
ATVA

EASY TO USE

C
O

NSIS
TENT

DOCUMENTED

C
O

M
PLETE

R
EPLIC

A
B

LE

Artifact

*

*

*

APPROVED

Multi-Head Monitoring of Metric Temporal Logic

Martin Raszyk, David Basin, Srd̄an Krstić, and Dmitriy Traytel

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

Abstract. We present a novel approach to the offline monitoring of specifications
expressed in metric temporal logic (MTL). Our monitoring algorithm exploits
multiple one-way reading heads that traverse a trace sequentially. We present
both theoretical and practical results that show this substantially improves upon
the state-of-the-art. In particular, our algorithm is the first offline monitoring al-
gorithm for MTL with past and bounded-future temporal operators that is almost
trace-length independent and outputs a trace of Boolean verdicts denoting the
monitored formula’s satisfaction at every position in the input trace. In addition,
our algorithm’s worst-case space complexity is linear in the formula size, while
previous algorithms were exponential. Moreover, we compare our implementa-
tion of the algorithm with another almost trace-length independent tool that out-
puts non-standard verdicts to achieve this space complexity. Our tool used less
memory and runs significantly faster, for example yielding a 10-fold improve-
ment on average on random formulas, while producing better output.

1 Introduction

Monitoring (or runtime verification) is the process of verifying system properties by
analyzing system events against a specification formalizing which event sequences con-
stitute the intended system behavior. Monitoring algorithms (or monitors) can be clas-
sified based on how they interact with the monitored system [11]. A core distinction is
when the events are monitored. Online monitors process events at runtime, as they occur
during system execution. Whereas offline monitors process them after the system has
stopped running. Offline monitors are often seen as special cases of their online coun-
terparts. Indeed, most monitoring algorithms are created independently of whether they
will be used online or offline: they process one event at a time, in order of appearance.

There is however an important distinction between the two classes of monitors. On-
line monitors sequentially analyze a potentially unbounded stream of events and, due
to the nature of streams, each event can be read only once. If an event is needed for
subsequent analysis, an online monitor must keep it in memory. An online monitor’s
computation can be viewed as reading the stream with a single one-way reading head
that moves forward only, updating the monitor’s state, and producing output. Offline
monitors, in contrast, analyze finite sequences of events, called traces, typically stored
in files. An offline monitor is thus equipped with a reading head without movement
constraints. Indeed, offline monitors may, effectively, have multiple heads (correspond-
ing to indices in the trace) that read from multiple locations simultaneously. We note
though that there are good reasons to process events in order, even in offline monitor-
ing. First, the raw performance of sequential reads outperforms random access reads

2 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

due to prefetching and other low-level file system and hardware specifics [15]. Second,
we can delete parts of the trace processed by all reading heads and append new events
at the end, and thus, effectively emulate online monitoring. Hence, we will exploit the
multiple heads, not the ability to read in both directions.

Our thesis in this paper is that by exploiting multiple (but finitely many) one-way
reading heads that traverse a trace in order (Section 3), offline monitoring differs from,
and improves upon, online monitoring. The ability to read each input multiple (but
finitely many) times allows us to obtain strictly better complexity results. We establish
this result for monitoring specifications expressed in metric temporal logic (MTL) [19]
(Section 2). Moreover, we obtain the first offline almost trace-length independent [3]
monitoring algorithm for MTL with past and bounded-future that outputs a trace of
Boolean verdicts denoting the formula’s satisfaction at every position in the input trace.
Here, “almost” denotes a logarithmic dependence of the monitor’s space complexity on
the trace’s length, stemming from the need to store the length in binary representation.

Our main contributions are: (i) a multi-head monitoring algorithm for MTL (Sec-
tion 4); (ii) its correctness and complexity analysis (Section 5); and (iii) an implemen-
tation (available at [20]) and evaluation (Section 6). Both our complexity analysis and
evaluation show significant improvements over the state-of-the-art.

Related Work An MTL formula’s satisfaction is defined (Section 2) with respect to a po-
sition in a trace, which is an infinite word. A monitor takes as input a finite prefix of this
trace. Monitoring is sometimes understood as the task of computing a single Boolean
verdict denoting whether the formula is satisfied at the first position in the trace. For
such monitors, there exist trace-length independent algorithms [8,13,17,24]. These are
algorithms whose space complexity is independent of the length of the finite prefix.
This property is highly desirable because it distinguishes the monitors that can handle
large traces from those that cannot. In contrast, we consider monitors that output entire
traces of Boolean verdicts. That is, rather than outputting that a trace violates a formula,
the monitor outputs every position where such a violation occurs. This output provides
more insight into why and when the property was violated. There are trace-length inde-
pendent algorithms for past-only LTL based on dynamic programming [16] and Thati
and Roşu’s interval-shifting [24] allows one to extend these results to past-only MTL.

Roşu and Havelund [22] develop a dual trace-length independent dynamic program-
ming offline monitor for future-only LTL that traverses the trace backwards. Their idea
is generalized by Sanchez [23], who proposes to alternate forward and backward traver-
sals in the context of stream runtime verification [9,12,14], pioneered by Lola [10]. He
claims to obtain trace-length independence for well-formed Lola specifications, which
can express LTL with past and future. However, his complexity analysis appears to gloss
over intermediate streams, which are as large as the input trace and store the results of
backward passes to be reused in later forward passes. For LTL, this corresponds to as-
suming that verdicts for subformulas are available to evaluate a temporal formula, e.g.,
an until formula, without counting the memory used to store this information.

Basin et al. [2] develop almost trace-length independent algorithms for MTL (in
fact, almost event-rate independent, which is a stronger property that is desirable for on-
line monitoring) with past and future temporal operators. To achieve almost trace-length
independence, they mix non-standard equivalence verdicts with standard Boolean ones.

Multi-Head Monitoring of Metric Temporal Logic 3

(ρ, i) |= p iff p ∈ Γi
(ρ, i) |= ¬ϕ iff (ρ, i) 6|= ϕ

(ρ, i) |= ϕ1∨ϕ2 iff (ρ, i) |= ϕ1 or (ρ, i) |= ϕ2
(ρ, i) |= Iϕ iff i > 0 and τi−τi−1 ∈ I and (ρ, i−1) |= ϕ

(ρ, i) |=#Iϕ iff τi+1−τi ∈ I and (ρ, i+1) |= ϕ

(ρ, i) |= ϕ1 SI ϕ2 iff (ρ, j) |= ϕ2 for some j≤ i with τi−τ j ∈ I and (ρ, k) |= ϕ1 for all j < k ≤ i
(ρ, i) |= ϕ1 UJ ϕ2 iff (ρ, j) |= ϕ2 for some j≥ i with τ j−τi ∈ J and (ρ, k) |= ϕ1 for all i≤ k < j

Fig. 1: Semantics of an MTL formula for a stream ρ= 〈(τi,Γi)〉i∈N and a time-point i

Equivalences can be resolved to Boolean verdicts but this (trace-length dependent) task
is offloaded to the monitor’s user. Our algorithm outputs standard Boolean verdicts
and is almost trace-length independent. Moreover, their algorithm’s space complexity
is doubly exponential in the formula size, whereas ours is linear (Section 5.2).

In an independent line of work, we show how multiple reading heads can be lever-
aged to eliminate non-determinism from functional finite-state transducers [21].

2 Metric Temporal Logic

We recap the discrete-time point-based semantics of metric temporal logic (MTL) and
refer to Basin et al. [6] for a comprehensive comparison with other semantics.

Let T = N be the set of time-stamps, Ifin the set of non-empty finite intervals over
T, and I∞ the set of infinite intervals over T. We write elements of Ifin as [l,r], where
l,r ∈ T, l≤ r, and [l,r] = {x ∈ T | l≤ x≤ r}. Similarly, elements of I∞ are written [l,∞]
and denote {x∈T | l≤ x}. Let I= Ifin∪I∞ be the set of all (non-empty) intervals over T.

MTL formulas over a finite set of atomic predicates P 6=∅ are defined inductively:

ϕ= p | ¬ϕ | ϕ1∨ϕ2 | I ϕ |#I ϕ | ϕ1 SI ϕ2 | ϕ1 UJ ϕ2,

where p ∈ P, I ∈ I, and J ∈ Ifin. This minimal syntax includes Boolean operators and
the temporal operators (previous) I , (since) SI , (next) #I , and (until) UJ . We employ
the usual syntactic sugar for additional Boolean constants and operators true = p∨¬p,
false=¬true, ϕ∧ψ=¬(¬ϕ∨¬ψ), and temporal operators (once) �Iϕ= true SI ϕ, (his-
torically) �Iϕ= ¬�I¬ϕ, (eventually) ♦Jϕ= true UJ ϕ, and (always) �Jϕ= ¬♦J¬ϕ.

MTL formulas are interpreted over streams, which are infinite sequences of events.
An event has the form (τi,Γi), where the time-stamp τi ∈T is a nonnegative integer and
Γi ⊆ P is a subset of atomic predicates. We denote the set of events by E= T×2P. We
further assume that the sequence of time-stamps 〈τi〉i∈N is monotonically (non-strictly)
increasing, i.e., τi ≤ τi+1, for all i ∈ N, and unbounded, i.e., for every τ ∈ T, there is
an index (time-point) i ∈ N such that τi ≥ τ. A finite prefix ρ≤i = ρ0 . . .ρi of an event
stream ρ is called a trace. Figure 1 shows the standard semantics of MTL formulas.

We define reach([l,r]) = r if r <∞, and reach([l,r]) = l−1 otherwise. For the SI op-
erator (and analogously for the UJ operator), reach(I) is the maximum value τi−τ j (see
Figure 1) that our monitor stores during its evaluation. We define the set SF(ϕ) of all
formula ϕ’s subformulas as usual (including ϕ) and the size |ϕ|= |SF(ϕ)|. We define the
formula ϕ’s temporal size ‖ϕ‖ to be the sum of |ϕ| and reach(I) for all intervals I in ϕ.

4 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

3 Multi-Head Monitoring

The computation of an online monitor on an infinite event stream can be viewed as read-
ing the stream with a single head moving forwards only (i.e., a one-way reading head),
updating the monitor’s state, and optionally producing an output, i.e., some verdicts. A
multi-head monitor extends an online monitor with multiple one-way reading heads.

Definition 1. A multi-head monitor is a tuple M = (P,V, κ,Q,q0, δ), where P is a non-
empty finite set of atomic predicates, V is a verdict alphabet, κ∈N is the number of one-
way (reading) heads, Q is a set of states, q0 ∈Q is an initial state, and δ : Q×Eκ→Q×
{0,1}κ×(V∪{⊥}) is a step function that maps a state and the events read by the heads
to a new state, offsets that indicate which heads to advance, and an optional verdict.

This computational model in principle allows for an infinite set of states, which may
seem unreasonable in practice. Rather than a priori restricting the model, we provide a
space bound for our multi-head monitoring algorithm in Section 5 (Theorem 3).

The configuration of a multi-head monitor M consists of the current state and the
reading heads’ positions. Formally, the set of configurations is C= Q×Nκ. Let ρ[p] ∈
Eκ denote the events read from the stream ρ by the heads positioned at p∈Nκ. The com-
putation on a stream ρ is an infinite sequence of configurations 〈(qi, pi)〉i∈N that starts
with the initial configuration (q0,0) and in which any two consecutive configurations
(qi, pi), (qi+1, pi+1) satisfy δ(qi,ρ[pi]) = (qi+1, pi+1− pi,v′i), for some v′i ∈ V ∪ {⊥}.
Finally, the output of a computation on a stream is the concatenation of the verdicts
v′i 6=⊥, i.e., a (potentially empty) sequence 〈vi〉i<n, with vi ∈ V and n ∈ N∪{∞}.

For the remainder of this paper, let V = T×B be the verdict alphabet, that is, a ver-
dict v = (t,b) is a Boolean value b ∈ B= {tt,ff} time-stamped by t ∈ T. Note that, with
this choice of V , the step function returns at most one time-stamped Boolean verdict at
a time, which simplifies the algorithm’s presentation and complexity analysis.

An output 〈(tk,bk)〉k<n of a computation on a stream ρ is sound with respect to an
MTL formula Φ if and only if the time-stamps tk correspond to the time-stamps on the
prefix ρ<n and the Boolean values bk reflect the formula’s semantics at the time-points k.
Formally, the output 〈(tk,bk)〉k<n of the computation on a stream ρ = 〈(τi,Γi)〉i∈N is
sound if and only if the following predicate SOUNDΦ(ρ,〈(tk,bk)〉k<n) holds:

SOUNDΦ(ρ,〈(tk,bk)〉k<n)≡ ∀k. k < n→ (τk = tk ∧ ((ρ,k) �Φ⇐⇒ bk)).

In the subsequent text, we use [m]0 for the set {0, . . . , m}, and [m] for the set {1, . . . , m}.

4 Multi-Head Monitoring of Metric Temporal Logic

We structure our multi-head monitor for a given formula Φ into two procedures. The
first, recursive procedure follows Φ’s structure (Section 4.1). In doing so, it recursively
runs a separate multi-head monitor instance for each direct subformula of Φ. The pro-
cedure may invoke the step function of an instance multiple times until a verdict is
produced. This may be necessary when future subformulas are monitored. The verdicts
already produced by other instances are cached. Once every instance has produced a
verdict, the second procedure is invoked. It combines the verdicts for Φ’s direct subfor-
mulas into a verdict forΦ based on the semantics ofΦ’s top-level operator (Section 4.2).

Multi-Head Monitoring of Metric Temporal Logic 5

(0, {a}) (0, {a}) (2, {a}) (4, {a, b}) (5, {a}) (10, {b})

a b

a S[0,4] b

a b

aU[0,4] b

(a S[0,4] b)∨(aU[0,4] b)

Fig. 2: Multi-head monitor’s structure

In general, a monitor running many multi-head (sub)monitors is itself a multi-head
monitor, inheriting reading heads from its submonitors. All such reading heads can
move independently and asynchronously. In our monitor, the number of reading heads
for a formula Φ equals the number of atomic subformulas in Φ.

Example 1. Consider the formula Φ = (a S[0,4] b)∨ (a U[0,4] b), which has four atomic
subformulas corresponding to two occurrences of each of a and b. Figure 2 shows the
monitor’s structure as well as a snapshot of the four reading heads’ positions while
monitoring a trace. The reading heads are depicted as the gray triangles. In the current
snapshot, the monitor for Φ has just produced a verdict for the first position. To do so,
it needed the two corresponding verdicts for its two direct subformulas a S[0,4] b and
a U[0,4] b. The submonitor for a S[0,4] b could deliver the verdict after reading the first
position (and then advancing its heads to the second position). In contrast, the submon-
itor for a U[0,4] b could only produce a verdict for the first position in this trace after
reading the fourth position (and then advancing its heads to the fifth position).

4.1 First Procedure: Recursively Running the Multi-Head Monitors

To formally construct our multi-head monitor for an MTL formula Φ over a finite set
of atomic predicates PΦ, we perform a case distinction on the structure of Φ.

Atomic Predicate Let Φ= p, where p ∈ PΦ. The monitor checks whether p is included
in an event. For this, a single reading head suffices and no state is needed. Formally,
κΦ= 1, QΦ= {⊥}, and qΦ0 =⊥. The step function is δΦ(⊥, (τ, Γ)) = (⊥, 1, (τ, p ∈ Γ)).

Recursive Formula Let the top-level operator of Φ be op, where op∈ {¬/1, ∨/2, I/1,
#I/1, SI/2,UJ/2} and the number next to an operator op denotes its arity η(op). For
i ∈ [η(op)], let ϕi be a direct subformula of Φ and Mϕi = (Pϕi , V, κϕi , Qϕi , qϕi

0 , δ
ϕi) be

its multi-head monitor, which we construct recursively.
At this point, we abstract the operator evaluation procedure (Section 4.2). Specifi-

cally, we assume that each operator op comes with a set of states Cop, an initial state
cop0 , and a step function sop : Cop×T×Bη(op) → Cop×V∗. The step function is ap-
plied to a state, a time-stamp, and a tuple of Boolean values coming from the recursive
invocations of the submonitors. It returns the new state and a list of verdicts.

Evaluating the operator op does not require any reading heads. Thus the number of
heads κΦ of MΦ is the sum of the numbers of heads κϕi of Mϕi for all Φ’s direct subfor-
mulas ϕi. In particular, for each Mϕi , there is a subset of MΦ’s heads belonging to Mϕi .

6 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

δΦ : QΦ×EκΦ → QΦ×{0,1}κΦ × (V ∪{⊥})
1 δΦ((qs, bs, cop, vs), es) = match vs do
2 case v · vs′⇒ return ((qs, bs, cop, vs′), 0, v)
3 case ε⇒
4 let i be the smallest index such that bs[i] =⊥
5 let esi be the events from es read by heads belonging to Mϕi

6 (qϕi , msi, v) := δϕi(qϕi , esi)
7 match v do
8 case (τ, b)⇒ bs[i] := b
9 if i = η(op) then (cop, vs) := sop(cop, τ, bs)

10 bs :=⊥ fi
11 case ⊥⇒ od
12 let ms extend offsets msi (from Mϕi) with zero offsets (from Mϕ j , j 6= i)
13 return ((qs, bs, cop, vs), ms,⊥) od

Fig. 3: Recursive monitor

Figure 3 shows our multi-head monitor MΦ for the formula Φ. Its state, (qs, bs, cop,
vs), stores a tuple qs whose i-th component is a submonitor’s state qϕi and a tuple bs
of optional Boolean values that cache the latest unprocessed verdict produced by Mϕi .
Moreover, the state of MΦ stores a state cop for evaluating the operator op as well as a
list vs of time-stamped Boolean verdicts produced by evaluating the operator op, but not
yet output. As long as vs is non-empty, the monitor outputs verdicts from it (line 2). Oth-
erwise, the monitor repeatedly triggers its submonitors to produce a verdict (lines 3–13).
Note that a submonitor does not need to produce a verdict upon each evaluation of its
step function (line 7). Once MΦ knows the Boolean verdicts for all subformulas, it can
apply the operator-specific computation (line 9), which may return some new verdicts
vs for Φ. Afterwards, it resets bs to eventually continue the subformulas’ evaluation.

The initial state of MΦ consists of a tuple qs, whose i-th component is qϕi
0 , a tuple

bs consisting of ⊥, the initial state cop0 for evaluating the operator op, and an empty list
ε of time-stamped Boolean verdicts.

4.2 Second Procedure: Evaluating a Top-Level Operator

We describe how to evaluate each individual MTL operator by defining its set of states
Cop, initial state cop0 , and the step function sop : Cop×T×Bη(op)→Cop×V∗.

Negation and Disjunction For Boolean operators op ∈ {¬,∨}, no state is needed and
the step function simply combines its Boolean inputs. We have Cop = {⊥}, cop0 =⊥, and

s¬(⊥, τ, b) = (⊥, (τ, ¬b)),
s∨(⊥, τ, b1, b2) = (⊥, (τ, b1∨b2)).

Previous and Next For op= I , the state stores the time-stamped Boolean value, denot-
ing the operator’s subformula’s satisfaction at a previous time-point, if the current time-
point is not the initial time-point. The state for op=#I is the same, only that no Boolean

Multi-Head Monitoring of Metric Temporal Logic 7

value is stored. More formally, C I = (T×B)∪{⊥} and C#I = T∪{⊥}. The initial
state is cop0 =⊥ in both cases. For I , the step function propagates the stored Boolean
value to its output if the time-stamp constraints given by I are satisfied. For#I , the step
function also checks the constraints. If the check passes, it outputs the given Boolean in-
put denoting the satisfaction of the operator’s subformula at the current time-point as the
verdict for the previous time-point (whose time-stamp is stored in c#I). The initial state
must be treated specially in both cases. Formally, the step function is defined as follows:

s I (c, τ, b) =

{
((τ, b), (τ, b′ ∧ (τ−τ′ ∈ I))) if c = (τ′, b′),
((τ, b), (τ, ff)) if c =⊥,

s#I (c, τ, b) =

{
(τ, (τ′, b ∧ (τ−τ′ ∈ I))) if c = τ′,

(τ, ε) if c =⊥.

Since and Until These temporal operators are more complex. For the since operator, the
state keeps a history of satisfaction witnesses that correspond to the time-points j in the
MTL semantics of the since operator for the operator’s satisfaction at the current time-
point i (Figure 1). For the until operator, the state keeps a history of satisfaction candi-
dates that correspond to the time-points i, for which a future time-point could become
the time-point j in the MTL semantics of the until operator (Figure 1). Instead of storing
the time-points explicitly, we represent them by a list of zeros interleaved with (posi-
tive) time-stamp differences between the successive time-points. For example, consider
the case where the monitor for the since operator has processed the following eight
time-points j with the time-stamps τ j and the corresponding Boolean values b j

1 and b j
2.

j 0 1 2 3 4 5 6 7
τ j 4 8 10 10 11 11 11 14
b j

1 tt tt tt tt tt tt tt tt

b j
2 tt ff tt tt tt ff ff ff

The satisfaction witnesses here are the time-points 0, 2, 3, 4, marked in gray above. Our
history represents them with the list [0, 4, 2, 0, 0, 1, 0, 3], where every zero corresponds
to a satisfaction witness and the other numbers show only the non-zero time-stamp dif-
ferences between the successive time-points. Note that the history can be obtained from
the list of all time-stamp differences [4, 2, 0, 1, 0, 0, 3] by dropping all zero time-stamp
differences [4, 2, 1, 3] and then inserting a zero for each satisfaction witness at the corre-
sponding position [0, 4, 2, 0, 0, 1, 0, 3]. Crucially for our space complexity analysis, we
store such lists using a run-length encoding, where we compress subsequences τ, . . . , τ
to the pair (τ,n), where n is length of the subsequence. We use a shorthand notation for
run-length encoded lists, e.g. writing 04202103 for the above list.

The state stores also the time-stamp (and, for the since operator, the Boolean value,
too, similarly to I) at a previous time-point, if the current time-point is not the initial
time-point. Formally, CSI = ((T×B)∪ {⊥})×T∗ and CUJ = (T∪ {⊥})×T∗. The
initial state is cop0 = (⊥, ε) for both operators.

To define the step functions, we first define the following operations on the lists of
time-stamp differences. SUM(ts) is the sum of all time-stamp differences in the list ts.

8 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

sS[l,r] : CS[l,r] ×T×B2→CS[l,r] ×V∗ sU[l,r] : CU[l,r] ×T×B2→CU[l,r] ×V∗

1 sS[l,r]((v, ts), τ, b1, b2) = match v do 1 sU[l,r]((t, ts), τ, b1, b2) = match t do
2 case (τ′,b)⇒ β := b 2 case τ′⇒ if τ′ < τ∧ ts 6= ε then
3 if τ′ < τ∧ ts 6= ε then 3 ts := ts · (τ−τ′) fi
4 ts := ts · (τ−τ′) fi 4 case ⊥⇒ od
5 case ⊥⇒ β := ff od 5 vs := ε

6 (_, ts) := SPLIT(ts, λs. s≤ r) 6 (ds, ts) := SPLIT(ts, λs. s≤ r)
7 if ¬b1 then ts := ε 7 vs := vs ·RES(ds, τ−SUM(ts), ff)
8 β := ff fi 8 ts := ts ·0
9 if b2 then ts := ts ·0 fi 9 if b2 then

10 if r < ∞ then 10 (ds, ts) := SPLIT(ts,λs. s < l)
11 β := (ts 6= ε ∧ SUM(ts)≥ l) 11 vs := vs ·RES(ds, τ−SUM(ts), tt) fi
12 else 12 if ¬b1 then
13 (ds, ts) := SPLIT(ts, λs. s < l) 13 vs := vs ·RES(ts, τ, ff)
14 if ds 6= ε then β := tt fi fi 14 ts := ε fi
15 return (((τ, β), ts), (τ, β)) 15 return ((τ, ts), vs)

Fig. 4: Step functions for S[l,r] and U[l,r]

For a predicate π on T, SPLIT(ts, π) = (ts1, ts2) partitions the list ts into two lists ts1
and ts2, such that the list ts1 is as short as possible and the list ts2 is either empty or
starts with a zero and its sum SUM(ts2) satisfies the predicate π.

Formally, we evaluate the since and until operators on a streamσ= 〈(τi, bi
1, bi

2)〉i∈N,
where b1 and b2 are the streams of Boolean values incrementally received by the oper-
ator’s step function. After processing the time-point i, each time-point j≤ i satisfying

τi−τ j ≤ reach([l,r]) ∧ b j
2 ∧ ∀k.

(
j < k ≤ i =⇒ bk

1

)
if op = S[l,r],

τi−τ j ≤ reach([l,r])∧∀k.
(

j≤ k ≤ i =⇒ bk
1∧
(

bk
2 =⇒ τk−τ j < l

))
if op =U[l,r],

corresponds to a unique suffix 0 · ts′ of the list ts in the operator op’s state satisfying
SUM(ts′) = τi−τ j. In particular, ts satisfies SUM(ts)≤ reach([l,r]).

Figure 4 shows the definitions of the step functions. For the SI operator, we proceed
in four main steps. (1) We compute the current time-stamp difference and add it to the
history (lines 3–4). (2) We drop the time-stamp differences that fall out of the interval
I from the history (line 6). (3) We use the Boolean values denoting the subformula’s
satisfaction at the current point to update the history, starting with the since operator’s
first (left) subformula (lines 7–9). If the first subformula is not satisfied, all previous sat-
isfaction witnesses of the since operator stored in the history are invalidated and must
be dropped (line 7). If the second subformula is satisfied, we add a new satisfaction
witness (line 9). (4) The output of the operator is in each step a single Boolean verdict
denoting whether there is a satisfaction witness starting in the interval I (lines 2, 5, and
10–14; the latter distinguish between finite and infinite intervals). For the UJ operator,
steps (1) (lines 2–3), (2) (line 6), and (3) (lines 9–14) are similar, except that the subfor-
mulas are checked in the reverse order starting from the until operator’s second (right)
subformula. The main difference is the way the until operator’s evaluation resolves the
satisfaction candidates to Boolean verdicts (lines 7, 11, and 13). This resolution uses

Multi-Head Monitoring of Metric Temporal Logic 9

ϕ1 = a S[0,4] b ϕ2 = a U[0,4] b
Trace cS[0,4] Verdicts cU[0,4] Verdicts

(⊥, ε) (⊥, ε)
(0,{a}) ((0,ff), ε) (0,ff) (0,0) ε

(0,{a}) ((0,ff), ε) (0,ff) (0,02) ε

(2,{a}) ((2,ff), ε) (2,ff) (2,0220) ε

(4,{a,b}) ((4,tt),0) (4,tt) (4, ε) (0,tt)(0,tt)(2,tt)(4,tt)
(5,{a}) ((5,tt),01) (5,tt) (5,0) ε

(10,{b}) ((10,tt),0) (10,tt) (10, ε) (5,ff)(10,tt)

Fig. 5: Example operator evaluation for the formulas a S[0,4] b (left) and a U[0,4] b (right).

the auxiliary function RES(ds, τ, b) that maps every suffix 0 ·ds′ of the list ds to a time-
stamped Boolean value (τ−SUM(ds′), b). We omit its straightforward definition. Note
that one step of the UJ operator’s evaluation can produce several verdicts.

Example 1. We continue Example 1 from this section’s start by considering a monitor
for the formula Φ = (a S[0,4] b)∨ (a U[0,4] b). Figure 5 describes the monitor’s execu-
tion steps on the trace from Figure 2. The trace is shown in column 1. A state qΦ of the
monitor consists of a pair of states qϕ1 and qϕ2 for its two submonitors for ϕ1 = a S[0,4] b
and ϕ2 = a U[0,4] b, a pair of optional Boolean values that cache the latest unprocessed
verdict produced by the two submonitors, the state ⊥ for Φ’s top-level operator ∨, and
a list of time-stamped Boolean verdicts produced by evaluating the operator ∨.

The state qϕ1 consists of a pair (⊥,⊥) of submonitor states for atomic predicates a
and b, a pair of optional Boolean values that cache the latest unprocessed verdict pro-
duced by the two submonitors, a state cS[0,4] for the top-level operator of ϕ1 (column 2)
and a list of time-stamped Boolean verdicts produced by evaluating the operator S[0,4]
(column 3), to be output. The length of this list is at most one since the step function
sS[0,4] never produces more than one verdict at a time.

A state qϕ2 has a similar structure to a state qϕ1 . We show cU[0,4] for the top-level
operator of ϕ2 in column 4. Note that the length of the list of time-stamped Boolean
verdicts produced by evaluating the operator U[0,4] may be arbitrary (column 5).

The since operator’s step function produces a single verdict after each time-point
and keeps the last time-stamped Boolean verdict as the first component of the operator
state cS[0,4] . The second component of cS[0,4] is the run-length encoded list of satisfaction
witnesses. Since none of the first three time-points contains an atomic predicate b, the
list of satisfaction witnesses is empty. The fourth time-point is a satisfaction witness,
which is represented by a zero in the list of satisfaction witnesses. The fifth time-point
is not a satisfaction witness, but the time-stamp difference to the previous time-point
is appended to the list of satisfaction witnesses. At the last time-point, the fourth time-
point falls out of the interval [0,4] of the since operator and is removed from the list of
satisfaction witnesses, which becomes empty. The last time-point is a new satisfaction
witness itself; hence there is a zero in the list of satisfaction witnesses.

The until operator’s step function may produce no verdict or multiple verdicts after
a time-point. The first three time-points do not contain the atomic predicate b and thus
become satisfaction candidates. Each of them corresponds to a zero in the run-length
encoded list of satisfaction candidates, which is the state’s second component. (The first

10 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

component is the time-stamp from the previously read time-point.) Since the time-stamp
difference between the second and third time-stamp is nonzero, it is prepended before
the last zero corresponding to the third satisfaction candidate. The fourth time-point
contains an atomic predicate b, which resolves all satisfaction candidates, including the
current time-point, to tt (as none of them falls out of the until operator’s interval). Af-
ter the fourth time-point, there are no satisfaction candidates. The fifth time-point is a
new satisfaction candidate. The time-stamp difference between the last two time-points
makes the fifth time-point fall out of the interval associated with the until operator and
it is thus resolved to ff. Since the last time-point contains the atomic predicate b, it is
immediately resolved to tt, and the list of satisfaction candidates becomes empty.

The monitor for the formula Φ = ϕ1 ∨ϕ2 can only produce a verdict for the first
time-point once it obtains the corresponding verdicts for its two subformulas. The sub-
monitor for ϕ1 outputs the verdict for the first time-point immediately after processing it
(column 3). In contrast, the submonitor for ϕ2 only outputs the verdict for the first time-
point after processing the fourth time-point (column 5). After the verdict for the first
time-point has been output, the remaining three verdicts returned by the operator step
function for ϕ2 are stored in the state qϕ2 . At this point, the reading heads are at the
positions shown in Figure 2. The operator step function of ϕ1 is then invoked at the
second, third, and fourth time-point, making the reading heads of the submonitor for ϕ1
catch up with the ones of the submonitor for ϕ2. The three verdicts stored in the state
qϕ2 are combined with the new ones obtained from the submonitor for ϕ1. At the fifth
time-point, the operator step function for ϕ2 is invoked again without outputting any
verdicts. After its next invocation, it outputs two verdicts for the last two time-points,
which are then again similarly stored in ϕ2 until the submonitor for ϕ1 catches up.

5 Correctness and Complexity Analysis

We reverse the order compared to the previous section: We first prove the correctness
of operator evaluation and then the recursive monitor’s correctness. Afterwards we pre-
cisely bound the space complexity of representing the multi-head monitor’s state.

5.1 Correctness of Operator Evaluation

To prove the correctness of MTL operator evaluation, we first formulate an invariant
I(op,σ≤i,cop,oop) on the state cop and output oop ∈ V∗ produced by evaluating an
operator op that holds after applying the step function sop on the finite stream prefix
σ≤i = 〈(τk, bk

1, . . . , bk
η(op))〉k≤i, which stores the Boolean values bk

1, . . . , bk
η(op) passed to

op on the k-th invocation of its step function, starting from the initial state cop0 .
We first define an auxiliary predicate SOUNDop(σ≤i,oop) that asserts the soundness

of MTL operator evaluation. Assuming that the Boolean values fromσ≤i denote the ver-
dicts of a formula’sΦ direct subformulas, the operator has to produce the verdicts forΦ:

SOUNDop(〈(τ̂k, b̂
k
)〉k≤i,〈(tk,bk)〉k<n)≡ ∀ρ Φ ϕ1 . . . ϕη(op).

Φ= op(ϕ1, . . . ,ϕη(op)) ∧ (∀ j ∈ [η(op)]. SOUNDϕ j(ρ,〈(τ̂k, b̂
k
j)〉k<i+1)) =⇒

SOUNDΦ(ρ,〈(tk,bk)〉k<n).

Multi-Head Monitoring of Metric Temporal Logic 11

For an empty stream prefix, the invariant asserts that the state is the initial state and
no output has been produced: I(op, ε,cop,oop)≡ cop = cop0 ∧oop = ε.

Negation and Disjunction For op ∈ {¬,∨}, the invariant asserts that sound output (sec-
ond conjunct) has been produced for all time-points (from 0) up to i (first conjunct):

I(op,σ≤i,cop,oop)≡ |oop|= i+1∧SOUNDop(σ≤i,oop).

Previous and Next For op ∈ { I ,#I}, the invariant asserts that sound output has been
produced for all time-points up to i, or i− 1, respectively, and that the state stores the
time-stamp (and, for the I operator, also the Boolean value) from σ≤i at i.

I(I ,σ≤i,(top,bop),oop) ≡ |oop|= i+1∧ (τi,b
i
1) = (top,bop)∧SOUNDop(σ≤i,oop)

I(#I ,σ≤i, top,oop) ≡ |oop|= i∧τi = top∧SOUNDop(σ≤i,oop)

In the following, let I = [l,r]. For the since and until operators, we use an auxil-
iary function CSUF that counts the number of suffixes of a list starting with a zero and
having a fixed sum:

CSUF(ts,∆) = |{ts′ | ∃w. ts = w ·0 · ts′∧SUM(ts′) = ∆}|.

Since The invariant for the since operator op =SI asserts that (i) sound output has been
produced for all time-points up to i, (ii) the state stores the verdict at the time-point i,
and (iii) the list stored in the state contains all satisfaction witnesses (Section 4):

I(SI ,σ≤i,(vop, ts),oop)≡ |oop|= i+1∧oopi = vop∧SUM(ts)≤ reach(I)∧
∀∆ ∈ [reach(I)]0. WITS(σ≤i,∆) = CSUF(ts,∆) ∧SOUNDop(σ≤i,oop),

where the auxiliary function WITS counts the satisfaction witnesses:

WITS(σ≤i,∆) = |{ j ∈ [i]0 | τi−τ j = ∆∧b j
2∧∀k. j < k ≤ i =⇒ bk

1}|.

Until The invariant for the until operator op = UJ is similar to the one for the since
operator, but asserts that sound output has been produced for all time-points that do not
have a corresponding suffix starting with a zero in the stored list ts:

I(UJ ,σ≤i,(top, ts),oop)≡ |oop|= i+1−∑
r
∆=0 CSUF(ts,∆)∧τi = top∧

SUM(ts)≤ r ∧∀∆ ∈ [r]0. CANDS(σ≤i,∆) = CSUF(ts,∆)∧SOUNDop(σ≤i,oop),

where the auxiliary function CANDS counts the satisfaction candidates (Section 4):

CANDS(σ≤i,∆) = |{ j ∈ [i]0 | τi−τ j = ∆ ∧∀k ∈ { j, . . . , i}. bk
1∧ (b

k
2 =⇒ τk−τ j < l)}|.

We now establish that the I is indeed an inductive invariant.

Lemma 1. Let op be an MTL operator and σ= 〈(τi, bi
1, . . . , bi

η(op))〉i∈N. Let cop0 be the

initial state for evaluating op as defined in Section 4. Let (copi+1,o
op
i) = sop(copi , τi,b

i
),

for all i ∈ N. Then I(op,σ≤0,c
op
1 ,o

op
0) holds. Moreover, for any i≥ 0,

I(op,σ≤i,c
op
i+1,o

op
≤i) =⇒I(op,σ≤i+1,c

op
i+2,o

op
≤i+1).

Theorem 1. Let op be an MTL operator, σ= 〈(τi, bi
1, . . . , bi

η(op))〉i∈N be a stream with
unbounded time-stamps, and i be a time-point. Then there exists a time-point j such
that, using the notation of Lemma 1, |oop≤ j| > i and SOUNDop(σ≤ j,o

op
≤ j).

12 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

5.2 Correctness and Space Complexity of the Multi-Head Monitor
To prove the correctness of the multi-head monitor for an MTL formula Φ over its
atomic predicates PΦ, we formulate an invariant I(Φ,ρ,qΦ, p,oΦ) on the state qΦ and
the produced output oΦ that holds after applying the step function δΦ on the stream ρ
starting from the initial state qΦ0 with the reading heads positioned at p.

Atomic Predicate Let Φ = p ∈ PΦ. The invariant asserts that sound output has been
produced for the first p1 time-points: I(Φ,ρ,qΦ, p,oΦ)≡ |oΦ|= p1∧SOUNDΦ(ρ,oΦ).

Recursive Formula Let Φ = op(ϕ1, . . . ,ϕη(op)) and MΦ be its multi-head monitor. The
invariant asserts that (i) the states of MΦ for all the subformulas and the state of evaluat-
ing the operator op are obtained when the outputs of all the multi-head monitors for the
subformulas are used to construct a trace for evaluating the operator op, and (ii) the list
of time-stamped Boolean values stored in MΦ’s state contains exactly the values that
have been output by the operator op, except those that have already been output by MΦ.

I(Φ,ρ,(〈qϕi〉η(op)i=1 ,〈βi〉η(op)i=1 ,cop,vs), p1 · · · pη(op),oΦ)≡
(Φ= op(ϕ1, . . . ,ϕη(op))∧

∧η(op)
i=1 |pi|= κϕi) =⇒∃n > 0. ∃〈(τk,b

k
)〉k<n. ∀i ∈ [η(op)].

(βi 6=⊥=⇒ βi = bn−1
i ∧I(ϕi,ρ,qϕi , pi,〈(τk,b

k
)〉k<n))∧

(βi =⊥=⇒I(ϕi,ρ,qϕi , pi,〈(τk,b
k
)〉k<n−1))∧

∃i ∈ [η(op)]. βi =⊥∧I(op,〈(τk,b
k
)〉k<n−1,cop,oΦ · vs)

Lemma 2. Let Φ be any MTL formula and MΦ = (PΦ,V, κΦ,QΦ,qΦ0 , δ
Φ) be a multi-

head monitor for Φ as defined in Section 4. Let ρ be a stream. Let 〈(qΦi , pi)〉i∈N be the
computation of MΦ on the stream ρ. Moreover, let 〈oΦi 〉i∈N be the output of MΦ. Then
I(Φ,ρ,qΦ1 , p1,oΦ0) holds. Moreover, for any i≥ 0,

I(Φ,ρ,qΦi+1, p
i+1,oΦ≤i) =⇒I(Φ,ρ,qΦi+2, p

i+2,oΦ≤i+1).

Theorem 2. Let Φ be any MTL formula and ρ a fixed stream. Let i be an arbitrary
time-point. Then there exists some n such that, using the notation of Lemma 2, oΦ≤n =

〈(tk,bk)〉k<l with l > i and SOUNDΦ(ρ,oΦ≤n).

Finally, we bound the space complexity of storing a state of a multi-head monitor.
Our analysis relies on all lists in the monitor’s state being run-length-encoded.

Theorem 3. Let Φ be a formula and MΦ = (PΦ,V, κΦ,QΦ,qΦ0 , δ
Φ) be a multi-head

monitor for Φ as defined in Section 4. Let ρ be an arbitrary stream. Let 〈(qΦi , pi)〉i∈N be
the computation of MΦ on the stream ρ. Then qΦi can be represented as a string over
the alphabet {(;); , ;ff; tt;⊥;ε;0;1} of length at most 32 · ‖Φ‖ · (2+ log2 i+ log2 τi).

For a trace σ≤i, our monitor thus requires O(‖Φ‖ · log(i · τi)) space, i.e., the space
requirement grows logarithmically with the trace length and the observed time-stamps.
The dependence on the trace length might possibly be avoided by using sensing reading
heads [18], i.e., by allowing the computational model to determine if any two reading
heads are currently at the same position. The dependence on the observed time-stamps
could also be avoided by computing bounded (by the largest constant occurring in an in-
terval) time-stamp differences. This should be possible to achieve with a bounded num-
ber of additional reading heads. We leave these potential improvements as future work.

Multi-Head Monitoring of Metric Temporal Logic 13

6 Implementation and Evaluation

We have implemented the multi-head monitor in a tool called HYDRA [20], consisting
of roughly 1000 lines of C++ code. Our implementation mirrors the overall structure
of the multi-head monitor presented here and consists of C++ classes for monitoring
atomic predicates and formulas with various top-level operators (Section 4.1), which
also implement the evaluation of the top-level operator (Section 4.2). HYDRA imple-
ments some optimizations that are omitted in the presentation for the sake of simplicity.
Most importantly, all reads are implemented imperatively, which allows the multi-head
monitor’s step function to always return a verdict (as opposed to an optional verdict as
in Section 4.1). Finally, all lists are encoded using run-length encoding (Section 5.2).

We empirically validate our space complexity analysis and demonstrate HYDRA’s
superior time complexity by answering the following four research questions:

RQ1: How does HYDRA scale with respect to the trace length?
RQ2: How does HYDRA scale with respect to the (temporal) size of the formula?
RQ3: How does HYDRA perform on inputs that trigger worst-case space complexity

for online monitors?
RQ4: How does HYDRA perform compared to the state-of-the-art monitoring tools?

To answer the above questions, we perform four experiments measuring HYDRA’s
average-case and worst-case time and space usage. Our analysis also includes the state-
of-the-art monitors AERIAL [7] and MONPOLY [4, 5]. We use AERIAL’s SAFA mode
in the average-case experiments, and its EXPR mode in the worst-case experiments, as
this choice exhibits the best performance for AERIAL. We remark that MONPOLY is an
online monitor producing Boolean verdicts for all positions in the trace and its space
complexity can thus only be bounded by a linear function in the trace length [4], i.e., it
is not trace-length independent.

The average-case traces are produced by a pseudorandom trace generator for a pre-
defined event rate er [3]. Each trace contains events with 100 different time-stamps. The
time-stamp differences are distributed uniformly in [∆], for a predefined ∆; in our exper-
iments, we use ∆= 4. The atomic predicates are generated as follows: (i) independently
with probability 1− 1

∆·er , an atomic predicate p0, . . . , p3 is included; (ii) independently
with probability 1

2 , an atomic predicate p4, . . . , p15 is included.
The average-case formulas are produced by a pseudorandom formula generator for

a predefined size and maximum interval bounds. A formula Φ of size s > 0 is generated
as follows: (i) if s = 1, then Φ = p, for an atomic predicate p ∈ {p0, . . . , p15} chosen
uniformly at random; (ii) if s = 2, a top-level unary operator op is selected uniformly at
random; (iii) if s≥ 3, a top-level operator op is selected as follows: with probability 1

2 ,
the until operator is chosen, otherwise, the top-level operator op is chosen uniformly at
random among the five remaining operators. If the top-level operator op has an interval,
then the interval is generated as follows: (i) with probability 1

4 , the interval [0,0] is
chosen; (ii) with probability 1

4 , an interval [0,r] is chosen with r distributed uniformly
in [∆], or [∆]∪{∞}, for a predefined ∆ (in our experiments, we use ∆ = 16); (iii) with
probability 1

2 , an interval [l,r] is chosen with l∈ [∆] and r∈{l, . . . , ∆}, or r∈{l, . . . , ∆}∪
{∞}, distributed uniformly at random. Finally, if the top-level operator op is a unary

14 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

Experiment Formula size Family size Trace length Scaling factor
1 25 10 20 000–200 000 1
2 2–50 10 50 000 1
3 25 10 50 000 1–10

Fig. 6: Summary of the experimental setup.

operator, a pseudorandom subformula ϕ of size s−1 is generated recursively, and if op
is a binary operator, two pseudorandom subformulas of sizes s1, s−1− s1 are generated
recursively, where s1 ∈ [s−2] is chosen uniformly at random.

The first three experiments measure the average-case behavior of the tools. The first
experiment assesses the impact of increasing the trace length on a family of pseudoran-
dom formulas of a fixed size. The second experiment assesses the impact of increasing
the formula size on a trace of fixed length. The third experiment assesses the impact
of scaling the intervals of pseudorandom formulas and time-stamps of pseudorandom
traces by a constant factor. The first three experiments are summarized in Figure 6.

To answer RQ3, we conduct a fourth experiment where we consider a family of
formulas 〈Φn〉n∈N that exhibits the worst-case space complexity for online monitoring
when restricted to produce a single Boolean verdict for the first time-point. The formula
Φn is defined over the set of atomic predicates PΦn = {e, p1, . . . , pn}:

Φn =#[1,1](¬eU[0,0] (¬e∧
∧n

i=1(pi⇒�[0,0](e⇒ pi))∧
∧n

i=1(¬pi⇒�[0,0](e⇒¬pi)))) .

The family of traces for some fixed n ∈ N on which the space complexity of online
monitoring for Φn becomes at least 2n bits looks as follows: the first event is an empty
event with a time-stamp τ0, then for each subset X ∈X ⊆ 2PΦn\{e} of atomic predicates
without e, we include an event with the atomic predicates X and a time-stamp τ0 + 1.
Next, for some X ⊆ PΦn , we include an event with the atomic predicates X∪{e} and a
time-stamp τ0 +1. Finally, we include an empty event with a time-stamp τ0 +3, so that
the trace uniquely determines the Boolean verdict for the first time-point.

Intuitively, for an online monitor to decide if Φn is satisfied at the first time-point of
a trace from the family of traces, it must remember the exact subset X to check if the set
X of atomic predicates, which eventually appear with the atomic predicate e, belongs
to X . As there are 22n

different sets X , we derive a lower bound of 2n bits to store X .
We remark that the top-level next operator in the formula Φn is used to make the

formula trivially false on the worst-case traces described above at all time-points but the
first one (recall that all analyzed monitors produce a stream of Boolean verdicts at each
position in the trace). In particular, monitoringΦn on a worst-case trace described above
does not achieve the upper bound of O(22n+n) on AERIAL’s space complexity [7].

To benchmark the time complexity in the worst-case experiment, we use traces of
fixed length obtained by repeating a worst-case trace for some fixed n ∈ N with an
increasing base time-stamp τ0.

We run our experiments on an Intel Core i7-8550U, 1.80GHz computer with 32 GB
RAM. We measure the tools’ total execution time and maximal memory usage with the
Unix time command. Having thoroughly tested the tools’ outputs separately, we discard
any output during the experiments to exclude the impact of disk writes on performance.

Multi-Head Monitoring of Metric Temporal Logic 15

Each run is repeated 5 times to minimize the impact of the execution environment. Each
unfilled data point in our plots shows the average for the tool invocations with the same
input parameters. We omit the negligible standard deviations. Each filled data point
shows the average over a collection of a tool’s data points with the same x-coordinate.
We include trend lines over the filled data points in all our plots.

Figures 7 and 8 show the results of our three average-case and the worst-case ex-
periments. The plots in Figure 7 show time (on the left) and memory (on the right)
scalability of all the tools. The uppermost row in Figure 7 answers RQ1; it confirms
that in the average case both HYDRA and AERIAL are almost trace-length independent,
while MONPOLY’s space usage increases linearly with the trace length. The plots also
show HYDRA’s modest increase in execution time with respect to the increasing trace
length compared to the state-of-the-art tools (RQ4). Overall, our tool treats random for-
mulas more consistently than the other tools, which is reflected by the trend lines which
fit the measurements very well. The other four plots in Figure 7 show the scalability
of the tools with respect to formula size and temporal size (RQ2). Only MONPOLY’s
memory usage is impacted by these parameters and HYDRA outperforms all the tools.
Finally, Figure 8 confirms our analytical findings from Section 5 and shows that, in
practice, when monitoring the family of formulas 〈Φn〉n∈N, HYDRA’s worst-case space
complexity is asymptotically better than any state-of-the-art online monitoring tool. The
experiments may be reproduced using an artifact available at [20].

7 Conclusion

We proposed multi-head monitoring as a novel approach to analyzing traces. A multi-
head monitor reads an input trace simultaneously at multiple positions and its reading
heads move asynchronously. Following this paradigm, we designed a monitor for metric
temporal logic that outputs a stream of Boolean verdicts. Our monitor is sound and com-
plete and it substantially improves upon all previous algorithms with this output format.
We implemented our algorithm in a prototype tool, HYDRA, and demonstrated that it re-
liably outperforms other monitors, including those that produce less intelligible output.

Multi-head monitoring fills a middle-ground between offline and online monitoring.
It requires the input trace to be stored on a disk, as usual in offline monitoring. However,
as its reading heads move only in one direction, this allows us to (1) delete the parts of
the trace that was processed by all reading heads, and (2) add new events at the end of
the trace, mimicking online monitoring.

As future work, we would like to further reduce our monitors’ space complexity
and achieve true trace-length independence, without the theoretically annoying (albeit
practically harmless) logarithmic dependence. Our preliminary results suggest that this
can be achieved at the expense of using exponentially many reading heads, instead of
linearly many as used in this paper. We also plan to extend our results beyond MTL,
e.g., to timed regular expressions [1] or prove the impossibility of this extension.

Acknowledgments. We thank the anonymous reviewers for their valuable suggestions
on earlier drafts of this paper, which helped us to improve the presentation. This re-
search is supported by the Swiss National Science Foundation grant “Big Data Moni-
toring” (167162).

16 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200

T
im

e
 [
s
]

Trace Length [x1000]

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

S
p
a
c
e

 [
M

B
]

Trace Length [x1000]

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50

T
im

e
 [

s
]

Formula Size

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

S
p

a
c
e

 [
M

B
]

Formula Size

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10

T
im

e
 [

s
]

Scaling Factor

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

S
p

a
c
e

 [
M

B
]

Scaling Factor

Hydra Aerial MonPoly

Fig. 7: Evaluation results for average-case behavior

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12

T
im

e
 [
s
]

Formula Size Parameter (n)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12

S
p

a
c
e

 [
M

B
]

Formula Size Parameter (n)

Hydra Aerial MonPoly

Fig. 8: Evaluation results for worst-case behavior

Multi-Head Monitoring of Metric Temporal Logic 17

References

1. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)
2. Basin, D., Bhatt, B., Krstić, S., Traytel, D.: Almost event-rate independent monitoring. Form.

Meth. Sys. Des. (2019)
3. Basin, D., Bhatt, B., Traytel, D.: Almost event-rate independent monitoring of metric tem-

poral logic. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 94–112.
Springer (2017)

4. Basin, D., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15 (2015)

5. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G.,
Havelund, K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19–28.
EasyChair (2017)

6. Basin, D., Klaedtke, F., Zalinescu, E.: Algorithms for monitoring real-time properties. Acta
Inf. 55(4), 309–338 (2018)

7. Basin, D., Krstic, S., Traytel, D.: AERIAL: almost event-rate independent algorithms for
monitoring metric regular properties. In: Reger, G., Havelund, K. (eds.) RV-CuBES 2017.
Kalpa Publications in Computing, vol. 3, pp. 29–36. EasyChair (2017)

8. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

9. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: Tessla:
Temporal stream-based specification language. In: Massoni, T., Mousavi, M.R. (eds.) SBMF
2018. LNCS, vol. 11254, pp. 144–162. Springer (2018)

10. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In:
TIME 2005. pp. 166–174. IEEE Computer Society (2005)

11. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verifica-
tion tools. In: Colombo, C., Leucker, M. (eds.) Runtime Verification. pp. 241–262. Springer,
Cham (2018)

12. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based moni-
toring. CoRR abs/1711.03829 (2017)

13. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Formal Meth-
ods in System Design 24(2), 101–127 (2004)

14. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-time event-streams.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–298. Springer
(2018)

15. Gray, J., Shenoy, P.J.: Rules of thumb in data engineering. In: Lomet, D.B., Weikum, G.
(eds.) ICDE 2000. pp. 3–10. IEEE Computer Society (2000)

16. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer (2002)

17. Ho, H., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdar-
pour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer (2014)

18. Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown automata.
Inf. Process. Lett. 3(1), 25–28 (1974)

19. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst.
2(4), 255–299 (1990)

20. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: HYDRA. https://bitbucket.org/krle/
hydra (2019)

21. Raszyk, M., Basin, D., Traytel, D.: From Nondeterministic to Multi-Head Deterministic
Finite-State Transducers. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.)

https://bitbucket.org/krle/hydra
https://bitbucket.org/krle/hydra

18 M. Raszyk, D. Basin, S. Krstić, and D. Traytel

ICALP 2019. LIPIcs, vol. 132, pp. 127:1–127:14. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2019)

22. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Automated
Software Engineering 12(2), 151–197 (2005)

23. Sánchez, C.: Online and offline stream runtime verification of synchronous systems. In:
Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163. Springer (2018)

24. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. Electr.
Notes Theor. Comput. Sci. 113, 145–162 (2005)

	Multi-Head Monitoring of Metric Temporal Logic
	1 Introduction
	2 Metric Temporal Logic
	3 Multi-Head Monitoring
	4 Multi-Head Monitoring of Metric Temporal Logic
	4.1 First Procedure: Recursively Running the Multi-Head Monitors
	4.2 Second Procedure: Evaluating a Top-Level Operator

	5 Correctness and Complexity Analysis
	5.1 Correctness of Operator Evaluation
	5.2 Correctness and Space Complexity of the Multi-Head Monitor

	6 Implementation and Evaluation
	7 Conclusion

