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Abstract. We develop a monitoring algorithm for metric dynamic logic, an ex-
tension of metric temporal logic with regular expressions. The monitor computes
whether a given formula is satisfied at every position in an input trace of time-
stamped events. Our monitor follows the multi-head paradigm: it reads the input
simultaneously at multiple positions and moves its reading heads asynchronously.
This mode of operation results in unprecedented space complexity guarantees for
metric dynamic logic: The monitor’s memory consumption neither depends on the
event-rate, i.e., the number of events within a fixed time-unit, nor on the numeric
constants occurring in the quantitative temporal constraints in the given formula.
We formally prove our algorithm correct in the Isabelle proof assistant, integrate it
in the Hydra monitoring tool, and empirically demonstrate its strong performance.

1 Introduction

In runtime verification, monitoring is the task of detecting whether a system execution
trace adheres to a given specification. One typically distinguishes online monitors that
observe the trace event-wise as the system’s execution proceeds from offline monitors that
read the recorded trace from a log file, possibly after the system has finished its execution.

We have recently proposed third mode of operation for monitors: multi-head mon-
itoring [20,22]. Conceptually, a multi-head monitor has multiple pointers, called reading
heads, into a single log file. The reading heads move over the file, independently of each
other. In contrast to an offline monitor’s random access to the log, a multi-head monitor’s
heads are restricted to move only in one direction, from left to right. Thus, an online
monitor can be seen as the special case of a multi-head monitor that uses a single head.

In our previous work [20], we have demonstrated the benefits of multi-head mon-
itoring for metric temporal logic (MTL) [17]. MTL is a widely used propositional
specification language capable of expressing qualitative (e.g., happens before) and quan-
titative (e.g., within the last hour) temporal relationships. Our multi-head MTL monitor
supports arbitrarily nested past and bounded future operators and produces a stream of
Boolean verdicts denoting the formula’s satisfaction (or violation) at each position in
the trace. The monitor uses as many reading heads as there are leaves in the formula’s
syntax tree. Its worst-case memory consumption is linear in the formula’s temporal size,
which is the sum of the formula’s size (number of operators) and all metric constants
occurring in the formula (the boundaries of intervals expressing quantitative temporal
relationships). However, the monitor is event-rate independent [1], i.e., its space com-
plexity does not depend on the trace length, the event rate, or other trace characteristics
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(assuming registers to store numbers as the underlying model of computation). The
strong theoretical guarantees for our multi-head MTL monitor translate into practice:
the monitor’s implementation significantly outperforms its competitors with respect to
both memory usage and the average time spent processing an event.

In this paper, we continue our investigation of the multi-head paradigm. We improve
over our MTL monitor along three axis: (1) we consider a more expressive specification
language than MTL, (2) we generalize the time domain to support both dense and discrete
time, and (3) we achieve a space complexity that no longer depends on the metric con-
stants occurring in the formula (again assuming the register model). As our specification
language, we use metric dynamic logic (MDL) [1] (Section 2), an extension of MTL with
regular expressions. The use of regular expressions instead of MTL’s temporal operators
increases the logic’s expressiveness, which has prompted de Giacomo and Vardi to ad-
vocate linear dynamic logic (MDL’s non-metric variant) over linear temporal logic [10].

Our main contribution is a space-efficient multi-head MDL monitor. On a high-
level (Section 3), it resembles our multi-head MTL monitor [20]. In both logics, the main
challenge for space-efficiency stems from the presence of both past and future operators,
which may require the monitor to buffer the verdicts from the recursive subformula eval-
uation until a verdict for the overall formula can be produced. For MTL, the key insight
is that a multi-head monitor can compress the information needed to evaluate MTL’s
temporal operators due to the simple fixed patterns of the direct subformulas’ verdicts
that the MTL semantics enforces. In contrast, MDL’s regular expressions yield patterns
that are neither simple nor fixed. We develop a data structure, called a window, that
supports the space-efficient compression for this general case (Section 4). Consequently,
our monitor is the first event-rate independent algorithm for MDL that outputs a stream
of Boolean verdicts. Moreover, our new data structure’s time and space complexity is
independent of the formula’s metric constants, a property we call interval-obliviousness,
which the MTL monitor does not offer. Interval-obliviousness is relevant: large constants
like 259200 (three days expressed in seconds) often occur in realistic specifications [2,3].

The improvements over the multi-head MTL monitor come at a price: our MDL
monitor’s space consumption depends exponentially on the formula size. This follows
alone from the fact that we will construct deterministic automata (on the fly) from the
regular expressions occurring in the formula. Similarly, the number of required reading
heads may be exponential in the formula size. In practice, however, specifications are
small, while the traces are huge. It usually poses no problem for monitors to be expo-
nential in the formula size, whereas a linear dependence on the trace or on the large
numeric constants occurring in the formula is prohibitive. Our empirical evaluation of
our multi-head MDL monitor confirms this “monitoring folk wisdom” (Section 5).

We used the Isabelle proof assistant to verify our monitor’s functional correct-
ness [21]. We proved its time and space complexity bounds on paper (Sect. 4.5).

Related Work Event-rate independence is impossible to achieve for single-head monitors
that support past and future temporal operators and output Boolean verdicts for every
position in the trace (as we argue in Section 3.3). The multi-head paradigm overcomes
this limitation for MTL [20]. Recently, we have used the multi-head model of compu-
tation to eliminate non-determinism from functional finite-state transducers [22]. This
theoretical result provides a stepping stone towards our multi-head MDL monitor. Our
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core data structure resembles the multi-head transducer for the all-suffix regular matching
problem studied in that work. However, significant extensions were necessary to handle
quantitative temporal constraints, past operators, and the arbitrary nesting of formulas
and regular expressions; these are all aspects not present in the transducer setting.

An alternative approach to achieving event-rate independence is to relax the require-
ment to output Boolean verdicts. Instead, an out-of-order mixture of Boolean and equiv-
alence verdicts can be used to denote that the verdict is presently unknown, but will be
equivalent to some other (also presently unknown) verdict [1]. This relaxation resulted in
Aerial [7], the first event-rate independent MDL monitor. Our algorithm produces much
more intelligible output, while also being event-rate independent. Moreover, Aerial’s
space and per-event-time complexity depend linearly on the sum of the formula’s metric
constants, whereas our monitor is interval-oblivious. This weakness of Aerial was also
observed and improved upon empirically in the Reelay monitor for past-only MTL [25].
Reelay’s space complexity, however, is still linear in the sum of the formula’s constants.

Stream runtime verification (SRV) [24], pioneered by LOLA [9], generalizes logic-
based specifications to recursive programs using stream expressions. Some specifications
expressed in these languages can be efficiently monitored in constant space, but this
fragment is rather restricted: specifications may refer to a bounded number of future
events and the bound must be fixed statically. In contrast, MTL’s and MDL’s metric
constraints, even if bounded, may require the monitor to wait for an unbounded number
of future events before being able to output a verdict for an earlier position. (Metric
constraints bound time, which is different from counting events.) Metric extensions of
SRV languages were recently proposed [8, 11, 12]. They inherit the restricted efficiently
monitorable fragment from non-metric SRV languages. A similar restriction applies
to quantified regular expressions [18], which can be evaluated in constant space, but
support neither metric constraints nor dependencies on future events.

Beyond propositional specification languages, first-order monitors [4, 13, 15], im-
plemented in tools like MonPoly [6] and DejaVu [14], also produce streams of verdicts.
Event-rate independence is however out of reach for these algorithms [4].

2 Metric Dynamic Logic

We recapitulate metric dynamic logic (MDL) [1]. While previous works on MDL focused
on natural numbered time-stamps, we consider an abstract time domain T. We assume
that T forms an additive commutative monoid (T,+, 0), a partial order (T, <), and a
join-semilattice (T, t). The partial order must be consistent with t and +, i.e., a≤ atb,
b≤ atb, a≤ c∧b≤ c =⇒ atb≤ c, and b < c =⇒ a+b < a+ c, for all a, b, c ∈ T.
Moreover, we assume the existence of an order-preserving embedding ι of natural num-
bers into T satisfying ∀τ ∈ T. ∃n ∈ N. τ < ι(n). For example, these assumptions are
satisfied by both the discrete natural numbers T= N and the dense real numbers T= R.

Further, let I be the set of non-empty intervals over T. We write I’s elements as
[l,r], where l ∈ T, r ∈ T∪{∞}, l≤ r, and [l,r] = {x ∈ T | l≤ x≤ r}. We also define the
operation of shifting an interval [l,r] ∈ I by a time-stamp τ ∈ T as τ+[l,r] = [τ+ l, τ+ r].
An event stream ρ= 〈(πi, τi)〉i∈N is an infinite sequence of sets of atomic propositions
πi ⊆ Σ along with their time-stamps τi ∈ T, which is monotone (∀i. τi ≤ τi+1) and
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progressing (∀τ. ∃i. τ < τi). The event stream’s indices i ∈ N are called time-points.
Consecutive time-points may carry the same time-stamp, and there might be time-stamps
that no time-point carries. MDL’s syntax is defined as follows, where p ∈ Σ and I ∈ I.

ϕ= p | ¬ϕ | ϕ∨ϕ | |r〉I | 〈r|I r = ? | ϕ? | r+ r | r · r | r∗

Aside from Boolean operators, MDL contains the regular expression modalities. The
future match operator |r〉I expresses that there exists some future time-point j whose
time-stamp is in the interval τ+ I, where τ is the current time-point’s time-stamp, and the
regular expression r matches the portion of the event stream from the current point up to j.
The past match operator 〈r|I expresses the dual property about a past time-point. Regular
expressions themselves may nest arbitrary MDL formulas via the _? operator. We call the
subformulas ϕ occurring as ϕ? in a regular expression r the direct tests of r, thereby ex-
cluding any further _? operators that occur in ϕ itself. Regular expressions in MDL match
portions of the event stream, i.e., words over 2Σ . The expression ? matches any character
and ϕ? matches the empty word starting at time-point i if the formula ϕ holds at i. More-
over, +, ·, and ∗ are the standard alternation, concatenation, and (Kleene) star operators.

We define the point-based semantics [5] of formulas and regular expressions by
mutual recursion. A formula is evaluated over a fixed event stream ρ= 〈(πi, τi)〉i∈N at a
time-point i ∈ N. We write i |= ϕ if ϕ is true at i, whereby we omit the explicit reference
to ρ. The regular expression r’s semantics for a fixed ρ is a relationR(r)⊆N×N, where
(i, j) ∈R(r) are the starting and ending time-points of a match. Overloading notation, ·
and _∗ denote relation composition and the reflexive transitive closure.

i |= p iff p ∈ πi

i |= ¬ϕ iff i 6|= ϕ

i |= ϕ∨ψ iff i |= ϕ∨ i |= ψ

i |= |r〉I iff ∃ j≥ i. τ j ∈ τi + I∧ (i, j) ∈R(r)
i |= 〈r|I iff ∃ j≤ i. τi ∈ τ j + I∧ ( j, i) ∈R(r)

R(?) = {(i, i+1) | i ∈ N}
R(ϕ?) = {(i, i) | i |= ϕ}
R(r+ s) =R(r)∪R(s)

R(r · s) =R(r) · R(s)

R(r∗) =R(r)∗

We assume that intervals [l, r] of future match operators are bounded, i.e., r 6= ∞, and em-
ploy the usual syntactic sugar for additional constructs: true = p∨¬p, false =¬true, and
ϕ∧ψ= ¬(¬ϕ∨¬ψ). Given formulas ϕ and ψ, we define the MTL operators next #I ϕ
as |? ·ϕ?〉I , previous I ϕ as 〈ϕ? ·?|I , until ϕUI ψ as |(ϕ? ·?)∗ ·ψ?〉I , and since ϕSI ψ as
〈ψ? · (? ·ϕ?)∗|I . These abbreviations faithfully implement MTL’s point-based semantics.

Example 1. Many systems for user authentication follow a policy like: “A user should
not be able to authenticate after entering a wrong password three times within the last
hour without successfully authenticating in between.” For a fixed user, we write 7 for the
event “User entered a wrong password” and 3 for “User has successfully authenticated.”
Additionally, we abbreviate ϕ? · ? by ϕ. (This abbreviation is only used when ϕ appears
in a regular expression position, e.g., as an argument of · or _∗). Then the MDL formula
3∧ 〈

(
7 · (¬3)∗ · 7 · (¬3)∗ · 7 · (¬3)∗

)
|
[0,3600] captures this policy’s violations: it is

satisfied at time-points at which the fixed user successfully authenticated after entering
wrong credentials three times in the last 3600 seconds, without intermediate successful
authentications. We can express this property in MTL by nesting six temporal operators,
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namely one since and one previous operator for each of the 7 subformulas. Yet, it is un-
clear which intervals to use as arguments to these operators beyond the fact that their up-
per bounds should sum up to 3600. For T=N, a rather impractical solution exploits that
there are finitely many ways to split the interval [0,3600] and constructs the disjunction
of all possible splits, which yields

(3605
5

)
= 5059876272308221 disjuncts in this case.

For T= R, the previous solution no longer works and we conjecture that no equivalent
MTL formula exists. MDL remediates these difficulties regardless of the time domain.

3 High-Level Overview

Our multi-head MDL monitor follows the monitored formula’s recursive structure. We
describe below the main ideas for propositions, Boolean, and temporal match operators.

3.1 Propositions and Boolean Operators

For an atomic proposition, a one-head monitor scans the trace and returns the correspond-
ing Boolean verdicts. We view non-atomic formulas as being evaluated on streams of
Boolean verdicts produced by submonitors for their subformulas. For ϕ∨ψ, we evaluate
bϕ∨bψ over the atomic propositions bϕ and bψ, which denote the satisfaction of ϕ and ψ
at each time-point. The monitor for ϕ∨ψ uses a single head to combine its inputs bϕ and
bψ at each time-point based on the semantics of ∨. Negation is evaluated similarly.

3.2 Temporal Match Operators

For a formula ϕ of the form |r〉I or 〈r|I , we first convert r into an automaton over the al-
phabet Bk, where k is the number of r’s direct tests. For each time-point, the automaton’s
input symbol is constructed from k Boolean verdicts for r’s direct tests at this time-point.

Key to our work is a data structure, called a window, that maintains a summary of the
automaton runs on a finite subword of the automaton’s input stream. The subword starts
at a position i and ends at j. For a future match formula ϕ= |r〉I , the position i is the time-
point at which we need to produce ϕ’s next Boolean verdict and j is a suitable lookahead
time-point, determined by ϕ’s interval I, which makes it possible to evaluate ϕ. Note that
i and j can be arbitrarily far apart, but the window’s size does not depend on this distance.

For a past match formula ϕ= 〈r|[a,b], the verdicts are computed at the window’s end
j. The window’s start i is the earliest time-point with τ j 6∈ τi +[a,∞] or it equals j if
a = 0. The data structure uses two reading heads, a start head at i and an end head at j,
to support operations that advance the window’s start and end. Advancing the window’s
start requires a third auxiliary reading head that is obtained by cloning the start head. As
with all reading heads, this additional head may move asynchronously after cloning.

Finally, the multi-head monitor M for the temporal match formula ϕ maintains the
window data structure and uses it to compute the Boolean verdicts for ϕ. To assemble
the next input symbol for the automaton, M runs k submonitors for r’s direct tests. In
particular, a reading head of the window data structure corresponds to the states of the k
submonitors and thus cloning the reading head means cloning these submonitors.
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3.3 Relation to our Multi-Head Monitor for MTL

Our multi-head MTL monitor [20] coincides with our MDL monitor except for the tem-
poral operator cases. For MTL, we use a different data structure that only requires a single
reading head per temporal operator. This is possible due to the special form of the regular
expressions corresponding to MTL’s operators. Although simpler, the MTL data structure
is not interval-oblivious. Moreover, its time-stamps are fixed to the natural numbers.

In more detail, for since and until, the MTL monitor’s state contains all time-stamp
differences of relevant (for the interval) past or future matches. These time-stamp
differences are stored compactly to avoid a linear dependence on the trace length. Yet,
the number of stored time-stamp differences depends on the interval bounds.

For the until operator ϕUI ψ, producing a Boolean verdict at a time-point is delayed
as long as all time-points satisfy ϕ and no time-point within the interval satisfies ψ. Nev-
ertheless, all delayed time-points with the same time-stamp are guaranteed to be resolved
to the same Boolean verdict. Hence, our MTL monitor stores only the number of delayed
time-points for each time-stamp relevant for the interval. For MDL, it no longer holds that
all delayed time-points with the same time-stamp must resolve to the same Boolean ver-
dict. To see this, consider the formula |ϕ? · (?)∗ · ψ?〉[0,0], which holds at time-point i iff
ϕ holds at i and ψ holds at some time-point j≥ i with τi = τ j. Producing a Boolean verdict
at a time-point i for this formula must be delayed as long as no time-point j with the same
time-stamp τ j = τi satisfies ψ. But if there exists such a time-point j, then all delayed
time-points k, for i≤ k≤ j, are resolved to true iff ϕ is satisfied at k. Hence, the informa-
tion to compute the Boolean verdicts for the delayed time-points cannot be compressed
sublinearly with respect to the event rate. Our remedy is to use multiple reading heads,
i.e., to run two monitors for ϕ and ψ, which process the time-points asynchronously.

4 Evaluating Temporal Match Operators

We now formally define the multi-head monitors for the past and future temporal match
formulas 〈r|I and |r〉I . First, we focus on a fixed regular expression r independently of
both the interval I and whether r is used in a past or future match.

Let k be the number of direct tests of r and let ψ j, for all 1 ≤ j ≤ k, be the j-th
direct test of r (according to some formula ordering). The i-th input symbol bi ∈ Bk of
the automaton, defined formally in Section 4.1, reflects the formula ψ j’s satisfaction at
time-point i, i.e., bi

j iff i |= ψ j. To compute the input symbol bi, a multi-head submonitor
is run for each formula ψ j, i.e., k synchronous multi-head monitors are run to compute bi.

Our window data structure, defined formally in Section 4.2, reads the input symbols
with multiple one-way reading heads. It has two heads positioned at the window’s start
and end. Advancing a head to the next time-point means advancing the corresponding k
submonitors to the next time-point and assembling the next input symbol from their k
Boolean verdicts. To update the window’s state, a monitor may clone and advance the
head at the window’s start to read subsequent input symbols. Cloning does not affect
the original reading head, i.e., there are always two heads at the window’s start and end.
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Fig. 1: Recursive conversion of an MDL regular expression into AN’s transition graph

4.1 Translating Regular Expressions

We first convert MDL’s regular expressions into nondeterministic automata with ε-
transitions over an alphabet of vectors bi ∈ Bk. A slight peculiarity, due to MDL’s se-
mantics, requires our automata to consider the current input symbol even in ε-transitions.
More precisely, a regular expression ψ? always matches at most a single time-point,
i.e., according to its semantics, only pairs of the form (i, i) are included in R(ψ?). In
particular, even the regular expression ψ? · ϕ? matches at most a single time-point i,
specifically (i, i) ∈ ψ? · ϕ? iff i |= ψ and i |= ϕ. Matching such an expression therefore
does not consume an input symbol. In contrast, matching the regular expression ? is
independent of the current input symbol bi, but always consumes an input symbol.

A textbook ε-NFA’s transitions are labeled by an input symbol or ε. In contrast, we
distinguish three types of edges in the transition graph of our ε-NFA:

– conditional ε-transition labeled by ψ j: observes the current input symbol bi and can
be taken if bi

j = true; does not consume an input symbol;
– unconditional ε-transition: can always be taken; does not consume an input symbol;
– ?-transition: can always be taken; consumes the current input symbol.

To construct the transition graph, we use Thompson’s standard construction mildly
adapted to MDL regular expressions and the three types of edges in the transition graph.
To this end, Figure 1 defines a recursive function T on MDL regular expressions that com-
putes the transition graph of a regular expression together with the initial and accepting
state.

Because our window data structure described in the next section requires a determinis-
tic automaton, we further determinize the obtained ε-NFA AN using the subset construc-
tion. A difficulty arises from the conditional ε-transitions, which makes the ε-closure of
a set of states S (i.e., the set of states reachable from a state in S using only ε-transitions)
dependent on the input symbol. Thus, we compute the ε-closure of a set of states S with
respect to the input symbol in both the transition function and while checking if the set
of states S is accepting. The transition function δ(S ,b) thus first computes the ε-closure
S ε

b of S with respect to the current input symbol b ∈ Bk and then computes the set S ?
b of
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q̃0 q̃1 q̃2 q̃3 q̃4 q̃ f
ε p ε ?

ε

ε

Fig. 2: The ε-NFA for (p? · ?)∗, with the dashed rectangle showing the ε-NFA for p? · ?

states reachable from a state in S ε
b by following a single ?-transition. In particular, the set

S ?
b is not necessarily ε-closed with respect to the next input symbol. When checking if a

set of states S is accepting with respect to an input symbol b ∈ Bk, we first compute the
ε-closure S ε

b of S with respect to b and then check if an accepting state is in S ε
b. To sum-

marize, we convert an MDL regular expression r into a DFAAD = (Q,Bk, δ,q0,F) where

– Q is the set of states of AD consisting of all subsets of the set of states of AN ;
– δ : Q×Bk→ Q is the transition function for a state relative to an input symbol;
– q0 is the initial state of AD, which is a singleton consisting of the initial state of AN ;
– F : Q×Bk→ B is the accepting function for a state relative to an input symbol.

We label AN’s nondeterministic states by q̃ and AD’s deterministic states by q.

Example 2. Figure 2 shows the ε-NFA computed for the regular expression (p? · ?)∗.

4.2 The Window Data Structure

Given a pair of time-points (i, j) with i≤ j, we say that the DFA AD reaches a state q′

from a state q on (i, j), denoted q;(i, j) q′, iff the state q′ is reached by runningAD from
the state q at time-point i until time-point j. In particular, we have q;(i,i) q, for all q and
i. Furthermore, we say thatAD accepts from a state q on (i, j), denoted q;(i, j) , iff the
state q′ reached by AD from q on (i, j) is accepting with respect to the time-point j, i.e.,
F(q′,b j) holds. We also use the following notation: dom( f ) of a partial function f : X→
Y denotes f ’s domain, i.e., dom( f ) = {x ∈ X | f (x) 6=⊥}. For a pair tstp ∈ T×N of
a time-stamp and time-point, ts(tstp) denotes the time-stamp and tp(tstp) the time-point.

The window data structure consists of a pair of time-points (i, j) with i≤ j and two
partial functions s : Q→ Q× ((T×N)∪{⊥}) and e : Q→ T. The function s represents
the runs of AD from a given state at the window’s start to the state reached at the
window’s end and the last time-point (along with the corresponding time-stamp) within
the window at which the run was in an accepting state (if such a time-point exits). The
function e stores the time-stamp of the latest time-point before the window’s start from
which a given state at the window’s end can be reached from the initial state.

Figure 3 visualizes the window data structure. Formally, the window is comprised of
the table on the left. Figure 3 showsAD’s runs justifying the table’s content. The individ-
ual runs are depicted by arrows from the initial state q0. Whether a state is accepting de-
pends on the current input symbol, which explains why a single state (e.g., p) may be both
accepting and non-accepting at different time-points. We use standard notation for accept-
ing states, including the smaller circles, which denote states whose name is irrelevant.
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q0 (p,(τl4 , l4)) ⊥

Fig. 3: The window data structure with start i and end j

The domain of s are all the states reached by running AD from the initial state at a
time-point before the window’s start i until i (including the initial state itself obtained by
running from i to i). The value of s(q) = (q′, tstp) for a state q ∈ dom(s) is obtained by
running AD further from the state q at the window’s start i until the window’s end j to a
state q′. For example, the state r at the window’s end j is reached from the states o and p
at the window’s start i in Figure 3. Moreover, tstp is the maximum time-point after i and
strictly before j such that the current state in the run from q to q′ is accepting. Hence, we
have s(o) = (r,⊥) in Figure 3 because there is no such accepting state strictly before j
in the run from the state o to r. (The state r itself, which is accepting at j, is not strictly
before the window’s end.) In contrast, we have s(p) = (r,(τl1 , l1)) because the run from
p to r contains an accepting state at time-point l1 (which is the only accepting time-point
in this run and thus also the maximum one). Similarly, we have s(q0) = (p,(τl4 , l4))
because the time-point l4 is the maximum of the two accepting time-points in the run
from the initial state q0 at time-point i to the state p at time-point j.

The domain of e are all the states reached by running AD from the initial state at
a time-point strictly before the window’s start i until the window’s end j. The value of
e(q) = τ for a state q∈ dom(e) is the time-stamp of the maximum time-point from which
q was reached from the initial state q0. For example, e(p) = τi−1 in Figure 3 because
p is reached by running from q0 at time-point i−1 until j. Note that p is also reached by
running from i, but i is not strictly before the window’s start and is thus not considered.

Formally, a window satisfies the invariant window(i, j, s,e) if the following holds:

– the window’s start and end heads are at positions i and j;
– the domain of s, i.e., dom(s), are all states q such that q0 ;(l,i) q, for some l≤ i;
– the domain of e, i.e., dom(e), are all states q such that q0 ;(l, j) q, for some l < i;
– for any q ∈ dom(s): s(q) = (q′, tstp), where q ;(i, j) q′ and tstp = (τl, l) for the

maximum time-point l with i≤ l < j and q;(i,l) , or tstp =⊥ if no such l exists;
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Trace:
τi 10 20 30 40
πi {p} {} {p} {}

q
{q̃0}
{q̃4}
{}

(i, j)

s(·) e(·)
({q̃0},⊥) ⊥
⊥ ⊥
⊥ ⊥

(0,0)

adve
−→

s(·) e(·)
({q̃4},(10,0)) ⊥

⊥ ⊥
⊥ ⊥

(0,1)

adve
−→

s(·) e(·)
({},(20,1)) ⊥
⊥ ⊥
⊥ ⊥

(0,2)

advs
−→

s(·) e(·)
({},(20,1)) ⊥
({},(20,1)) ⊥
⊥ 10

(1,2)

Fig. 4: The trace and windows for Example 3

– for any q ∈ dom(e): e(q) = τ, where τ = τl is the time-stamp of the maximum
time-point l < i such that q0 ;(l, j) q.

We now exemplify the window data structure by tracing its evolution through a
sequence of window updates, which we manually selected. In the actual monitor, the
update sequence is derived from the time-stamps in the event stream and the match
operator’s intervals. An update consists of advancing the window’s start or end by one.
We define the algorithms advs and adve that implement the window’s start and end
updates and their invariants in Section 4.3. Their integration into the multi-head monitors
for the match operators is described in Section 4.4 and the time and space complexity
of the overall monitor is analyzed in Section 4.5.

Example 3. Consider again the MDL regular expression r = (p? · ?)∗ from Example 2
with the corresponding ε-NFA in Figure 2. We consider the trace given in Figure 4 and the
sequence of window updates, where the window’s end is advanced twice followed by ad-
vancing the window’s start. Figure 4 depicts the window’s state after initialization (i = 0
and j = 0) and after each update. Recall that a deterministic state is a subset of the non-
deterministic states in Figure 2. For instance, the initial deterministic state is q0 = {q̃0}.

The ε-closure of {q̃0} at time-point 0 is Q0 = {q̃0, q̃1, q̃2, q̃3, q̃ f }. In particular, it con-
tains q̃2 and q̃3 because p is satisfied at time-point 0 and thus the conditional ε-transition
from q̃1 to q̃2 can be taken. After advancing the window’s end, the function e remains
unchanged (its domain stays empty until the window’s start advances). To update s,
we perform a transition from {q̃0} at time-point 0 by following ?-transitions from Q0.
This way, we arrive at the next state {q̃4}. Because Q0 contains the accepting state q̃ f ,
the state {q̃0} is accepting at time-point 0. Hence, we add time-point 0 (along with the
corresponding time-stamp 10) to s({q̃0}).

The ε-closure of {q̃4} at time-point 1 is Q1 = {q̃4, q̃0, q̃1, q̃ f }. In particular, it con-
tains neither q̃2 nor q̃3 because the formula p is not satisfied at time-point 1 and thus
the conditional ε-transition from q̃1 to q̃2 cannot be taken. To advance the window’s end
once more, no update of the function e is needed (as before). To update the function
s, we perform a transition from {q̃4} at time-point 1 and arrive at the empty state {}
because no ?-transition is possible from Q1. Because {q̃4}ε1 contains the accepting state
q̃ f , the state {q̃4} is accepting at time-point 1, and we update the time-stamp to 20 and
time-point to 1 in s({q̃0}).
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We now advance the window’s start, i.e., update the window to (1,2). To this end,
we set e({}) = 10 because from s({q̃0}) = ({},(20,1)) we derive that the state {} is
reached at the window’s end 2 starting from the initial deterministic state {q̃0} at time-
point 0. Next, we perform a transition (at time-point 0) from the state {q̃0} in dom(s),
which yields the state {q̃4}. Since the maximum accepting time-point 1 is within the
new window (1,2), we keep it and arrive at s({q̃4}) = ({},(20,1)). To compute s({q̃0})
for the initial deterministic state {q̃0}, we perform two runs starting at time-point 1, one
from {q̃0} and one from {q̃4}, until the two states in the runs collapse or the window’s
end is reached. In this example, we carry out a single step and the two states collapse
into {} at time-point 2 (and the window’s end is reached as well). Because time-point 1
in s({q̃4}) is strictly before the collapse at time-point 2, we cannot take it for s({q̃0}).
However, since {q̃0} is accepting at time-point 1, we have s({q̃0}) = ({},(20,1)).

4.3 Initialization and Update of the Window Data Structure

The algorithms initializing and updating the window data structure are defined in Fig-
ure 5. The window is initialized to time-points (0,0) using initw (Algorithm 1), which
also establishes the invariant.

Lemma 1. The invariant window(initw) holds for the initial window.

The window (i, j, s,e) can be updated to time-points (i, j+1) using the function adve
(Algorithm 2).

The algorithm first updates the function e (lines 4–11). The updated domain of e is
obtained by performing a transition at the window’s end from all states in the original
domain (line 7) and whenever two states q and q′ collapse into a single state qnew after
performing the transition, the function e associates qnew with the supremum of eold(q)
and eold(q′), using e(qnew) as an accumulator. Next adve updates the function s (lines
12–18). Its domain does not change because the window’s start i remains the same.
However, for any state q ∈ dom(s) with s(q) = (q′, tstp), a transition is performed on the
state q′ at the window’s end (extending q;(i, j) q′ to q;(i, j+1) q′new) and tstp is updated
to (τ j, j) if q;(i, j) . Overall, adve preserves the window invariant.

Lemma 2. Assume that the invariant window(i, j, s,e) holds. Then the invariant holds
after advancing the window’s end, i.e., window(adve(i, j, s,e)).

To advance the window’s start, we must advance the domain of s and then compute
s(q0) at the new window’s start. We first generalize the part of the window invariant char-
acterizing s to take into account that s(q0) might not be computed yet. To this end, we de-
fine the generalized invariant svalid(i, i′, j, s), which asserts that s is valid for the window
(i′, j), but its domain contains only states reached by running from a time-point before i.
In particular, window(i, j, s,e) implies svalid(i, i, j, s). Formally, svalid(i, i′, j, s) holds if:

– dom(s) consists of all states q such that q0 ;(l,i′) q, for some l≤ i;
– for any q ∈ dom(s): s(q) = (q′, tstp), where q ;(i′, j) q′ and tstp = (τl, l) for the

maximum time-point l with i′ ≤ l < j and q;(i′,l) , or tstp =⊥ if no such l exists.
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1 function initw:
2 s := (λq.⊥)
3 s(q0) := (q0,⊥)
4 e := (λq.⊥)
5 return (0,0, s,e)

Algorithm 1: Initialize state

1 function adve(i, j, s,e):
2 τ j,b j := read end head
3 advance end head
4 eold := e
5 e := (λq.⊥)
6 for q ∈ dom(eold) do
7 qnew := δ(q,b j)
8 if qnew ∈ dom(e) then
9 e(qnew) :=

e(qnew)t eold(q)

10 else
11 e(qnew) := eold(q)

12 for q ∈ dom(s) do
13 let (q′, tstp) = s(q)
14 q′new := δ(q′,b j)

15 if F(q′,b j) then
16 s(q) := (q′new,(τ j, j))

17 else
18 s(q) := (q′new, tstp)

19 return (i, j+1, s,e)

Algorithm 2: Advance end

1 function advd(s, i, τi,bi):
2 sold := s
3 s := (λq.⊥)
4 for q ∈ dom(sold) do
5 let (q′, tstp) = sold(q)
6 qnew := δ(q,bi)
7 if tstp 6=⊥∧ tstp = (τi, i) then
8 s(qnew) := (q′,⊥)
9 else

10 s(qnew) := (q′, tstp)

11 return s

Algorithm 3: Advance dom(s)

1 function advs(i, j, s,e):
2 τi,bi := read start head
3 advance start head
4 let (q′, tstp) = s(q0)
5 e(q′) = τi

6 s := advd(s, i, τi,bi)
7 hcur := clone start head
8 icur := i+1
9 qcur := q0

10 scur := s
11 tstpcur :=⊥
12 while icur < j ∧ qcur 6∈ dom(scur)

do
13 τicur ,b

icur := read hcur
14 advance hcur

15 if F(qcur,bicur ) then
16 tstpcur := (τicur , icur)

17 qcur := δ(qcur,bicur )
18 scur :=

advd(scur, icur, τicur ,b
icur )

19 icur := icur +1

20 if qcur ∈ dom(scur) then
21 let (q′, tstp) = scur(qcur)
22 if tstp 6=⊥ then
23 s(q0) := (q′, tstp)

24 else
25 s(q0) := (q′, tstpcur)

26 else
27 s(q0) := (qcur, tstpcur)

28 destroy hcur
29 return (i+1, j, s,e)

Algorithm 4: Advance start

Fig. 5: Algorithms to initialize and update the window data structure
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The auxiliary function advd (Algorithm 3) updates s by advancing time-point i′

in the invariant svalid(i, i′, j, s). To do so, we perform a transition from every state
q ∈ dom(sold) at time-point i′ to the new state qnew := δ(q,bi′) and resetting the latest ac-
cepting time-stamp time-point pair to⊥ if tp(tstp) = i′, i.e., it is no longer accepting from
the new state qnew at i′+1. This function is used when advancing the domain of s from
i to i+1 and when computing s(q0). The invariant svalid(i, i′, j, s) is preserved by advd.

Lemma 3. Assume that the invariant svalid(i, i′, j, s) holds and that i′ < j. Then the
invariant holds for the updated function s, i.e., svalid(i, i′+1, j,advd(s, i′, τi′ ,bi′)).

The window (i, j, s,e) with i < j can be updated to the time-points (i+ 1, j) using
the function advs (Algorithm 4). This function first updates e (line 5) to account for the
run q0 ;(i, j) q′, where the state q′ is obtained from the function s (line 4), which always
contains the initial state q0 in its domain.

Next advs updates s (lines 6–28). First, the domain of s is advanced by advd (line 6).
This way, the invariant on s becomes svalid(i, i+1, j, s). To establish window(i+1, j, s,e),
however, svalid(i+ 1, i+ 1, j, s) is required. Thus, it remains to compute the value of
s(q0) and update s accordingly. To this end, advs performs runs from q0 as well as from
all states in dom(s) until the current state qcur in the run from q0 collapses with the
current state of the run from a state q ∈ dom(s) or the window’s end is reached (lines
12–19). The run from q0 is simulated by updating the current state qcur (initialized
to q0 on line 9). The runs from all states in dom(s) are simulated by updating a copy
scur of the function s to advd(scur, icur, τicur ,b

icur) at the current time-point icur of the
simulation. This way, scur satisfies svalid(i, icur, j, scur). In particular, the function scur
contains the state reached at the window’s end j and the latest accepting time-point on
(icur, j) for all states in its domain. To account for accepting time-points on (i+1, icur),
the algorithm also tracks the maximum accepting time-point l (represented by the pair
tstpcur = (τl, l) ∈ T×N) such that i+1≤ l < icur and q0 ;(i+1,l) .

After the loop on lines 12–19 terminates, advs proceeds branching according to
whether the current state qcur collapsed with the current state of the run from a state
q ∈ dom(s). If yes, then we have q0 ;(i+1,icur) qcur and also q;(i+1,icur) qcur. Because
the states are deterministic, the two runs from q0 and q continue the same after icur.
Hence, the run from qcur at icur reaches the state q′ from scur(qcur)= (q′, tstp). If tstp 6=⊥,
then tstp represents the latest accepting time-point following qcur at icur which is also
the latest accepting time-point time-point pair following q0 at i+1. On the other hand,
if tstp =⊥, then there is no accepting time-point following qcur at icur. Hence, the latest
accepting time-point following q0 at i+ 1 is tstpcur. If the current state qcur did not
collapse with the current state of the run from any state q ∈ dom(s), then the window’s
end must have been reached (due to the loop condition on line 12). Then we have icur = j
and thus s(q0) = (qcur, tstpcur) (line 27). Overall, advs preserves the window invariant.

Lemma 4. Assume that the invariant window(i, j, s,e) holds and that i < j. Then the
invariant holds after advancing the window’s start, i.e., window(advs(i, j, s,e)).

4.4 Multi-Head Monitors for Temporal Match Operators

The algorithms implementing a step of our multi-head monitor for a past or future
temporal match operator are defined using pseudocode in Figure 6.
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1 function evalP((a,b),(i, j, s,e)):
2 τi,_ := read start head
3 τ j,b j := read end head
4 while i < j∧τi +a≤ τ j do
5 (i, j, s,e) := advs(i, j, s,e)
6 τi,_ := read start head

7 β := (∃q ∈ dom(e). τ j ≤ e(q)+b∧
F(q,b j))∨ (a = 0∧F(q0,b j))

8 return (β,adve(i, j, s,e))

Algorithm 5: Multi-head monitor’s
step on a formula 〈r|[a,b]

1 function evalF((a,b),(i, j, s,e)):
2 τi,_ := read start head
3 τ j,_ := read end head
4 while τ j ≤ τi +b do
5 (i, j, s,e) := adve(i, j, s,e)
6 τ j,_ := read end head

7 let (q′, tstp) = s(q0)
8 β := (tstp 6=⊥∧τi +a≤ ts(tstp))
9 return (β,advs(i, j, s,e))

Algorithm 6: Multi-head monitor’s
step on a formula |r〉[a,b]

Fig. 6: Multi-head monitor’s evaluation step on a past or future match operators

To determine the Boolean verdict at a time-point j for a past match formula 〈r|[a,b],
we must check if there exists a match from a time-point l≤ j such that τ j ∈ τl +[a,b],
i.e., τl +a≤ τ j ≤ τl +b. Our multi-head monitor maintains a window (i, j, s,e) such that
the invariant window(i, j, s,e) holds and τl +a≤ τ j, for all l < i.

The algorithm evalP first adjusts the window so that the time-points l < i strictly
before the window’s start are exactly those with l < j and τl +a≤ τ j (lines 4–6), i.e., it
advances the window’s start to the maximum i≤ j such that τl +a≤ τ j for all l < i.

Then we seek to find a past match from a time-point l < i (which implies that
τl + a ≤ τ j) such that τ j ≤ τl + b. Using window(i, j, s,e), this amounts to checking
whether there exists some q ∈ dom(e) such that τ j ≤ e(q) + b (the first disjunct on
line 7). The maximality of i implies that no candidate time-point for the beginning of a
past match is missed, except if a = 0 and the initial state is accepting at time-point j that
we evaluate. The second disjunct on line 7 checks such a potential match in the interval
of the form ( j, j).

Lemma 1 shows that window(initw) holds. Moreover, because i = j = 0 in the initial
monitor’s state initw, there exists no l < i, so we trivially also have τl +a ≤ τ j, for all
l < i. Finally, we show that given a monitor’s state satisfying these two properties, the
evaluation function evalP computes a sound Boolean verdict at time-point j and returns
a monitor’s state preserving the two properties at the next time-point j+1.

Lemma 5. Assume that the invariant window(i, j, s,e) holds and τl+a≤ τ j, for all l < i.
Let (β,(i′, j′, s′,e′)) = evalP((a,b),(i, j, s,e)). Then, (i) β iff j � 〈r|[a,b], (ii) j′ = j+ 1,
(iii) window(i′, j′, s′,e′), and (iv) τl +a≤ τ j′ , for all l < i′.

To determine the Boolean verdict at a time-point i for a future match formula |r〉[a,b],
we need to check if there exists a match until a time-point l≥ i such that τl ∈ τi +[a,b],
i.e., τi +a≤ τl ≤ τi +b. Our multi-head monitor maintains a window (i, j, s,e) such that
the invariant window(i, j, s,e) holds and τl ≤ τi +b, for all i≤ l < j.

The algorithm evalF first adjusts the window so that the time-points i ≤ l < j are
exactly those with τl ≤ τi +b for all i≤ l < j (lines 4–6), i.e., it advances the window’s
end to the maximum j such that τl ≤ τi +b for all i≤ l < j.
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Then the invariant window(i, j, s,e) implies that q0 ∈ dom(s) and that the latest ac-
cepting time-point within the window (which coincides with the interval [0,b]) is stored in
s(q0) = (q′, tstp). It remains to check tstp 6=⊥ (i.e., if an accepting time-point within the
window exists) and if yes, whether ts(tstp)≥ τi+a, i.e., if the future match ends in [a,b].

Lemma 1 shows that window(initw) holds. Moreover, because i = j = 0 in the initial
monitor’s state initw, there exists no i≤ l < j, so we trivially also have τl ≤ τi +b, for
all i≤ l < j. Finally, we show that given a monitor’s state satisfying these two properties,
the evaluation function evalF computes a sound Boolean verdict at time-point i and
returns a monitor’s state preserving the two properties at the next time-point i+1.

Lemma 6. Assume that the invariant window(i, j, s,e) holds and τl ≤ τi +b for all i≤
l < j. Let (β,(i′, j′, s′,e′)) = evalF((a,b),(i, j, s,e)). Then, (i) β iff i � |r〉[a,b], (ii) i′ = i+1,
(iii) window(i′, j′, s′,e′), and (iv) τl ≤ τi′ +b for all i′ ≤ l < j′.

The soundness and completeness of the overall multi-head monitor follows by induc-
tion on the structure of MDL formulas using Lemmas 5 and 6 for the cases of temporal
match formulas. We denote by init(ϕ) the initial multi-head monitor’s state for an MDL
formula ϕ and by eval(v) the evaluation function of the multi-head monitor’s state v
(both omitted). Then, soundness and completeness amount to the following theorem.

Theorem 1. Let ϕ be a bounded-future MDL formula, n ∈ N, and v the multi-head
monitor’s state after applying n times the evaluation function eval starting from init(ϕ).
Let eval(v) = (v′,(t, β)). Then, (i) t = τn and (ii) β iff n � ϕ.

4.5 Time and Space Complexity

By induction on the structure of MDL regular expressions, it follows that the number of
states of the ε-NFA AN computed by T (Figure 1) is linear in the size |r| of the regular
expression r. Because the set of states Q of the DFA AD consists of all subsets of the
set of states of AN , we derive |Q| ≤ 2O(|r|). We also observe that a window can be stored
in O(|Q|) registers representing AD’s states, time-stamps, and indices into the trace.

When analyzing the time complexity, we treat the evaluation of the transition and ac-
cepting functions of the deterministic automaton AD for a regular expression to be basic
steps in the computation. Their precise cost depends on the actual machine model and is
not analyzed here. We observe that the time complexity of initializing a temporal moni-
tor’s state and advancing the window’s end is linear in the number of deterministic states,
i.e., O(|Q|). The time complexity of updating the window’s start is O(|Q| ·m), where m
denotes the number of times a cloned reading head has been advanced during the update.
Because a cloned reading head never advances beyond the window’s end, it is only ad-
vanced from a time-point icur if qcur 6∈ dom(scur), and we have qcur ∈ dom(scur) next time
the cloned reading head reaches icur; it follows that a cloned reading head is advanced
from a time-point icur at most |Q| times. Hence, the time complexity of updating the
window from (0,0) to (i, j) is at most O(|Q|2 · j), i.e., amortized O(|Q|2) per time-point.

To bound the time and space complexity of our multi-head monitor, we first analyze
how many instances of the window data structure exist at any given time. To this end, we
observe that each match operator uses at most 3 reading heads over its direct subformulas,
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i.e., it requires at most 3 copies of the multi-head monitor for each direct subformula.
Hence, the total number of temporal monitor’s state instances in a multi-head monitor
for an MDL formula ϕ is at most 3d(ϕ), where d(ϕ) is the nesting depth of the MDL
formula ϕ. Since d(ϕ)≤ |ϕ|, there are at most 3|ϕ| temporal monitor’s state instances at
any given time. Since an instance of a temporal monitor’s state can be stored in O(|Q|)
registers and |Q| ≤ 2O(|r|), the space complexity of a multi-head monitor for the formula
ϕ is 2O(|ϕ|) registers representing AD’s states, time-stamps, and indices into the trace.

To bound the time complexity of a multi-head monitor’s step, we recall that the
amortized time complexity of updating the window is O(|Q|2) per time-point. Because
there are at most 3|ϕ| temporal monitor’s state instances at any given time, we conclude
that the amortized time complexity of Algorithm 5 and 6 is 3|ϕ| ·O(|Q|2) ≤ 2O(|ϕ|)

per time-point. Because a formula ϕ has O(|ϕ|) subformulas, the time complexity
of evaluating the entire formula can also be bounded by 2O(|ϕ|). We summarize the
complexity analysis in the following theorem.

Theorem 2. The amortized time complexity of evaluating an MDL formula ϕ is at
most 2O(|ϕ|) basic steps of computation. The space complexity of storing the multi-head
monitor’s state for evaluating the formula ϕ is at most 2O(|ϕ|) registers representing
deterministic automata states, time-stamps, and indices into the trace.

5 Implementation and Evaluation

We have implemented our multi-head MDL monitor in a tool called HYDRA(MDL), con-
sisting of roughly 3500 lines of C++ code [21]. Our implementation mirrors the structure
of the multi-head monitor presented here and consists of C++ classes for monitoring
atomic predicates, Boolean operators, and temporal match operators. In fact, the imple-
mentation extends HYDRA(MTL) [20] with classes for the temporal match operators.

In addition, we have exported OCaml code from our Isabelle formalization and
augmented this verified core with unverified OCaml and C code for parsing the formula
and log file. We call the resulting tool VYDRA(MDL). We have used it to successfully test
the correctness of HYDRA(MDL) on thousands of pseudo-random formulas and traces.

To evaluate our tools’ performance, we conduct a set of experiments comparing HY-
DRA(MDL) and VYDRA(MDL) with HYDRA(MTL) [20], AERIAL [7], REELAY [26],
R2U2 [19] and PCRE [16], a library used in many regular expression engines, e.g.,
grep. We distinguish AERIAL(MDL) that supports MDL as defined in this paper and
AERIAL(MTL) that is optimized for MTL formulas. Similarly, REELAY supports past-
only MTL and untimed past-only regular expressions. Moreover, time-stamps for past-
only MTL are (implicitly) equal to the time-points for REELAY (in particular, they are not
explicitly part of the log). R2U2 restricts the time-stamps in the same way. In addition to
past-only MTL, it supports future-only MTL, but not formulas mixing past and future op-
erators. Because we focus on MDL and interval-obliviousness, we only include REELAY
and R2U2 in an experiment that demonstrates that both tools are not interval-oblivious
even in the restricted setting of past-only MTL with time-stamps coinciding to time-
points. Finally, PCRE supports tests similar to MDL, but restricts them to be star-free.

The time-stamps and time-points used in our algorithm are represented as 32-bit in-
tegers in HYDRA(MDL) and as arbitrary precision integers in VYDRA(MDL). The other
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Experiment Formula size Number of formulas Trace length Scaling factor
IO 25 10 20 000 1–10
SZ 2–50 10 20 000 1

Fig. 7: The setup of the first two experiments

tools used in our experiments use bounded-precision machine integers as their representa-
tion. In our complexity analysis, we use an abstract model of computation, treating such
values as being stored in registers that can be manipulated in a basic computation step.

We run our experiments on an Intel Core i7-8550U computer with 32 GB RAM.
We measure the tools’ total execution time and maximal writeable memory usage using
a custom tool that performs two repetitions of each run. The tool measures the total
execution time in the first repetition and calls pmap in a loop to determine the maximal
writeable memory usage in the second repetition. Each experiment is repeated three
times to minimize the impact of the execution environment. Each unfilled data point in
our plots shows the average for the tool invocations with the same input parameters. We
omit the negligible standard deviations. Each filled data point shows the average over a
collection of a tool’s data points with the same x-coordinate. We include trend lines over
the filled data points in all plots. Note that the y-axis is always plotted in the logarithmic
scale. Consequently, an exponential growth of a quantity looks linear and a polynomial
growth looks logarithmic in the plots.

We now describe the experiments. In the first two experiments, HYDRA(MDL),
VYDRA(MDL), and AERIAL are benchmarked on pseudo-random formulas and traces.
In the first experiment (IO), the formulas are of a fixed size, with the time-stamp intervals
of match operators scaled by a given scaling factor. In the second experiment (SZ), the
formulas grow in size with small bounds in the intervals of match operators. In both
experiments, the traces are of a fixed size. The parameters of the first two experiments
are summarized in Figure 7.

The pseudo-random formulas are produced by mutually recursive generators for
formula and regular expressions for a predefined size and maximum interval bounds. A
formula ϕ of size s > 0 is generated as follows: (i) if s = 1, then ϕ= p, for an atomic
predicate p ∈ {p0, . . . , p15} chosen uniformly at random; (ii) if s = 2, a top-level unary
operator op is selected uniformly at random among the three unary operators; and (iii) if
s≥ 3, a top-level operator op is selected uniformly at random among the recursive MDL
operators. A regular expression r of size s > 0 is generated as follows: (i) if s = 1, then
r = ?; (ii) if s = 2, a top-level operator op is selected uniformly at random among ? and
(·)∗; and (iii) if s≥ 3, a top-level operator op is selected uniformly at random among all
regular expression operators. If the top-level operator op of a formula has an interval, then
the interval is generated as follows: (i) with probability 1

4 , the interval [0,0] is chosen; (ii)
with probability 1

4 , an interval [0,r] is chosen with r distributed uniformly in {1, . . . , ∆},
or {1, . . . , ∆}∪{∞}, for a predefined ∆ (in our experiments, we use ∆ = 16); and (iii)
with probability 1

2 , an interval [l,r] is chosen with l ∈ {1, . . . , ∆} and r ∈ {l, . . . , ∆}, or
r ∈ {l, . . . , ∆}∪{∞}, distributed uniformly at random. Finally, if the top-level operator
op is unary, a subformula ϕ (or subexpression r) of size s−1 is generated recursively.
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Fig. 8: Evaluation results for the randomized experiments IO and SZ

If op is binary, two random subformulas (or subexpressions) of sizes s1 and s−1− s1
are generated recursively, where s1 ∈ {1, . . . , s−2} is chosen uniformly at random.

The pseudo-random traces are produced by a generator for a predefined event rate
er [1]. Each trace contains events with 2000 different time-stamps. The time-stamp dif-
ferences are distributed uniformly in {1, . . . , ∆}, for a predefined ∆; in our experiments,
we use ∆= 4. The atomic predicates are generated as follows: (i) independently with
probability 1− 1

∆·er , an atomic predicate p0, . . . , p3 is included; and (ii) independently
with probability 1

2 , an atomic predicate p4, . . . , p15 is included.
Figure 8 summarizes the results for the experiments IO and SZ. The experiment IO

shows that neither the time nor space complexity of HYDRA(MDL) and VYDRA(MDL)
depends on the numerical values in the intervals, i.e., both tools are interval-oblivious.
AERIAL(MDL)’s time complexity grows with increasing interval bounds because the
algorithm works with formulas whose intervals are shifted by offsets up to the numer-
ical bounds in the intervals [1]. Similarly, AERIAL(MDL)’s space complexity grows
with increasing interval bounds, but it is dominated by the constant overhead of the
runtime environment before AERIAL(MDL) times out. The experiment SZ shows that
HYDRA(MDL) outperforms AERIAL(MDL) also when increasing the formulas’ size.

The worst-case experiment (WC) reported in our previous work [20] results in space
complexity of online monitoring that is exponential in the formula size (in fact, already to
produce a single Boolean verdict for the first time-point of a repetition). It is conducted
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Fig. 9: Evaluation results for the experiment WC and RL

on formulas of the form:

Φn =#[1,1](¬eU[0,0] (¬e∧
∧n

i=1(pi⇒�[0,0](e⇒ pi))∧
∧n

i=1(¬pi⇒�[0,0](e⇒¬pi)))).

A trace, parameterized by n ∈ N, is constructed by repeating the following pattern and
increasing the initial time-stamp of each repetition so that they are independent: the first
event is an empty event with a time-stamp τ; then for each subset X ∈ X ⊆ 2PΦn\{e}

of atomic predicates without e, we include an event with the atomic predicates X and
a time-stamp τ+ 1. Finally, for some X ⊆ PΦn , we include an event with the atomic
predicates X∪{e} and a time-stamp τ+1. Figure 9 summarizes the evaluation results.
We observe that HYDRA(MDL)’s and VYDRA(MDL)’s time complexity is polynomial,
whereas AERIAL(MDL)’s is exponential. (Recall that all y-axes are in logarithmic scale.)
HYDRA(MTL) is the fastest here, as it is optimized for the more restricted logic.

The REELAY comparison experiment (RL) is conducted on formulas and traces
described by Ulus [25]. The formulas are of the form: DELAY(n) = p S[n,n] q. A trace,
parameterized by n∈N, is constructed with p being always true and q being true at every
other time-point (with time-stamps being equal to time-points). Figure 9 summarizes the
results for this experiment. It confirms that the time complexity of both AERIAL(MTL)
and REELAY grows when increasing n, i.e., neither of these tools is interval-oblivious.
For AERIAL(MTL), the reason is again that the algorithm considers all interval-shifted
formulas. The algorithm implemented in REELAY combines interval-shifted formulas
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Fig. 10: Evaluation results for the experiment RE

with consecutive offsets. Nevertheless, the event pattern in the log files used in the exper-
iment prevents this optimization and shows that REELAY’s time and space complexity
still depends on the interval bounds in the worst-case. Also, R2U2’s space complexity
depends on the interval bounds. Its time complexity is comparable to HYDRA(MDL)’s on
this simple formula. In contrast, the time complexity of HYDRA(MTL), HYDRA(MDL),
and VYDRA(MDL) is confirmed to be independent of the parameter n. Finally, the
experiment shows that HYDRA(MTL)’s space complexity is not interval-oblivious.

The PCRE comparison experiment (RE) is conducted on formulas of the form:
Ψn = 〈(a? · ? · b? · ?)∗|[2n,2n], which correspond to rn = (?<=(ab){n}). using the
syntax of Perl compatible regular expressions. We point out that lookbehinds do not
consume matched symbols and thus produce overlapping matches (just like in MDL).
The text in which the regular expressions rn are searched consists of 105 occurrences
of the pattern ab, i.e., a total of 2 ·105 symbols. For HYDRA(MDL) and VYDRA(MDL),
this text is encoded into a log whose events correspond to the text’s symbols. Thus,
the log also consists of 2 ·106 events. The log’s time-stamps are consecutive integers
denoting the number of symbols up to the respective position. The evaluation results
are summarized in Figure 10. Because PCRE starts a new search for matching (ab){n}
at each position in the text, its time complexity grows linearly in the parameter n. In
contrast, HYDRA(MDL)’s and VYDRA(MDL)’s time complexity does not depend on
n, as the parameter n only occurs in the interval bounds of Ψn.

HYDRA(MDL) outperforms all other tools by an order of magnitude in all exper-
iments with respect to memory requirements (except for HYDRA(MTL) in the WC
experiment, which is on par with HYDRA(MDL)).

6 Conclusion

We presented a new monitoring algorithm for metric dynamic logic (MDL) that follows
the multi-head paradigm. Our monitor is the first event-rate independent (assuming reg-
isters) monitor for MDL that produces a stream of Boolean verdicts. This is a significant
improvement over the event-rate independent monitor AERIAL in terms of the monitor’s
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interface: Boolean verdicts are much easier for humans to understand than AERIAL’s
non-standard equivalence verdicts. Additionally, our monitor is interval-oblivious: The
constants occurring in the formula’s metric constraints have no impact on the monitor’s
time- and memory consumption. To our knowledge, this property is unprecedented for
monitors for metric specification languages in the point-based setting.

Our algorithm may, however, require exponentially many heads in the monitored
formula’s size. This exponential dependence seems daunting in theory, but it seems to be
unproblematic in practice. We have validated this claim by implementing our algorithm
in the HYDRA(MDL) tool and evaluating its performance in a series of case studies.
For example, HYDRA(MDL) can process randomly generated MDL formulas with 50
operators on traces with 20000 events in about 100 milliseconds on average.
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