j], [ps2[0], . . . ,ps2[j]]) | j < |v|∧
¬V(ps1[j])∧∀k ≤ j. ¬V(ps2[k])}

Fig. 2. Optimal proof algorithm: functions C,O, doUntilω and doUntiln

an optimal proof of ϕ at i−1. These proofs are given to the auxiliary doSince function
(Figure 4) that performs a case distinction on their truth values V(−) and accordingly
constructs a set of proofs unrolling S: i |= ϕ1 S ϕ2 iff i |= ϕ2∨ i |= ϕ1∧ i−1 |= ϕ1 S ϕ2.
Note that the set C(i,ϕ1 S ϕ2) contains at least one and at most two elements. For
example, if i |= ϕ2, i |= ϕ2, and i− 1 |= ϕ1 S ϕ2 all hold (and we have computed the
optimal proofs for them), then there are two candidate proofs for ϕ1 S ϕ2 corresponding
to the two disjuncts in the unrolling equation.

Performing a dual unrolling for U would immediately lead to non-termination.
However, since ρ is a lasso word, we can bound the proof search using Theorem 2. The
case C(i,ϕ1 U ϕ2) splits the proof search in two parts: doUntilω which corresponds to
applying the rule U−∞ and doUntiln which corresponds to either extending any U proof at
time-point i+1 or applying U+ or U− with a fixed bound on the time-point j occurring
in the assumptions of those rules. The function doUntilω checks whether the premises
of U−∞ holds (i.e., i > |u|+ hp(ϕ2) · |v| and ∀k ∈ [i, i+ |v|). k 6|= ϕ2) and either returns a
single U−∞ proof or an empty set (if some premise is violated). The function doUntiln

checks if the time-point i is larger than |u|+hp(ϕ1U ϕ2) · |v|, which is the threshold after
which the measure of valid proofs of ϕ1 U ϕ2 cannot decrease anymore by Theorem 2.
For time-points before the threshold, the unrolling characterization of U is used to con-
struct the proofs using doUntil (similar to doSince). For time-points after the threshold,
it is sufficient to only search for proofs that use as subproofs only those proofs of ϕ1
and ϕ2 at time-points less than i+ |v|, which ensures termination of the entire algorithm.
Because of the soundness and completeness of the proof system, exactly one of the sets
is necessarily non-empty in the union returned in the else branch of doUntiln.

We prove that our algorithm always terminates.

Lemma 2. C(i,ϕ) (and thus also O(i,ϕ)) terminates for any i, ϕ, ρ, and �.

V(p1) V(p2) doDisj(p1,p2) doConj(p1,p2)
> > {∨+L (p1),∨+R (p2)} {∧+(p1, p2)}
> ⊥ {∨+L (p1)} {∧−R (p2)}
⊥ > {∨+R (p2)} {∧−L (p1)}
⊥ ⊥ {∨−(p1, p2)} {∧−L (p1),∧−R (p2)}

Fig. 3. Functions doDisj and doConj

V(p1) V(p2) V(p′) doSince(p1,p2,p′) doUntil(p1,p2,p′)
> > > {S+(p2, []), p′++ p1} {U+(p2, []), p′++ p1}
> ⊥ > {p′++ p1} {p′++ p1}
⊥ ⊥ > {S−(p1, [p2])} {U−(p1, [p2])}
> ⊥ ⊥ {p′++ p2} {p′++ p2}
⊥ ⊥ ⊥ {S−(p1, [p2]), p′++ p2} {U−(p1, [p2]), p′++ p2}

otherwise {S+(p2, [])} {U+(p2, [])}

Fig. 4. Functions doSince and doUntil

Proof. We define the function dist(i,ϕ) as |u|+ hp(ϕ) · |v| − i if ϕ = ϕ1 U ϕ2 and as i
otherwise. Consider the well-founded relation� defined as the lexicographic product
of the subformula relation < and a dist-comparison, i.e., (i,ϕ)� (j,ψ) ⇐⇒ ϕ < ψ∨
(ϕ= ψ∧dist(i,ϕ) < dist(j,ψ)). The relation� is decreasing along the call graph of C
(after unfolding the definition of O). ut

We now prove our algorithm’s correctness. We fix a lasso word ρ= uvω and a mono-
tone wqo�. We first establish properties of the auxiliary functions doConj, doDisj, and
doSince. The case of U is a bit subtle as the proof search is split between the functions
doUntilω and doUntil; hence we reason about them together in the following lemma.

Lemma 3. For a time-point i, let p1 and p2 be optimal proofs of ϕ1 at i and ϕ2 at i,
respectively.

– Let ϕ = ϕ1 S ϕ2 and p′ be an optimal proof of ϕ at i− 1. If i 6= 0, then all proofs
in doSince(p1, p2, p′) are valid proofs of ϕ at i and an optimal proof is contained
among them.

– The same holds for doDisj(p1, p2) for ϕ = ϕ1 ∨ ϕ2 and doConj(p1, p2) for ϕ =
ϕ1∧ϕ2.

– Let ϕ = ϕ1 U ϕ2 and p′ be an optimal proof of ϕ at i + 1. Then all proofs in
doUntilω(i,ϕ2)∪doUntil(p1, p2, p′) are valid proofs of ϕ at i and an optimal proof
is contained among them.

Proof (sketch for S). We make a case distinction on the truth values V(p1), V(p2),
and V(p′). Here, we only consider the case where V(p1) = V(p2) = V(p′) =>. Then
doSince(p1, p2, p′) = {S+(p2, []), p′++ p1}. Any valid proof of ϕ at i is either of the
form S+(q2, []) or q′++q1. Using the constructor-monotonicity condition 4, the mono-
tonicity condition 6, and the optimality of p1, p2, p′, we conclude that either S+(p2, [])
or p′++ p1 is optimal. The other cases follow by similar arguments using the appropri-
ate (constructor-)monotonicity conditions. ut

We next prove the soundness and optimality of C, from which the same properties of
O follow (also by induction hypotheses for the recursive calls to O in this proof itself).

Theorem 3. Let C =C(i,ϕ) for a fixed lasso ρ= uvω and a monotone wqo�. We have:

Soundness All proofs in C are valid proofs of ϕ at i.
Optimality An optimal proof of ϕ at i is contained in C.

Proof (sketch). Proof by well-founded induction on �, the relation used to establish
the termination of C in the proof of Lemma 2. As before, we write thr(ϕ) to abbre-
viate the threshold |u|+ hp(ϕ) · |v|. We perform a case distinction on ϕ. The cases for
atomic propositions, Boolean operators, and S are either simple or follow directly from
Lemma 3. We focus on optimality in the ϕ= ϕ1 U ϕ2 case.

Suppose i < thr(ϕ). Then C(i,ϕ) = doUntilω(i,ϕ2)∪doUntil(p1, p2, p′ϕ) with p1 =
O(i,ϕ1), p2 = O(i,ϕ2), and p′ = O(i+ 1,ϕ). (Note that doUntilω(i,ϕ2) = {} for i <
thr(ϕ2).) Using the induction hypothesis, we have the optimality of p1, p2, and p′. The
case follows using Lemma 3.

Suppose i≥ thr(ϕ). Then the set of candidate proofs computed by doUntiln consists
of only valid U+ and U− proofs of ϕ whose immediate subproofs are proofs at time-
points up to i+ |v|. As before, doUntilω(i,ϕ) accounts for a potential proof of ϕ obtained
using the U−∞ rule at i. We know that the proofs in ps1 and ps2 are optimal by the
induction hypothesis. Suppose there exists an optimal proof at i that goes beyond i+ |v|.
Assume it is a satisfaction proof P of the form U+(p, [qi, . . . ,qk]) for some k > i+ |v| (the
case for violation proofs follows analogously). Then there exist k1 > 0 and k2 < |v| such
that k = i+k1 · |v|+k2. By the constructor-monotonicity condition 5, for the proof P′ =
U+(p, [qi+k1·|v|, . . . ,qk]) of ϕ at i+ k1 · |v| we have P′ � P. Using Theorem 2 k1 times,
we obtain another proof P′′ = U+(p′, [q′i, . . . ,q

′
k2
]) of ϕ at i with P′′ � P′. Because of the

transitivity of � and the optimality of P, P′′ is another optimal proof of ϕ at i. But P′′

belongs to the set of proofs computed by doUntiln. ut

Corollary 2. For a fixed lasso word ρ and a monotone wqo �, the function O(i,ϕ)
outputs an optimal (with respect to �) valid proof p of ϕ at i.

Finally, we discuss the time complexity of O.

Theorem 4. For a fixed lasso ρ = uvω and a monotone wqo �, an upper bound for
the time complexity of O(0,ϕ) is O((|u|+h(ϕ) · |v|) · |SF(ϕ)| · f (�) ·w(�) · |v|), where
f (�) is the complexity of comparing proofs with respect to � and w(�) is the width of
�, i.e., the maximum size of an antichain in �.

Proof (sketch). To compute O(0,ϕ), the largest k at which O(k,ϕ) can be recursively
called is thr(ϕ) = |u|+ hp(ϕ) · |v|. Furthermore, to compute O(i,ψ) at i ≥ thr(ϕ) for
some subformula ψ of ϕ, the largest time-point at which O is recursively called on
immediate subformulas is i+ |v| if ϕ= ϕ1 U ϕ2 and it is zero otherwise. Therefore, the
largest time-point at which O is recursively called is thr(ϕ)+h f (ϕ) · |v|= |u|+h(ϕ) · |v|.
In the worst case, for each time-point i, O can be called for every subformula. Hence, the
parametrized time complexity is O((|u|+h(ϕ) · |v|) · |SF(ϕ)| · f (�) ·w(�) ·M), where
M is the largest cardinality of a set returned by C. Note that the O(f (�) ·w(�) ·M)
is an upper bound on the complexity of computing a minimal element with respect to
� in a set of size M [9]. If ϕ = ϕ1 U ϕ2 and i ≥ thr(ϕ), then M is bounded by |v| and

otherwise it is at most 2. Hence, the calls O(i,ϕ) that trigger an expensive minimum
computation are very rare compared to the overall number of calls. Also note that in
case � is total, we have w(�) = 1.

We ignored above that O may be called several times with the same arguments.
Memoizing O provides a countermeasure against this potential inefficiency. ut

6 Implementation and Evaluation

We implemented the presented algorithm in a publicly available prototype [1]. The im-
plementation is concise: altogether about 1500 lines of OCaml code. Our tool supports
a much richer LTL syntax than the one shown in this paper: users can write formulas in-
volving true, false, (bi)implications→ and↔, next#, previous , eventually ♦, always
�, once �, and historically �. All of these operators are treated as first class citizens:
optimal proofs are computed in an extended proof system containing inference rules for
each of the new operators. In principle, we could have defined operators like ♦ in terms
of U. However, we want to provide proofs precisely for a formula the user wrote, rather
than an equivalent version of it, as these will be easier for the user to understand.

We observed earlier that repeated calls to C (and O) with the same arguments may
occur. We therefore memoize the function C to avoid expensive recomputations. The
memoization is performed using a hash-table that stores the already computed results
of C for its arguments. To hash formulas efficiently, we use hash-consing [10]. Hash-
consing of proofs would also improve the space efficiency of our algorithm by shar-
ing subproofs, but we have not implemented this optimization yet. In our experiments,
space consumption was not a bottleneck.

Our tool parses the output of the NuSMV model checker [2]. In case of violations,
this output contains the LTL formula and the lasso word counterexample—the inputs for
our algorithm. The user can choose between a few predefined monotone wqos (or Carte-
sian products thereof) for optimization. The textual representation of the optimal proof
computed is pretty printed separating the different levels in the proof by indentation.

We evaluate our algorithm on counterexamples generated by the NuSMV model
checker on realistic models and specifications [18, 25]. The LTL formulas we consider
include freely nested past and future operators, with temporal heights ranging from 3
to 8. We used NuSMV release 2.1.2 to regenerate the counterexamples, as some of the
models were not compatible with the latest release of NuSMV (2.6.1). We ran our ex-
periments on an Intel Core i7 2.5 GHz processor with 16GB RAM. Figure 5 shows
the |−| and reach of optimal proofs found by our tool with respect to three monotone
wqos: �size and �reach induced by |−| and reach (as described in §4) and their Carte-
sian product�× (defined as p�× q = p�size q∧ p�reach q). Columns |u| and |v| show
the lengths of the prefix and the loop of the lasso word, whereas hp and h f show the
past and future height of the specification. In all but one example, optimal proofs with
respect to the partial order Cartesian product�× result in minimal |−| and reach values.

The generated proofs helped explain the violations. Figure 6 (left) shows two proofs
P (optimal with respect to �reach) and Q (optimal with respect to �size) output by our
tool for the formula ϕ0 on the counterexample lasso word uvω generated by NuSMV for
the model srg5 (a 5-bit counter). The textual representation includes the aforementioned

Model Spec |u| |v| hp h f
�size �reach �×

|p| reach(p) |p| reach(p) |p| reach(p)
srg5 ϕ0 15 2 4 4 7 16 8 6 7 16
srg5 ϕ1 0 16 4 4 621 70 621 33 621 33
dme2 ϕ2 0 111 2 1 11 242 14 20 11 20
dme3 ϕ2 0 216 2 1 11 494 14 62 11 62
dme4 ϕ2 0 280 2 1 11 642 14 82 11 82
abp ϕ3 18 20 2 2 7 59 7 3 7 3

1394-3-2 ϕ4 15 2 1 2 7 18 7 18 7 18
ψ= ((♦�(¬p)∧�♦q)∧�♦x0)→ ♦(x0 S (x1 S (x2 S (x3 S x4))))
ϕ0 = ¬ψ ϕ1 = ¬(ψ∧ ((♦�(¬p)∧�♦q)∧�♦x0))
ϕ2 =�(p→¬(¬pS (pS q))) ϕ3 =�(p→ �¬p) ϕ4 = ¬♦�(p→¬(¬qS r))

Fig. 5. Evaluation results and LTL properties

additional constructors for→, �, and ♦. For example, P demonstrates the satisfaction
of the implication by providing evidence for the conclusion’s satisfaction (→+

R (. . .)). In
contrast, Q shows that the implication can also be vacuously satisfied by providing evi-
dence for the assumption’s violation (→+

L (. . .)). The implication’s vacuous satisfaction
is not desirable and indicates a problem with the specification (which is amended in
ϕ1). Yet the vacuity is far from obvious when just given the trace.

Figure 6 (right) shows the atomic propositions occurring in each of the proofs. In
the visualization, which our tool can also output, each column corresponds to a single
alphabet letter. A gray box in a row labeled by an atomic predicate denotes that the
predicate is true (and white denotes that the predicate is false) at that letter. The marked
boxes are solely responsible for ϕ0’s violation in P or Q respectively: flipping non-
responsible atomic propositions in the trace will not affect P’s or Q’s validity. The
visualization is helpful even though it discards most of the information present in the
proof. Support for interactively selecting subformulas and visualizing the responsible
atomic propositions in the corresponding subproofs would further improve the usability.

As another example, our tool computed an optimal proof of ϕ2’s violation with re-
spect to�reach for the lasso word counterexample generated from the model dme4. This
proof uses the time-point (82) as the earliest possible witness of a violation of � in the
counterexample of length 280. At that time-point, p is true in the lasso word and ¬pS
(pS q) is violated (witnessed by a recursive subproof, which does not look beyond the
time-point 82). For the 1394-3-2 counterexample, the computed proofs made it evident
that the implication p→¬(¬qS r) was vacuously satisfied, resulting in ϕ4’s violation.

Our tool has good performance with memoization being a key optimization. Prior to
its use, computation on some of the examples took several minutes. With memoization
in place, optimal proofs were generated within one second for each of the examples.

7 Related work

Markey and Schnoebelen [21] provide a comprehensive overview of the path-checking
problem for various fragments of LTL. They reduce LTL path checking on lasso words

p
q
x0 Q Q
x1
x2
x3
x4 P

P = ¬−(→+
R (♦

+

(S+(S+(S+(S+(ap+(x4,6), []), []), []), []))))
Q = ¬−(→+

L (∧
−
R (�

−(♦−

([ap−(x0,15),ap−(x0,16)])))))

u v

Fig. 6. Two example proofs

to LTL path checking on finite words. We build upon the core argument behind this
result, reproduced in our Lemma 1. We further generalize their result to reasoning about
optimal proofs in our Theorem 2. The best known upper bound for LTL path checking
is provided by Kuhtz and Finkbeiner [15], showing that it can be efficiently parallelized.

Several proof systems [5, 19] for LTL have been previously proposed to check a
formula’s validity. However, these proof systems are significantly different from ours,
which checks the satisfaction (or violation) of a formula on a particular lasso word.
An LTL proof system for checking satisfaction (or violation) closely related to ours
was proposed by Cini and Francalanza [8]. They focus on runtime verification and pro-
vide an online proof search algorithm that processes letter-wise a word’s finite prefix.
Their proof system is sound but not complete: it cannot prove the violation of liveness
properties (or the satisfaction of safety properties), which is natural in a runtime verifi-
cation application. They are mainly concerned with solving the path-checking problem
by proof search and do not focus on leveraging the found proofs as explanations.

Chechik and Gurfinkel [6] give a sound and complete proof system for CTL to ex-
plain violations of model-checkers and to debug specifications, in line with our goals.
They also develop an interactive user interface for exploring different counterexamples
for a model and the corresponding proofs. Their proof system is arguably more complex
and thus harder to understand than ours: partly as it handles a branching-time logic and
partly because they rely on the unrolling equations of the temporal operators and state
summaries to finitely represent the infinite proof trees that arise when considering nega-
tions of temporal operators, instead of employing a simple meta-argument (Lemma 1)
as we do. They do not consider past operators nor the optimality of the proof trees.
Similar unrolling-based proof systems were developed for model-checking games [17].
Winning strategies in such games are certain notions of proof. In general, we argue
that unrolling may be a good approach to solving the path-checking problem. However,
it is not ideal for explaining a violation to a user who wrote the specification having
LTL’s standard semantics in mind rather than the recursive equations that underly the
unrolling technique.

Sulzmann and Zechner’s [26] proof system for LTL on finite words is also motivated
by using proofs as explanations. However, they neither support past operators nor lasso
words. Moreover, they only consider formulas in negation normal form, but neglect dual
future operators, which significantly limits their language’s expressiveness. Even if the
dual operators were supported, imposing a normal form is problematic when a proof
should serve as an explanation. Users typically do not think in term of normal forms but
prefer to freely use the syntax of LTL; hence the explanation given should be as close
as possible to the users’ mindset. Sulzmann and Zechner compute optimal proofs with
respect to a particular monotone order (lexicographic combination of the proof size and
the relation that prefers ∨+L over ∨+R), which is an instance in our generalized technique.

There has been significant work in the model checking community to address the
problem of understanding counterexamples [3, 12–14]. Most of these works focus on
the interaction of the system model being verified and the counterexample. Our ap-
proach explores the interaction of the LTL property and the counterexample, without
knowing the system model. An ideal explanation should combine all three components.
We believe that our work is an important step towards achieving this goal.

The notion of causality [4, 27] has been used to explain model checking counterex-
amples. Causality can be encoded as a relation in our framework, but it is not monotone.
This is not surprising since the problem of computing the minimal causal set is NP hard
and the existing solutions therefore settle for approximations. Our algorithm is more
tractable, but can only optimize for simpler relations.

The size of the counterexample input to our algorithm affects the resulting proof
tree’s size: smaller counterexamples typically result in smaller proof trees. Our work
can thereby directly benefit from past work on computing short counterexamples [11,
25]. Other lines of work aim at identifying the vacuous satisfaction of properties [16,20]
or justifying why the system satisfies a property when no counterexample is found [22–
24]. We provide such a justification for a single trace, but not for an entire system model.

Finally, we refer to a survey on provenance in databases [7], which aims at identify-
ing the root cause of violations, yet without taking the temporal dimension into account.

8 Conclusion

We have proposed a sound and complete proof system for LTL on lasso words. A proof
tree in this system carries all the information necessary to witness and explain a for-
mula’s satisfaction or violation. We have devised and implemented an algorithm for
computing a proof tree that is minimal with respect to a given monotone well-quasi-
order�. The parametrization by� allows the algorithm’s users to optimize for different
statistics (such as |−| or reach) of the proof tree or even their combinations.

Our work lays the foundation for explaining the counterexamples generated by
model checking tools. There are several natural continuations. In real world examples,
even optimal proof trees can be too large to examine in practice. Devising user-friendly
ways to explore them is therefore a practically relevant information visualization chal-
lenge. On the theoretical side, an open problem is to develop analogous techniques for
other specification languages used by model checkers. Finally it would be interesting
to adapt our proof search algorithm to work in an online fashion. This would enable its
use to explain online, the verdicts produced by runtime verification algorithms.

Acknowledgment We thank Srd̄an Kristić, Felix Klaedtke, and Joshua Schneider for discussions
on using proof trees as explanations. Srd̄an Kristić, Karel Kubíček, and anonymous reviewers
provided useful comments on early drafts of this paper. This work is supported by the Swiss
National Science Foundation grant Big Data Monitoring (167162).

References
1. Explanator: Send in the Explanator—it explains satisfaction/violation of LTL formulas on

lasso words. https://bitbucket.org/traytel/explanator (2018)

2. NuSMV: A new symbolic model checker. http://nusmv.fbk.eu/ (2018)
3. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in counterex-

ample traces. In: POPL 2003. pp. 97–105. ACM (2003)
4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples

using causality. Form. Methods in Syst. Des. 40(1), 20–40 (2012)
5. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log. Algebr. Pro-

gram. 76(2), 216–225 (2008)
6. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and exploration.

STTT 9(5-6), 429–445 (2007)
7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Found.

Trends Databases 1(4), 379–474 (2009)
8. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In: TACAS 2015.

LNCS, vol. 9035, pp. 581–595. Springer (2015)
9. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in

posets. SIAM J. Comput. 40(3), 597–622 (2011)
10. Filliâtre, J., Conchon, S.: Type-safe modular hash-consing. In: ACM Workshop on ML. pp.

12–19. ACM (2006)
11. Gastin, P., Moro, P.: Minimal counterexample generation for SPIN. In: SPIN 2007. LNCS,

vol. 4595, pp. 24–38. Springer (2007)
12. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance metrics.

STTT 8(3), 229–247 (2006)
13. Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electr. Notes Theor.

Comput. Sci. 119(2), 67–81 (2005)
14. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: SPIN 2003.

LNCS, vol. 2648, pp. 121–135. Springer (2003)
15. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently parallelizable. In: ICALP 2009.

LNCS, vol. 5556, pp. 235–246. Springer (2009)
16. Kupferman, O.: Sanity checks in formal verification. In: CONCUR 2006. LNCS, vol. 4137,

pp. 37–51. Springer (2006)
17. Lange, M., Stirling, C.: Model checking games for branching time logics. J. Log. Comput.

12(4), 623–639 (2002)
18. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple is better: Efficient bounded model

checking for past LTL. In: VMCAI 2005. LNCS, vol. 3385, pp. 380–395. Springer (2005)
19. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems - specification.

Springer (1992)
20. Maretic, G.P., Dasthi, M.T., Basin, D.A.: Semantic vacuity. In: TIME 2015. pp. 111–120.

IEEE Computer Society (2015)
21. Markey, N., Schnoebelen, P.: Model checking a path. In: CONCUR 2003. LNCS, vol. 2761,

pp. 248–262. Springer (2003)
22. Namjoshi, K.S.: Certifying model checkers. In: CAV 2001. LNCS, vol. 2102, pp. 2–13.

Springer (2001)
23. Peled, D.A., Pnueli, A., Zuck, L.D.: From falsification to verification. In: FSTTCS 2001.

LNCS, vol. 2245, pp. 292–304. Springer (2001)
24. Peled, D.A., Zuck, L.D.: From model checking to a temporal proof. In: SPIN 2001. LNCS,

vol. 2057, pp. 1–14. Springer (2001)
25. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of LTL with

past. In: TACAS 2005. LNCS, vol. 3440, pp. 493–509. Springer (2005)
26. Sulzmann, M., Zechner, A.: Constructive finite trace analysis with linear temporal logic. In:

TAP 2012. LNCS, vol. 7305, pp. 132–148. Springer (2012)
27. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Whodunit? Causal analysis for counterexamples.

In: ATVA 2006. LNCS, vol. 4218, pp. 82–95. Springer (2006)

