
ATVA

EASY TO USE

C
O

NSIS
TENT

DOCUMENTED

C
O

M
PLETE

R
EPLIC

A
B

LE

Artifact

*

*

*

APPROVED

Adaptive Online First-Order Monitoring

Joshua Schneider, David Basin, Frederik Brix, Srd̄an Krstić, and Dmitriy Traytel

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

Abstract. Online first-order monitoring is the task of detecting temporal patterns
in streams of events carrying data. Considerable research has been devoted to scal-
ing up monitoring using parallelization by partitioning events based on their data
values and processing the partitions concurrently. To be effective, partitioning must
account for the event stream’s statistics, e.g., the relative event frequencies, and
these statistics may change rapidly. We develop the first parallel online first-order
monitor capable of adapting to such changes. A central problem we solve is how
to manage and exchange states between the parallel executing monitors. To this
end, we develop state exchange operations and prove their correctness. Moreover,
we extend the implementation of the MonPoly monitoring tool with these oper-
ations, thereby supporting parallel adaptive monitoring, and show empirically that
adaptation can yield up to a tenfold improvement in run-time.

1 Introduction

Online monitoring is a well-established runtime verification approach. System require-
ments are formalized as properties of an event stream that represents observations of a run-
ning system’s behavior. An online monitor detects property violations in the event stream.

In practice, monitors must cope with high-volume and high-velocity event streams
arising in large-scale applications. To meet these scalability demands, researchers have
exploited parallel computing infrastructures [6, 11, 12, 15, 22–24], e.g., by splitting (or
slicing) the event stream into smaller substreams that can be processed independently by
monitors acting as black boxes. However, since monitoring is not an embarrassingly paral-
lel task, slicing may need to duplicate events. Another performance bottleneck arises from
slices with significantly more events than others. In prior work [24], we reduced duplica-
tion and distributed events evenly by leveraging insights from database research [1, 10].
We gave an algorithm that slices based on the event stream’s characteristics, like the rela-
tive rates of event types or data values occurring disproportionately frequently in events.
Provided the stream’s characteristics are known and stable, this approach scales well.

Example 1. Consider a (simplified) policy for a document management system: a docu-
ment must be updated to its latest revision before being sent to a user. The event stream
contains update events parameterized with a document ID and send events parametrized
with a document ID and a user ID. The above policy relates update and send events with
the same document ID value and specifies that the former must precede the latter.

Let us first assume that we observe many update events to different documents. Then
it makes sense to split the event stream based on a partition of the document ID values.
Each parallel monitor instance (submonitor) would receive send and update events with
document ID values from one partition. However, such a slicing strategy would not yield
balanced substreams if the event stream changes to consist exclusively of send events
that all have the same document ID, e.g., 955; this may occur, for example, if this is an

2 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

important document sent to many users. Only one submonitor will continue receiving
events. To counter this suboptimal utilization, we would like to partition the user IDs
instead of the document IDs. To continue outputting correct verdicts, the state of the sub-
monitor that was previously responsible for the document ID 955 and thus was the only
one to observe its update events in the past, must be transferred to all other submonitors.

The example illustrates that a slicing strategy based on outdated stream characteristics
may lead to unbalanced substreams, degrading the monitor’s performance. Hence, the
slicing strategy used must be changed during monitoring to adapt to the stream’s changing
characteristics. Furthermore, this adaptation necessitates that the submonitors exchange
parts of their state and thus can no longer be treated as black boxes.

Contribution. In this paper, we design, prove correct, implement, and evaluate state
migration functionality for a monitor for properties expressed in the monitorable frag-
ment of metric first-order temporal logic (MFOTL) [7]. This rich specification language
(Section 2.1) can express complex dependencies between data values coming from
different events in the stream.

We significantly extend an existing stream slicing framework (Section 2.2) with the
ability to dynamically change the slicing strategy (Section 3). Moreover, we develop
operations to migrate the state of a simplified MFOTL monitor (Section 4), modeled
after the state-of-the-art monitor MonPoly [7, 8]. Concretely, we provide two operations
that together achieve the state exchange: split for splitting a monitor’s state according to
a new slicing strategy and merge for combining parts of the states coming from different
submonitors. These operations are conceptually straightforward. For example, split
partitions the monitor’s state based on the data values it stores. However, the operations’
interaction with the monitor’s invariants is intricate. To establish correctness, we have
mechanically checked our proofs using the Isabelle proof assistant. A separate paper
reports on our related formal verification of the simplified MFOTL monitor [26], which
we extend here. We have also extended MonPoly with implementations of split and
merge and evaluated its performance with adaptive slicing strategies (Section 5). Our
formalization and the evaluation are available online [25].

In summary, our main contributions are: (1) the development of an abstract frame-
work for adaptive monitoring; (2) the design of state migration operations for an MFOTL
monitor; and (3) the implementation and evaluation of state migration in MonPoly. Our
evaluation shows how adaptivity can substantially improve monitoring performance and
enable the monitoring of high-velocity event streams.

Related Work. Basin et al. [6] introduce the concept of slicing for MFOTL monitors.
They provide composable operators that slice both data and time and support scalable
monitoring on a MapReduce infrastructure. Another data-parallel approach is parametric
trace slicing [22, 23], which supports only a restricted form of quantification and focuses
on expressiveness, rather than on scalability or performance. Other monitors [3, 5, 11, 12,
19] decompose the specification for task-parallel execution, which limits their scalability.
In prior work [24], we generalized Basin et al.’s data slicing [6] and implemented it
using the Apache Flink stream processing framework [2]. The above works are limited
in that they consider a single static strategy only. We develop a mechanism that lifts this
restriction for first-order monitoring, making it possible to react to changes in the event
streams. Note that we do not tackle the orthogonal problems of deciding when to change

Adaptive Online First-Order Monitoring 3

the slicing strategy and finding the best strategy for a given stream. The former requires
a state migration mechanism already in place, while the latter requires deciding MFOTL,
since for an unsatifiable formula, the best strategy is to drop all events.

Stream processing systems implement generic operations on data streams. They
achieve scalability by exploiting data parallelism. The Flux operator [27] redistributes
values between two parallel stages of a data stream pipeline. It adaptively changes the
routing if long-term imbalances are detected. This requires state migration for down-
stream operators whose state must be consistent with the incoming data. Flux specifies an
abstract interface to extract and implant state partitions, which our splitting and merging
functions implement for a concrete monitoring operator. Megaphone [16] is a refined
mechanism for state migration in Timely Dataflow [21]. Unlike other approaches, it
avoids stopping the execution and excessive data duplications during migration. The
mechanism is generic, hence a viable low-level streaming abstraction for our work.

Other works study adaptive controllers for distributed stream processing. The sched-
uler by Aniello et al. [4] continuously optimizes a task topology based on CPU load and
communication traffic measurements. The granularity of tasks is much coarser than the
data parallelism in our slicing approach. The DS2 controller [17] performs dynamic scal-
ing, i.e., it selects an optimal degree of parallelism, which is orthogonal to the question of
how to parallelize a task such as monitoring. DS2 assumes that every event can be parti-
tioned based on a single key, which is not the case for MFOTL monitoring. In the context
of complex event processing, Mayer et al. [20] optimize the assignment of overlapping
temporal windows to machines. Their controller must determine the target machine at
the start of each window because windows cannot be migrated in their model. A generic
algorithm for deciding when to trigger adaptation is described by Kolchinsky et al. [18].

The Squall engine [28] implements various parallel join operators on data streams,
including the (hash-)hypercube scheme [1]. This scheme, which we have also applied to
monitoring [24], yields an optimal slicing strategy for conjunctive database queries [10].
The theta join operator by Elseidy et al. [14] can migrate its state with minimal overhead
and without blocking, but only at the cost of relaxing the state’s consistency. In compari-
son to all of these other stream processing systems, our approach supports adaptation for
a much more expressive specification language (MFOTL), albeit with a larger overhead.

2 Preliminaries

We recap the syntax and semantics of metric first-order temporal logic (MFOTL) [7] and
an approach to its parallel monitoring based on slicing event streams [24].

2.1 Metric First-Order Temporal Logic
We fix a set of names E and for simplicity assume a single infinite domain D of values.
The names r ∈ E have associated arities ι(r) ∈ N. An event r(d1, . . . ,dι(r)) is an element
of E×D∗. We call 1, . . . , ι(r) the attributes of the name r. We further fix an infinite set V
of variables, such that V, D, and E are pairwise disjoint. Let I be the set of nonempty inter-
vals [a,b) := {x ∈N | a≤ x < b}, where a ∈N, b ∈N∪{∞}, and a < b. Formulas ϕ are
constructed inductively, where ti, r, x, and I range over V∪D, E, V, and I, respectively:

ϕ ::= r(t1, . . . , tι(r)) | t1 ≈ t2 | ¬ϕ | ϕ ∨ϕ | ∃x.ϕ | I ϕ |#I ϕ | ϕ SI ϕ | ϕ UI ϕ .

4 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

v, i |= r(t1, . . . , tn) if r(v(t1), . . . v(tn)) ∈ Di v, i |= ∃x. ϕ if v[x 7→ z], i |= ϕ for some z ∈ D
v, i |= t1 ≈ t2 if v(t1) = v(t2) v, i |= I ϕ if i > 0, τi− τi−1 ∈ I, and v, i−1 |= ϕ

v, i |= ¬ϕ if v, i 6|= ϕ v, i |=#I ϕ if τi+1− τi ∈ I and v, i+1 |= ϕ

v, i |= ϕ ∨ψ if v, i |= ϕ or v, i |= ψ

v, i |= ϕ SI ψ if v, j |= ψ for some j ≤ i, τi− τ j ∈ I, and v, k |= ϕ for all k with j < k ≤ i
v, i |= ϕ UI ψ if v, j |= ψ for some j ≥ i, τ j− τi ∈ I, and v, k |= ϕ for all k with i≤ k < j

Fig. 1: Semantics of MFOTL

Along with Boolean operators, MFOTL includes the metric past and future temporal
operators (previous), S (since), # (next), and U (until), which may be nested freely.
We define other standard Boolean and temporal operators in terms of this minimal syntax:
truth > := ∃x. x≈ x, falsehood ⊥ := ¬>, conjunction ϕ ∧ψ := ¬(¬ϕ ∨¬ψ), universal
quantification ∀x. ϕ := ¬(∃x. ¬ϕ), eventually ♦I ϕ :=>UI ϕ , always �I ϕ := ¬♦I¬ϕ ,
once �I ϕ :=>SI ϕ , and historically �I ϕ :=¬�I¬ϕ . Abusing notation, Vϕ denotes the
set of free variables of the formula ϕ . We restrict our attention to bounded future formulas,
i.e., those in which all subformulas of the form #[a,b) α and α U[a,b) β satisfy b < ∞.

MFOTL formulas are interpreted over streams of time-stamped events. We group
finite sets of events that happen concurrently (from the event source’s point of view) into
databases DB= P(E×D∗). An (event) stream ρ is thus an infinite sequence 〈τi,Di〉i∈N
of databases Di ∈ DB with associated time-stamps τi. We assume discrete time-stamps,
modeled as natural numbers τ ∈ N. We allow the event source to use a finer notion of
time than the one used as time-stamps. In particular, databases at different indices i 6= j
may have the same time-stamp τi = τ j. The sequence of time-stamps must be non-strictly
increasing (∀i. τi ≤ τi+1) and always eventually strictly increasing (∀τ . ∃i. τ < τi).

The relation v, i |=ρ ϕ defines the satisfaction of the formula ϕ for a valuation v at
an index i with respect to the stream ρ = 〈τi,Di〉i∈N; see Fig. 1. Whenever ρ is fixed
and clear from the context, we omit the subscript on |=. The valuation v is a mapping
V→ D, assigning domain elements to the free variables of ϕ . Overloading notation, v is
also the extension of v to the domain V∪D, setting v(t) = t whenever t ∈ D. We write
v[x 7→ y] for the function equal to v, except that the argument x is mapped to y.

An online monitor for a formula ϕ receives time-stamped databases that incremen-
tally extend a finite stream prefix π . It computes a stream of verdicts, i.e., the valuations
and time-points that satisfy ϕ given π . (Typically, one is interested in violations, but they
can be obtained by monitoring the negated formula instead.) Formally, it implements
a monitor functionMϕ : (N×DB)∗→P((V→ D)×N) that maps π to the set of all
verdicts output by the monitor after observing π . The monitor function must satisfy

Monotonicity: ∀π , π ′. π � π ′ =⇒ Mϕ(π)⊆Mϕ(π
′)

Soundness: ∀π .Mϕ(π)⊆ {(v, i) | i≤ |π|∧∀ρ � π . v, i |=ρ ϕ}
Completeness: ∀π , ρ , i. π � ρ ∧ i≤ |π|∧ (∀ρ ′ � π . v, i |=ρ ′ ϕ) =⇒

∃π ′ � ρ . (v, i) ∈Mϕ(π
′),

where � denotes the prefix-of relation both between stream prefixes and between stream
prefixes and infinite streams. Monotonicity prohibits the monitor from retracting its
verdicts. Soundness requires it to only output satisfying valuations. Completeness forces
the monitor to eventually output them. Monitor functions are not unique because we
allow satisfactions to be emitted later than the point at which they become certain.

Adaptive Online First-Order Monitoring 5

2.2 Slicing Framework

In prior work, we parallelized an online monitor by slicing the event stream into N
substreams that can be independently monitored [24]. For a fixed formula ϕ , their (joint
data) slicer is parameterized by a slicing strategy f : (Vϕ → D)→ (P({1, . . . , N})−
{∅}), which specifies which of the N submonitors are responsible for processing a
given valuation. Thus, each submonitor indexed by k ∈ {1, . . . , N} is responsible for
a subset f [k] = {v | k ∈ f (v)} of ϕ’s valuations, called a slice. Because f (v) 6= ∅, for
every valuation there is at least one slice responsible for it.

We focus on slicing strategies that consider each variable in Vϕ separately. Assume
that N is a product ∏x∈Vϕ

px of positive integers px. We say that the variable x is sliced if
px > 1. In this case, we must provide a partitioning function fx : D→{1, . . . , px}, e.g., a
hash function. The resulting slicing strategy is f (v) = {q(〈 fx1(v(x1)), . . . , fxn(v(xn))〉)},
where q is a bijection between the Cartesian product ∏x{1, . . . , px} and {1, . . . ,N}.

Which events must the submonitor k receive? We assume that ϕ’s bound variables
are disjoint from its free variables. Given an event e = r(d1, . . . ,dn), matches(ϕ ,e) is
the set of all valuations v ∈ Vϕ → D for which there is a subformula r(t1, . . . , tn) in ϕ

where v(ti) = di for all i ∈ {1, . . . ,n}. For a database D and a set of valuations R, called a
restriction, we write D ↓ R for the restricted database {e ∈ D |matches(ϕ ,e)∩R 6=∅}.
The same notation restricts streams ρ = 〈τi,Di〉i∈N pointwise, i.e., ρ ↓ R= 〈τi,Di ↓ R〉i∈N
(analogously for stream prefixes π). The submonitor k receives the stream prefix π ↓ f [k].

The output of a single monitor after processing π can be reconstructed from the
submonitors’ joint output:Mϕ(π) =

⋃
k∈{1, ...,N}(Mϕ(π ↓ f [k])∩ (f [k]×N)). (In prior

work [24], we established this fact assuming a stronger completeness property. However
the weaker formulation used in this paper suffices.) The intersection with f [k]×N is
needed to avoid spurious verdicts for some formulas, notably those involving equality.

3 Adaptive Slicing

The slicing approach to scalable monitoring achieves good performance only if the events
are distributed evenly and with minimal duplication [24]. Therefore, it is crucial to choose
a good slicing strategy, which usually depends on the statistics of the events in the stream.

Consider the following extension of the Example 1. Documents now depend on
resources, which may be modified over time. Any document d sent out by the system
must be based on the latest version of the resources it depends on. Events dep(d,r)
define dependencies between documents d and resources r. We assume for simplicity
that dependencies are never removed. An event mod(r) indicates that the resource r has
been modified. The MFOTL formula corresponding to the negation of this policy is

send(d)∧ (�dep(d,r))∧¬
(
¬mod(r)S (update(d)∧�dep(d,r))

)
. (1)

Both variables d and r can be used for slicing. Some predicates do not refer to r (e.g.,
send(d)), while mod(r) does not refer to d. Therefore, any slicing strategy will result in
some duplicated events. If documents are delivered much more frequently than resources
are modified, it makes sense to slice only d. This would distribute the bulk of send events
as much as possible, while having a negligible overhead due to duplicated mod events.

6 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

In contrast, we should slice r if modifications are much more frequent. Thus, the optimal
strategy is influenced by the relative frequency of the different event types.

The optimal strategy can vary for different parts of the stream if statistics, like relative
frequencies, change. Yet the existing slicing framework (Section 2.2) is parametrized by
a fixed strategy. We propose a generalization where the strategy may change. In a setting
with varying statistics, our generalization can lead to a substantially lower maximum load
for the parallel monitors than what any fixed strategy can achieve. As an extreme case,
consider a temporal separation between events pertaining to documents and resources in
the above example. For instance, 1000 document deliveries might alternate with 1000 re-
source modifications. On average, both event types are equally likely. Hence, the strategy
selected by the existing framework achieves a maximum load of around 1/

√
N for N par-

allel monitors, e.g., 25% for N = 16. This strategy, based on the hypercube algorithm [1],
hashes the value assigned by an event to one of the two variables into

√
N buckets. Each

bucket pair identifies a slice, and every event is replicated to all slices with a compatible
bucket assignment. However, alternating between slicing one of the variables, according
to which event is currently present, yields a maximum load of 1/N (6.25% for N = 16).

Unfortunately, adjusting the slicing strategy in the middle of a stream may result
in incorrect verdicts. Monitors for temporal specifications keep state that depends on
previously observed events. If the subset of events sent to a monitor instance changes, its
state becomes inconsistent with respect to that subset. Continuing with the example, let
there be two slices, A and B. At time t, resource events are distributed by slicing variable
r, and in particular the event mod(123) is routed to slice A. At time t ′ > t, the slicing
strategy has changed to variable d. Now any delivery of a document d, where d depends
on resource 123 and is routed to slice B, will not be detected as a violation of the policy,
i.e., as a satisfying valuation of the MFOTL formula (1).

There are two solutions to this problem. First, we could use the old and the new
strategy in parallel, during a suitably sized interval around the adaptation point, as in
temporal slicing [6]. The main drawback is that at least one of the strategies is suboptimal
during the adaptation period, whose length has a lower bound that depends on the formula.
Moreover, temporal slicing is ineffective if there are unbounded past temporal operators.

Second, we could instead migrate the parallel monitors’ state. We shall proceed this
way, taking measures to ensure the state’s consistency with the updated slicing strategy.
Upon strategy changes, each monitor instance first splits its state into fragments, each
fragment corresponding to a slice of the new strategy. Then, the fragments of all monitors
are reshuffled according to their destination slice, where they are merged. Splitting and
merging must ensure that the resulting state is equivalent to one that would have been
obtained if the new strategy had already been applied to the previously processed events.

Figure 2 shows the high-level control flow of our adaptive parallel monitor A(Mϕ).
The algorithm is generic in that it wraps the actual monitor implementation Mϕ , which
can be non-parallel. Parallelism is achieved by spawning N instances of Mϕ as inde-
pendent submonitors. The variables k and k′ range implicitly over the submonitors. Mϕ

refines the monitor functionMϕ and makes its state explicit, which allows us to describe
the adaptive functionality. We model Mϕ as function mapping a pair consisting of a time-
stamped database and the current state to a list of new verdicts and the successor state.
The initial state is denoted sinit

ϕ . We additionally require a splitting function split(R,s) and

Adaptive Online First-Order Monitoring 7

Algorithm 1: Adaptive monitor A(Mϕ)

initialization: i← 0; submonitor states sk← sinit
ϕ for all k ∈ {1, . . . ,N}

for every input 〈τ ,D〉 do
if fi+1 6= fi then

adaptation:
all submonitors k′ compute fragments Fk,k′ := split(fi[k′]∩ fi+1[k], sk′) for all k
all submonitors k receive fragments Fk,k′ from all k′

sk←merge(Fk,1, . . . ,Fk,N) for all k
end
parallel monitoring:
compute slices Dk := D ↓ fi+1[k] and send to k for all k
all submonitors k perform a monitoring step 〈Xk,sk〉 ←Mϕ (〈τ ,Dk〉, sk)
receive verdicts Xk from all k and output

⋃
k(Xk ∩ (fi+1[k]×N)); i← i+1

end

Fig. 2: High-level operation of the adaptive monitor

a merging function merge(s1,s2, . . .). These are specific to the monitor implementation.
The splitting function takes a restriction R and a state s, and returns the state fragment
corresponding to R. The associated merging function takes a nonempty, finite list of split
states and combines them into a single state corresponding to the union of the restrictions.

The adaptive monitor A(Mϕ) is parametrized by an infinite sequence 〈 fi〉i∈N of strate-
gies. For every i≥ 1, fi defines the strategy for slicing the i-th input database. Initially,
the strategy f0 is used. Whenever the strategy changes between the i-th and the (i+1)-th
input, i.e., fi+1 6= fi, adaptation occurs and each submonitor continues with a new state.
Let sk be the state of submonitor k ∈ {1, . . . ,N} right before adaptation. Its new state is

s′k = merge(split(fi[1]∩ fi+1[k],s1), . . . , split(fi[N]∩ fi+1[k],sN)).

We require some properties ofMϕ , Mϕ , split, and merge to show that A(Mϕ) has
the same input–output behavior asMϕ . The monitor functionMϕ must be slicable:
Mϕ(π ↓ R)∩(R×N) =Mϕ(π)∩(R×N) for all π and R. This implies that the verdicts
for which a slice is responsible are detected at the exact same time points. The remaining
properties are expressed in terms of a state invariant W . The intuitive meaning of
W (π ,R,s) is that the state s is consistent with prefix π with respect to the valuations in
R. Formally, W is called a monitoring invariant if it satisfies the following conditions,
where · concatenates a stream prefix and a time-stamped database:

1. W (ε ,R,sinit
ϕ) for all R, where ε denotes the empty prefix.

2. For all π , R, and s, W (π ,R,s) implies that the verdicts output by Mϕ(〈τ ,D〉,s) are
equal toMϕ(π · 〈τ ,D〉)−Mϕ(π) when both sets are intersected by R×N, and the
successor state s′ satisfies W (π · 〈τ ,D〉,R,s′).

3. For all π , Rk, R′k, and sk (where 1 ≤ k ≤ N), R′k ⊆ Rk and W (π ↓ Rk,Rk,sk) for all
i ∈ {1, . . . ,N} imply W (π ↓ (

⋃
k R′k),

⋃
k R′k, merge(split(R′1,s1), . . . , split(R′N ,sN))).

Lemma 1. The adaptive parallel monitor A(Mϕ) described above is functionally equiv-
alent toMϕ ifMϕ is slicable and there exists a monitoring invariant W.

8 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

4 Monitor State Migration

The exact mechanism for state migration, which we need for adaptivity, depends on the
monitor algorithm and the structure of its state. Here we provide a high-level account
of a simplified version of the MonPoly algorithm with finite relations. Our presentation
differs from the original description [7] by evaluating subformulas more eagerly. We also
give the state an explicit representation. This allows us to define concrete splitting and
merging operations. We verify the resulting adaptive monitor by proving the conditions
outlined in Section 3.

We omit the past operators and S in this section and refer to our paper describing
the algorithm in depth for more details [26]. Our machine-checked formalization [25]
includes the algorithm for the full language with the split and merge operations.

4.1 Monitoring Algorithm

Like MonPoly, our simplified algorithm Mϕ is restricted to a fragment of MFOTL for
which all subformulas of ϕ have finitely many satisfying valuations. We call a formula
monitorable if negation is applied only to the right operand of ∧ and to the left operand
of U, and Vβ ⊆ Vα holds for all subformulas α ∧¬β , Vα = Vβ for subformulas α ∨β ,
and Vα ⊆ Vβ for subformulas α UI β and ¬α UI β . Not all finitely satisfiable formulas
are monitorable. In many practically relevant cases it is possible to obtain a monitorable
formula that is equivalent to ϕ [7]. For example, ¬β ∧α can be rewritten to α ∧¬β .

We present the monitor’s state as an extension of the abstract syntax tree of the for-
mula that it evaluates. We write a superscript after each operator to denote the state com-
ponent associated with the operator. For example, M1∧Z M2 is a state corresponding to a
formula α ∧β , where M1 is the state for α (and M2 for β), and Z is the state component
of the conjunction. In general, monitor states M are constructed inductively as follows,
where ⊗ ∈ {∧,∧¬,∨} and U ∈ {U,¬U} are the monitorable operator–negation patterns.

M ::= r(t1, . . . , tι(r)) | t ≈ c |M⊗Z M | ∃x.M |#(b,T)
I M |MU(Z,U ,T)

I M

The meta-variables have the following types (X∗ is the type of finite lists over X , and
R is the type of relations, i.e., finite sets of finite tuples over D):

r ∈ E, ti ∈ V∪D, Z ∈ R∗×R∗, I ∈ I, b ∈ {>,⊥}, T ∈ N∗, U ∈ (N×R×R)∗.

The algorithm Mϕ performs a bottom-up evaluation of the formula ϕ for each
incoming database of events. The result of evaluating a subformula ψ is a list of finite
relations over its free variables Vψ . These relations contain the valuations v satisfying
the subformula for increasing indices i, i.e., those v with v, i |= ψ . We thus obtain the
monitor’s output, all (v, i) with v, i |= ϕ , incrementally at the root ϕ . The evaluation of
subformulas with future operators is delayed until the most recent time-stamp in the
input has advanced by a sufficient lookahead, which is determined by the upper bound
on the interval. Therefore, the result of evaluation is a list of relations: Several indices
(or none) may be resolved at once if their lookahead has been reached (is still missing).

We choose to evaluate subformulas as much as possible with respect to the lookahead.
All binary operators have a state component Z = 〈z1,z2〉 that stores the results from one

Adaptive Online First-Order Monitoring 9

operand while the other is delayed. For example, if the left operand is three indices ahead,
z1 contains the corresponding three results and z2 is empty. For temporal operators, the
list T stores the time-stamps of not yet evaluated indices. The flag b marks whether# has
been evaluated on the first index. The state component U associated with a subformula
α UI β is a list of triples 〈τi,Ri,R′i〉. It corresponds to a contiguous interval i ∈ [n′,n) of
input indices, where n′ is the index of the next result to be computed for the subformula,
and n is the index of the next input to the monitor. The relation Ri contains all valuations v
such that v,k |=α for all k∈ [i,n). The relation R′i contains all valuations v for which there
exists a j ∈ [i,n) such that τ j− τi ∈ I, v, j |= β , and v,k |= α (or v,k 6|= α in the negated
case) for all k ∈ [i, j). In the initial state, all lists Z, T , U are empty, and b is set to ⊥.

We now describe how Mϕ processes a new input 〈τn,Dn〉. Evaluation of predicates
and equalities is straightforward: A single relation is produced, and the state remains
unchanged. For all other operators, the algorithm first evaluates and updates the sub-
states recursively. For existential quantifiers ∃x.M, the recursively computed relations
are projected onto VM−{x}. For the Boolean connectives in ⊗, the two lists of results
r1, r2 (which may be empty) are appended to the corresponding z1, z2 that were stored
in the previous state, resulting in z′1, z′2. The first min{|z′1|, |z′2|} elements of each list are
removed and combined pointwise into the result of the connective by applying standard
relational operations: a natural join ./ for ∧, an antijoin . for ∧¬, and a union for ∨. The
state component Z is updated to the remainder of the lists.

The state component T of the temporal operators is maintained by appending τn
and by removing a time-stamp from the front for every computed result. Evaluation
of #I discards the very first result of its operand, as indicated by b. Apart from this
initialization, the operators forward the results, unless the corresponding time-stamp
difference is not in the interval I. In this case, the result is replaced by the empty relation.
The difference is computed using T . The state component U =U0 of an operator U[a,b)
is updated as follows, where z′1, z′2, and `= min{|z′1|, |z′2|} are obtained as above. Let Ak,
Bk, and τ ′k be the k-th element, 1≤ k ≤ `, in z′1, z′2, and T · τn, respectively. For every k,
Uk−1 is updated to obtain Uk, where 〈σi,Ri,R′i〉 is the i-th tuple in Uk−1:

1. Replace every R′i by R′i∪ (Bk ./ Ri) (by R′i∪ (Bk .Ri) if the left operand is negated)
if τ ′k−σi ∈ I.

2. Replace every Ri by Ri ./ Ak (by Ri∪Ak if negated).
3. Append 〈τ ′k,Ak,Bk〉 if 0 ∈ I. Otherwise, append 〈τ ′k,Ak,∅〉.

We now consider the tuples 〈σi,Ri,R′i〉 in U`. Let m be the largest index such that σm+b<
τn. The result of the operator is the list 〈R′1, . . . ,R′m〉. The updated state component U is
U` without the first m elements.

4.2 Splitting and Merging

MonPoly’s state can be viewed as consisting of two parts. First, its shape comprises
the arrangement of nodes in the abstract syntax tree, the lengths of the lists associated
with the nodes, and the flags’ and time-stamps’ values. Second, the state has content,
namely the relations stored in it. The key insight, which we use to define splitting and
merging operations, is that the shape is independent of slicing, while the content has

10 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

split(P,M) =

split(P,M1)⊗split(P,Z) split(P,M2) if M = M1⊗Z M2

∃x. split(lift(P,x),M1) if M = ∃x.M1

#(b,T)
I split(P,M1) if M =#(b,T)

I M1

split(P,M1)U
(split(P,Z),split(P,U),T)
I split(P,M2) if M = M1 U

(Z,U ,T)
I M2

M otherwise.

split(P,〈z1,z2〉) = (map(λX . split(P,X),z1),map(λX . split(P,X),z2))

split(P,U) = map(λ 〈τ ,A,B〉.〈τ , split(P,A), split(P,B)〉,U)

split(P,X) = {x ∈ X | P(x)}

Fig. 3: Splitting operations for MonPoly’s state

a direct interpretation in terms of MFOTL’s semantics. We exploit the fact that the
shape of the state is determined purely by the sequence of time-stamps observed by
the submonitors. Note that slicing has no effect on this sequence. Therefore, the states
of all submonitors at a given point in time have identical shapes. In contrast, we have
v, i |=ρ↓R ϕ iff v, i |=ρ ϕ for all v ∈ R, which is the property that allows data slicing in
the first place (see the proof of [24, Prop. 1]). The inclusion of a valuation in the content
associated with the submonitor for R thus depends only on the full stream ρ (if that
valuation can be extended to some v ∈ R). We can reorganize the state’s content to reflect
updated restrictions R by distributing valuations according to their consistency with R.

The splitting function for MonPoly’s state is shown in Fig. 3. We use standard
functional operators on lists, in particular map and zip. The splitting function is applied
recursively to all parts of the state while preserving its shape. We overload it for the
different state components. Only the relations in the state are affected by splitting. The op-
eration keeps all valuations that are consistent with the restriction R, which we represent
as a predicate function P (the first argument of split). There are two reasons for this modi-
fied representation. First, restrictions are usually infinite sets and so they cannot be passed
explicitly in an implementation. Second, the finite relations stored in the monitor’s state
cover only a subset of the formula’s free variables, possibly extended by bound variables.
For example, consider the state A(x,y)∧Z1 (B(x)U(Z2,U ,T)C(x)). The relations in the list
U are unary because they assign values to x only. A valuation (x 7→ a) contained in such a
relation is compatible with a restriction R iff there exists a valuation v ∈ R with v(x) = a.
This generalizes in the obvious way to relations of higher arity. Thus P must be true for
a valuation iff it is compatible with R. We can always define such a P in theory, but an
implementation will provide a specialized function for the specific slicing strategies that
it uses. The lift functional lifts a predicate function P to a context with a bound variable
x. Therefore, lift(P,x)(v) is true iff P is true for v with x removed from its domain.

The merge function merge(s1,s2, . . .) combines the list of states by repeatedly apply-
ing a binary merge in arbitrary order. The binary merge function mrg2 is shown in Fig. 4.
Here, map2(f ,A,B) abbreviates map(f , zip(A,B)). We assume that the two inputs to
mrg2 have the same shape. Some parts of the state, like the time-stamp lists T , can thus
be merged by simply taking the value from either state. This works because the shape is

Adaptive Online First-Order Monitoring 11

mrg2(Ma,Mb) =

mrg2(M1a,M1b)⊗mrg2(Za,Zb) mrg2(M2a,M2b) if Mi = M1i⊗Zi M2i

∃x.mrg2(M1a,M1b) if Mi = ∃x.M1i

#(ba,Ta)
I mrg2(M1a,M1b) if Mi =#

(bi,Ti)
I M1i

mrg2(M1a,M1b)U
(mrg2(Za,Zb),mrg2(Ua,Ub),Ta)
I mrg2(M2a,M2b) if Mi = M1i U

(Zi,Ui,Ti)
I M2i

Ma otherwise.

mrg2(〈z1a,z2a〉,〈z1b,z2b〉) = 〈map2(∪,z1a,z1b),map2(∪,z2a,z2b)〉
mrg2(Ua,Ub) = map2(λ 〈τa,Aa,Ba〉,〈τb,Ab,Bb〉.〈τa,Aa∪Ab,Ba∪Bb〉,Ua,Ub)

Fig. 4: Binary merging operations for MonPoly’s state

not affected by slicing, as we have argued before. Relations are merged by taking their
union. This makes sense intuitively because the desired effect of mrg2 and merge is to
be consistent with the union of the states’ restrictions.

Theorem 1. There exists a slicable monitor functionMϕ with a corresponding moni-
toring invariant for the functions Mϕ , split, and merge described in this section.

We prove the existence of the invariant in our formalization [25]. Together with Lemma 1,
which has also been formally verified, we obtain the correctness of the adaptive monitor.

Corollary 1. The adaptive parallel monitor A(Mϕ) constructed from Mϕ , split, and
merge is functionally equivalent to the monitor functionMϕ .

5 Implementation and Evaluation

We have extended the MonPoly monitoring tool [8] with the state split and merge func-
tionalities, adding about 960 lines of OCaml. The source code is available online [25].
Note that MonPoly implements optimizations that are beyond the scope of this paper.
Specifically, subformula evaluation is less eager [7], with binary operators evaluating the
right subformula only when the left subformula can be evaluated. MonPoly treats subfor-
mulas of the form ♦I ϕ and �I ϕ in a special way by greedily reusing intermediate compu-
tations of the (associative) union in a sliding window bounded by the interval I [9]. Also,
MonPoly filters out events and time points with no events when they do not influence the
monitor’s output [6]. Still, our implementation takes all of these optimizations into ac-
count, with the exception of the empty time-point filtering, which we leave as future work.

We have also extended our online slicing framework [24] to enable dynamic changes
to the slicing strategy. The extended framework can synchronously redistribute the
parallel submonitors’ states. The redistribution consists of splitting the states of all
submonitors and forwarding the splits to the appropriate monitors before all of them
resume monitoring. The framework uses Apache Flink [2] to achieve low latency stream
processing with fault tolerance. However, we directly invoke the monitors on prepared
files for the purpose of this evaluation, due to Flink’s limited state migration capabilities.

12 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

star =
(
(�[0,10s) P(a,b))∧Q(a,c)

)
∧♦[0,10s) R(a,d)

linear =
(
(�[0,10s) P(a,b))∧Q(b,c)

)
∧♦[0,10s) R(c,d)

triangle =
(
(�[0,10s) P(a,b))∧Q(b,c)

)
∧♦[0,10s) R(c,a)

Fig. 5: MFOTL formulas (after negation) used in the evaluation

We have validated our approach and evaluated the performance of our implementation
by answering the following research questions:
RQ1: Does dynamically adapting the splitting strategy improve the performance?
RQ2: How scalable is the adaptive monitoring with respect to the stream event rate and

the degree of parallelism, i.e., the number of submonitors?
RQ3: How much overhead is incurred by a single adaptation?

To answer the above questions we designed a parametric testbed for measuring the
performance of both non-adaptive and adaptive monitoring [25]. For n adaptation steps,
the testbed takes a list of n+1 stream statistics and creates an event stream that consists
of n+1 parts, each conforming to the respective statistics. Given an input formula, the
testbed performs two monitoring runs: a non-adaptive run, which uses a slicing strategy
optimized [24] for the first part of the stream to monitor the entire stream, and an adaptive
run, which uses stream statistics for each part of the stream to construct a sequence of opti-
mized slicing strategies. Each part of the stream is sliced according the appropriate slicing
strategy. The number of slices is equal to the degree of parallelism, which is configurable.
Alternatively, we could consider the entire stream’s aggregate statistics to compute a
strategy for the non-adaptive run. However, we believe that our setup is more suitable
for comparing the two online monitoring approaches, whereas the alternative assumes
complete knowledge of the stream—a trait often associated with offline monitoring.

We fix the number of adaptations n to one. Hence, we define two stream statistics for
the corresponding parts of the streams. We focus our evaluation on single adaptations
in order to properly isolate and measure the effects of specific changes in the stream
statistics on the monitoring performance. While having multiple adaptation steps is
certainly more realistic, this would not contribute to answering our research questions as
the results would be harder to interpret and the space of possible stream statistics would
be much larger. When monitoring a formula containing future subformulas, the monitor
often needs to establish a lookahead. During this process, the monitor exhibits better
performance as it performs simple updates to its state without outputting any verdicts.
To prevent this behavior from effecting our measurements, we add an additional prefix
to our streams as a warmup, generated with identical statistics as the stream’s first part.

We monitor the three formulas shown in Figure 5 (named star, linear, and triangle)
over streams with different event rates and stream statistics. The different variable
patterns in the formulas cover common patterns in database queries [10], which we
additionally extend with temporal operators. Given a stream ρ = 〈τi,Di〉i∈N, its event rate
at time τ is the total number of events in one time unit, i.e., |{e ∈ Di | τ = τi}|. Stream
statistics consist of relative relation rates (i.e., the fraction of events in a time unit with a
certain name) and heavy hitter values (i.e., event attribute values that occur frequently).

We implemented a stream generator that takes a random seed and stream statistics,
and synthesizes a random stream that conforms to the supplied statistics. Specifically,
it produces streams containing events with the names P,Q, and R. The event rate and the

Adaptive Online First-Order Monitoring 13

stream statistics for part 2 description event rate for formula
star linear triangle

S1 rP = 0.01, rQ = rR = 0.495 reduce relation rate for P 2500 1300 1300
S2 rP = rQ = 0.495, rR = 0.01 reduce relation rate for R 2500 1300 1300
S3 rP = rQ = 0.01, rR = 0.98 reduce relation rates for P and Q 2500 1300 1300
S4 da = Zipf, za = 10, sa = 1000 add a single heavy hitter value 75 1300 1300

S5 default remove a single heavy hitter value 75 1300 1300
S6 da = Zipf, za = 10, sa = 2000 change the heavy hitter value 75 1300 1300
S7 da = Zipf, za = 2, sa = 1000 add more heavy hitter values 75 1300 1300
S8 dc = Zipf, zc = 10, sc = 1000 change the heavy hitter variable 75 400 700
S9 da = dc = Zipf, za = zc = 10, sa = sc = 1000 add more heavy hitter variables 75 700 700

Fig. 6: Stream statistics used in our experiments (omitted parameters have default values)

rate of verdicts is configurable. Each of the three events has two integer attributes. The
generator can also synthesize streams with configurable relative relation rates and force
some event attribute values to be heavy hitters. Attribute values are sampled with two
possible distribution types. Infrequent values are drawn from the uniform distribution
over the set {0,1, . . . ,109−1}. Heavy hitter values are drawn from a Zipf distribution that
can be defined per variable. Its probability mass function is p(x) = (x− s)−z/∑

109

n=1 n−z

for x ∈ {s+1,s+2, . . . ,s+109}, i.e., the larger the exponent z > 0 is, the fewer values in
the variable valuation have a large relative frequency. The parameter s is the start value,
which can also be configured to control the specific heavy hitter values. We call variables
with heavy hitter values heavy hitter variables. To prevent excessive monitor output, all
Zipf-distributed values of R events are shifted (i.e., increased by 106), whereas events
that cause the monitor to output a verdict have their values always drawn uniformly.

Figure 6 summarizes the stream statistics (in terms of the parameters supplied to the
stream generator) used in our experiments. The total time span of each stream across
all parts is 1000 seconds. The parameters rP,rQ, and rR are the relative relation rates for
relations P,Q, and R, respectively, each with the default value 1/3. The parameters da, db,
and dc are the distribution types for values occurring in valuations of the variables a, b,
and c respectively. Values are distributed uniformly by default. For a Zipf-distributed vari-
able x, zx and sx define its Zipf exponent and the starting value. We distinguish between
nine representative changes in the stream statistics, labelled S1–S9 in the leftmost column
in Figure 6. For S1–S4, all parameters assume default values in the streams’ first part.
For S5–S9, the first part is generated using the default parameters, except that da = Zipf,
za = 10, sa = 1000. The second column shows the parameters for the second part. The
third column describes the change informally. Such changes of the stream statistics can
have a large impact on a monitor’s performance. For example, the monitoring time can
differ in orders of magnitude between the two stream parts generated by S4. This is due to
the size of the intermediate results that the monitor computes for the subformulas. Their
size can grow significantly if a heavy hitter is added (consider the satisfying valuations of
(�[0,10s) P(a,b))∧Q(a,c) when a is a heavy hitter variable). To overcome this problem,
we have chosen the event rates such that it takes at most 25 seconds to monitor each slice.
We searched and sampled monitoring times for event rates between 10 and 6000 events
per second. The chosen event rates are summarized in the last three columns of Figure 6.

We measured the execution time for monitoring each slice of each stream part and
each run, as well as the time to split and merge states during the adaptive run. Each run is

14 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

S1 S2 S3 S4 S5 S6 S7 S8 S9

1/8
1/4
1/2

1
2
4
8

0.
50

4.
40

0.
55

25
.4

4

0.
10

1.
76

1.
25

0.
10

0.
41

0.
17

1.
16

0.
19

25
.2

8

0.
06

1.
74

0.
87

0.
06

0.
23

0.
06

0.
31

0.
07

1.
70

0.
03

1.
82

0.
45

0.
03

0.
12

stream statistics

sp
ee

du
p

(lo
g)

star formula

na
[s

]

S1 S2 S3 S4 S5 S6 S7 S8 S9

0.
43

4.
74

0.
43

3.
25

3.
22

3.
22

3.
24

2.
30

6.
73

0.
22

1.
34

0.
31

1.
22

1.
22

1.
20

1.
20

1.
07

3.
03

0.
10

0.
75

0.
13

0.
54

0.
53

0.
53

0.
53

0.
21

0.
64

stream statistics

linear formula

S1 S2 S3 S4 S5 S6 S7 S8 S9

0.
37

4.
51

0.
31

4.
31

3.
02

5.
72

5.
31

1.
94

3.
54

0.
18

2.
52

0.
14

2.
49

1.
63

3.
18

1.
95

1.
68

1.
51

0.
11

1.
24

0.
06

2.
48

0.
74

2.
70

1.
54

0.
68

1.
25

stream statistics

triangle formula

8 submonitors 16 submonitors 32 submonitors

Fig. 7: Observed speedup (the ratio of the non-adaptive and the corresponding adaptive
monitoring times) for different stream statistics, number of submonitors, and formulas

event
rate

star formula linear formula triangle formula
na [s] ad [s] na/ad ohd na [s] ad [s] na/ad ohd na [s] ad [s] na/ad ohd

1000 0.75 0.72 1.04 1.5% 2.86 0.89 3.22 5.4% 2.77 0.73 3.78 6.3%
2000 2.82 2.79 1.01 2.1% 11.05 3.38 3.27 3.9% 10.63 2.83 3.76 2.2%
4000 10.80 10.85 0.99 1.9% 44.80 14.04 3.19 1.8% 41.97 11.13 3.77 2.0%
6000 24.23 24.39 0.99 1.0% 111.90 30.75 3.64 1.1% 94.83 26.45 3.59 1.5%

Fig. 8: Observed speedup or slowdown (na/ad) and overhead (ohd) for different event
rates and formulas when monitoring streams with statistics S2 using 8 submonitors

repeated three times and the measurements are averaged. Our experiments were executed
on a machine with an Intel Core i5-7200U CPU running at 2.5 GHz, with 8 GB RAM.
We monitored all slices sequentially, such that only one thread was active at any time.

Figure 7 summarizes the results of our evaluation using the parameters from Figure 6.
We compare the execution times between the two types of monitoring runs (non-adaptive
and adaptive) on the last part (part 2) of the event stream, where the slicing strategies
differ. We consider the maximum time across all slices for each run. The bars show the
observed speedup, i.e., the ratio of the time taken by the non-adaptive and the corre-
sponding adaptive monitoring run. The non-adaptive time in seconds is given below each
bar. To answer RQ1, note that monitoring the star formula does not benefit from the
adaptation in most cases. This is due to its particular structure: The common variable a
is the most efficient choice for slicing, independently of the relation rates (S1–S3). How-
ever, if any of a’s valuations becomes a heavy hitter, the slices are no longer balanced
and adaptivity helps (S4). In our non-adaptive runs with S4, the increased monitoring
time when using 8 and 16 submonitors is due to a single slice accidentally receiving
both the heavy hitter value and its shifted counterpart for R events. If a heavy hitter
value is removed (S5, S6, S8), all slices in the adaptive run are monitored efficiently
except for one that receives the first part’s state associated with the heavy hitter. As
this information is still relevant up to 10 seconds after the statistics change (due to the
temporal subformulas’ intervals), the corresponding monitor has a significantly larger
workload, which causes the slowdown. This could be avoided by taking the formula’s
intervals into account to delay the adaptation by an appropriate amount of time.

Adaptive Online First-Order Monitoring 15

In general, adaptation helps when monitoring the linear and triangle formulas. We
obtained the largest consistent speedups for S2 (between 3.5 and 10.3 times for triangle).
Here, the reduction of the slices’ event rates due to the adaptation is reflected by the
reduced execution time. Adapting to heavy hitters is often beneficial for those formulas,
too. The slowdown observed for some numbers of submonitors is due to the impossibility
to decompose these numbers into optimal factors, e.g., 8 into an integer square root [24].

Regarding RQ2, Figure 8 shows that higher event rates increase the benefit of adap-
tation if the stream statistics allow for a better strategy to be used in the first place. The
columns na and ad show the maximum monitoring time (in seconds) of part 2 across all
slices for the non-adaptive and adaptive monitoring runs, respectively. The measurement
in the ad column includes the time taken to split and merge the state. The na/ad column
shows the speedup, while the ohd column shows the overhead. The overhead is the ratio
between the time spent performing non-monitoring tasks and the adaptive monitoring
time, each summed over all slices. Non-monitoring tasks include state splitting and merg-
ing, as well as the time the submonitors would need to wait before all state fragments
are available to be merged. Since we monitor the slices sequentially in our experiments,
we estimate the wait time as the time difference until the last submonitor has finished
splitting its state. The adaptation overhead ranges from 1% to 6% in our experiments with
S2, and it decreases with the event rate (RQ3). However, the overhead can be as large as
700% in some of the other experiments from Figure 7 (star formula, S5 and S8). This is
generally the result of imbalanced substreams. Thus, some submonitors in a parallel im-
plementation would be forced to wait, for which we account in the overhead calculation.

6 Conclusion

We have laid the foundations of adaptive online monitoring by demonstrating how to im-
plement the core functionality required: the state exchange between the parallel monitors.
The state exchange consists of two operations, split and merge, which we prove to inter-
act correctly with a simplified MFOTL monitor. We also implement them in a realistic
monitor and demonstrate empirically that adapting to changing statistics is beneficial.

As ongoing work, we are extending our operations to support MonPoly’s empty time-
point filtering, which significantly improves performance, especially in combination
with slicing. Because the monitors for the different slices may skip events at different
time-points, their state structures may diverge, which complicates merging.

We have also performed initial experiments using our adaptive version of MonPoly
within our Apache Flink-based parallel monitor [24]. While this setup works in prin-
ciple, its performance is suboptimal, due to limitations of Flink. For example, Flink
only allows exchanging parts of the state by sending all states to all monitors and only
then performing the split operations locally. This incurs a large latency, and another
stream-processing framework might be better suited for our needs. Timely Dataflow [21],
with its recent extension to low-latency state migrations [16] is a promising candidate.

Finally, important questions that we have not studied in this paper are how to collect
the necessary statistics and at which points to trigger adaptivity. While classic sketching
algorithms [13] offer partial answers to the first question, answering the second one
requires a realistic cost model to precisely calculate when adaptivity pays off.

16 J. Schneider, D. Basin, F. Brix, S. Krstić, D. Traytel

Acknowledgment. Christian Fania helped us implement and evaluate our adaptive
monitoring framework. The anonymous reviewers gave numerous helpful comments on
earlier drafts of this paper. Joshua Schneider is supported by the US Air Force grant
“Monitoring at Any Cost” (FA9550-17-1-0306). Srd̄an Krstić is supported by the Swiss
National Science Foundation grant “Big Data Monitoring” (167162).

References

1. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environment. IEEE
Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

2. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F., Heise, A., Kao, O., Leich,
M., Leser, U., Markl, V., Naumann, F., Peters, M., Rheinländer, A., Sax, M.J., Schelter, S.,
Höger, M., Tzoumas, K., Warneke, D.: The Stratosphere platform for big data analytics.
VLDB J. 23(6), 939–964 (2014)

3. Alur, R., Mamouras, K., Stanford, C.: Modular quantitative monitoring. PACMPL 3(POPL),
50:1–50:31 (2019)

4. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in Storm. In: DEBS 2013.
pp. 207–218. ACM (2013)

5. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.A., Hallé, S.: MapReduce for parallel trace
validation of LTL properties. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp.
184–198. Springer (2012)

6. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline
monitoring of temporal specifications. Form. Methods Syst. Des. 49(1-2), 75–108 (2016)

7. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015)

8. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G., Havelund,
K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair
(2017)

9. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing associative aggregations on sliding
windows. Information Processing Letters 115(2), 186–192 (2015)

10. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing. J. ACM
64(6), 40:1–40:58 (2017)

11. Bersani, M.M., Bianculli, D., Ghezzi, C., Krstić, S., Pietro, P.S.: Efficient large-scale trace
checking using MapReduce. In: Dillon, L.K., Visser, W., Williams, L. (eds.) ICSE 2016. pp.
888–898. ACM (2016)

12. Bianculli, D., Ghezzi, C., Krstić, S.: Trace checking of metric temporal logic with aggregating
modalities using MapReduce. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 144–158. Springer (2014)

13. Cormode, G., Garofalakis, M.N., Haas, P.J., Jermaine, C.: Synopses for massive data: Samples,
histograms, wavelets, sketches. Foundations and Trends in Databases 4(1-3), 1–294 (2012)

14. Elseidy, M., Elguindy, A., Vitorovic, A., Koch, C.: Scalable and adaptive online joins. PVLDB
7(6), 441–452 (2014)

15. Hallé, S., Soucy-Boivin, M.: MapReduce for parallel trace validation of LTL properties.
Journal of Cloud Computing 4(1), 8 (2015)

16. Hoffmann, M., Lattuada, A., McSherry, F., Kalavri, V., Liagouris, J., Roscoe, T.: Megaphone:
Latency-conscious state migration for distributed streaming dataflows. PVLDB 12(9), 1002–
1015 (2019)

Adaptive Online First-Order Monitoring 17

17. Kalavri, V., Liagouris, J., Hoffmann, M., Dimitrova, D.C., Forshaw, M., Roscoe, T.: Three
steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming
dataflows. In: Arpaci-Dusseau, A.C., Voelker, G. (eds.) OSDI 2018. pp. 783–798. USENIX
Association (2018)

18. Kolchinsky, I., Schuster, A.: Efficient adaptive detection of complex event patterns. PVLDB
11(11), 1346–1359 (2018)

19. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE: modular
specification and efficient evaluation of quantitative queries over streaming data. In: Cohen,
A., Vechev, M.T. (eds.) PLDI 2017. pp. 693–708. ACM (2017)

20. Mayer, R., Tariq, M.A., Rothermel, K.: Minimizing communication overhead in window-
based parallel complex event processing. In: DEBS 2017. pp. 54–65. ACM (2017)

21. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a timely
dataflow system. In: Kaminsky, M., Dahlin, M. (eds.) SOSP 2013. pp. 439–455. ACM (2013)

22. Reger, G., Rydeheard, D.E.: From first-order temporal logic to parametric trace slicing. In:
Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–232. Springer (2015)

23. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Log. Methods
Comput. Sci. 8(1) (2012)

24. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable online first-order monitoring.
In: Colombo, C., Leucker, M. (eds.) Runtime Verification. pp. 353–371. Springer (2018)

25. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Artifact associated with this paper.
https://bitbucket.org/jshs/monpoly/downloads/aom_atva2019.zip (2019)

26. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for met-
ric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS,
Springer (2019), http://people.inf.ethz.ch/trayteld/papers/rv19-verimon/
verimon.pdf, to appear.

27. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An adaptive parti-
tioning operator for continuous query systems. In: Dayal, U., Ramamritham, K., Vijayaraman,
T.M. (eds.) ICDE 2003. pp. 25–36. IEEE (2003)

28. Vitorovic, A., Elseidy, M., Guliyev, K., Minh, K.V., Espino, D., Dashti, M., Klonatos, Y.,
Koch, C.: Squall: Scalable real-time analytics. PVLDB 9(13), 1553–1556 (2016)

https://bitbucket.org/jshs/monpoly/downloads/aom_atva2019.zip
http://people.inf.ethz.ch/trayteld/papers/rv19-verimon/verimon.pdf
http://people.inf.ethz.ch/trayteld/papers/rv19-verimon/verimon.pdf

	Adaptive Online First-Order Monitoring
	1 Introduction
	2 Preliminaries
	2.1 Metric First-Order Temporal Logic
	2.2 Slicing Framework

	3 Adaptive Slicing
	4 Monitor State Migration
	4.1 Monitoring Algorithm
	4.2 Splitting and Merging

	5 Implementation and Evaluation
	6 Conclusion

