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Abstract. Modern software systems must comply with increasingly com-
plex regulations in domains ranging from industrial automation to data
protection. Runtime enforcement addresses this challenge by empower-
ing systems to not only observe, but also actively control the behavior
of target systems by modifying their actions to ensure policy compliance.
We propose a novel approach to the proactive real-time enforcement of
policies expressed in metric first-order temporal logic (MFOTL). We in-
troduce a new system model, define an expressive MFOTL fragment that
is enforceable in that model, and develop a sound enforcement algorithm
for this fragment. We implement this algorithm in a new tool called
WhyEnf and carry out a case study on enforcing GDPR-related policies.
Our tool can enforce all policies from the study in real-time with modest
overhead. Our work thus provides the first tool-supported approach that
can proactively enforce expressive first-order policies in real time.
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1 Introduction

As modern software systems become increasingly complex, they are required to
comply with a myriad of growingly intricate regulations. The ability to monitor
and control such systems is an important yet technically challenging task.

Runtime enforcement [49] tackles this problem by observing and controlling a
target system, also known as system under scrutiny (SuS), such that its actions,
possibly modified, comply with a given policy. Runtime enforcement is performed
by a system called enforcer, which observes the SuS and influences its behavior
as specified by the system model, e.g., by suppressing or causing SuS actions.
Enforcement is thus an inherently online problem that must be performed during
the SuS’s execution. When time constraints are involved, enforcement is called real-
time. This is a more difficult problem than runtime monitoring [8], where the SuS is
only observed and policy violations reported. Applications of runtime enforcement
are manifold, ranging from safety protocols in industrial automation to regulatory
compliance, e.g., enforcing privacy rules in systems processing personal data.

Policies can be decomposed into provisions and obligations [33]. Compliance
with provisions depends on past and present SuS behavior, and it is sufficient
for an enforcer to react to the current SuS action. Compliance with obligations,
on the other hand, depends on future SuS behavior, requiring the enforcer to
account for this behavior and proactively act [11] to prevent violations.

In existing approaches to proactive runtime enforcement [11], policies are
typically propositional: they regard every system action as either true or false.
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In practice, however, actions are often parameterized with data values coming
from an infinite domain (like strings or integers) and first-order policies are used
to formulate dependencies between such actions’ parameters. To the best of our
knowledge, no previous work supports proactive enforcement of first policies:
Hublet et al.’s [35] enforcement is real-time, but not proactive; Aceto et al. [5]
similarly support only the reactive runtime enforcement of first-order provisions.

In this paper, we propose an approach for proactively enforcing metric first-
order temporal logic (MFOTL) [18] policies. Our approach features a realistic sys-
tem model that supports proactive real-time enforcement in the nick of time [11,
12], i.e., the enforcer can act least once per clock tick. Our model includes causable,
suppressable, and only-observable SuS actions. Due to its proactivity, our enforcer
supports an expressive MFOTL fragment with both past and future operators.

Our enforcer is sound (modified SuS behavior complies with a given policy) for
an enforceable MFOTL fragment (EMFOTL), and transparent (if SuS behavior is
already policy-compliant, then it is not modified) for a fragment of EMFOTL. Our
enforcer relies on the runtime monitoring tool WhyMon [43] as a backend. After
reviewing MFOTL and WhyMon (Section 2) we describe our approach and eval-
uate the associated implementation. Our work makes the following contributions:
– We introduce a new system model for the proactive real-time enforcement of

metric first-order policies (Section 3).
– We present an enforceable MFOTL fragment (called EMFOTL) with past

and future operators that we characterize using a type system (Section 4).
– We develop an enforcement algorithm for EMFOTL and prove its soundness.

We also prove its transparency for a fragment of EMFOTL (Section 5).
– We implement the type system and the algorithm into a new tool, called

WhyEnf. We carry out a case study on monitoring core GDPR provisions [7],
using WhyEnf to enforce the monitored policies. We find that WhyEnf
can seamlessly enforce all monitorable policies from this case study in real
time with modest runtime overhead (Section 6).
To our knowledge, WhyEnf (available online [1]) is the first proactive first-

order policy enforcer (Section 7). All proofs can be found in Appendix B.

2 Preliminaries

We introduce traces that model system executions, metric-first order temporal
logic (MFOTL), and WhyMon, a monitor for an expressive MFOTL fragment.

Let x, y, z ∈ V be variables and c, d ∈ D be values from an infinite domain D
of constant symbols (e.g., integers or strings). Terms t ∈ V∪D are either variables
or constants. Finite sequences of terms t1, . . . , tn are denoted as t. Let E denote a
finite set of event names, and the function ι : E → N map event names to arities.
An event is a pair (e, (d1, . . . , dι(e))) ∈ E × Dι(e) of an event name e and ι(e)
arguments. We fix a signature Σ = (D,E, ι) and define the set DB of databases
over Σ as P({(e, d) | e ∈ E, d ∈ Dι(e)}). The subset of all databases with event
names in E ⊆ E is DB(E) := {D ∈ DB | ∀(e, (d1, . . . , dι(e))) ∈ D. e ∈ E}.
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Example 1. Consider a system logging GDPR-relevant events defined with the
signature Σ0 = (N,E0, ι0), where E0 = {use, consent, delete, deletion_request,
legal_ground}, ι0(use) = ι0(delete) = ι0(deletion_request) = 3, and ι0(consent) =
ι0(legal_ground) = 2. The events’ denotations are: use(c, d, u) means ‘system uses
user u’s data d from category c’, delete(c, d, u) means ‘user u’s data d from category
c is deleted’, deletion_request(c, d, u) means ‘user u requests deletion of data d
from category c’, consent(u, c) means ‘user u provides consent for category c’, and
legal_ground(u, d) means ‘legal ground was claimed to process user u’s data d’.

A trace σ is a sequence ⟨(τi, Di)⟩0≤i≤k , k ∈ N ∪ {∞} of timestamps τi ∈ N and
finite databases Di ∈ DB, where timestamps satisfy monotonicity (∀i < |σ|. τi ≤
τi+1) and progress (if |σ| = ∞, then limi→∞ τi = ∞). An index 0 ≤ i < |σ|, in a
trace σ is called a time-point. The empty trace is denoted by ε, the set of all traces
by T, and the set of finite (resp. infinite) traces by Tf (resp. Tω). For traces σ ∈ Tf

and σ′ ∈ T, σ · σ′ denotes their concatenation. A property is a subset P ⊆ Tω.

Example 2. Consider two infinite traces of a data management system

σ1=(10, {consent(1, 1), consent(1, 2)), (50, {use(1, 3, 1), use(2, 1, 1)}), . . .
σ2=(10, {deletion_request(2, 1, 1)}), (50, {use(1, 3, 1)}), . . .

In σ1, user 1 provides consent for categories 1 and 2 at time-point 0 with
timestamp 10; at time-point 1 with timestamp 50, the system uses user 1’s data
3 (with category 1) and user 1’s data 1 (with category 2). In σ2, user 1 requests
deletion of data 1 with category 2, and then system uses data 3 with category 1.

MFOTL formulae are defined by the following grammar

φ ::= ⊤ | e(t) | ¬φ | φ ∧ φ | ∃x. φ | #I φ |  I φ | φ UI φ | φ SI φ,

where e ∈ E, x ∈ V, and I ∈ I ranges over non-empty intervals in N. We use the
standard abbreviations ⊥ := ¬⊤, φ→ ψ := ¬φ∨ψ, φ↔ ψ := (φ→ ψ)∧(ψ → φ),
∀x. φ := ¬(∃x. ¬φ), ♢I φ := ⊤ UI φ (eventually), ♦I φ := ⊤ SI φ (once), □I φ :=
¬♢I ¬φ (always), and ■I φ := ¬♦I ¬φ (historically). A polarity p ∈ {+,−} acts
upon a formula φ by +φ := φ and −φ := ¬φ. We omit intervals of the form
[0,∞) from the subscript of the temporal operators. We write φ[d/x] for the
formula resulting from substituting the free variable x with the constant d in the
formula φ. The notation φ[v] generalizes such a unary substitution to applying a
full valuation v : V → D, i.e. a mapping from variables to domain values.

Example 3. Suppose that the time unit is days. Consider the formulae

φlaw = □(∀c, d, u. use(c, d, u) → ♦(consent(u, c) ∨ legal_grounds(u, d)))

φdel = □(∀c, d, u. deletion_request(c, d, u) → ♢[0,30] delete(c, d, u))

The formula φlaw formalizes lawfulness of processing : ‘whenever data d with
category c belonging to user u is processed, then either u has consented to her data
with category c being used, or the controller has a legal ground to process d.’ The
formula φdel formalizes the GDPR’s right to erasure: ‘whenever a user u requests
the deletion of data d of category c, then d must be deleted within 30 days’.
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v, i ⊨ e(t) iff (e, J t Kv) ∈ Di v, i ⊨ ⊤
v, i ⊨ ∃x. φ iff v[x 7→ d], i ⊨ φ for some d ∈ D v, i ⊨ ¬φ iff v, i ̸⊨ φ
v, i ⊨ #I φ iff v, i+ 1 ⊨ φ and τi+1 − τi ∈ I v, i ⊨ φ ∧ ψ iff v, i ⊨ φ and v, i ⊨ ψ
v, i ⊨  I φ iff i > 0 and v, i− 1 ⊨ φ and τi − τi−1 ∈ I
v, i ⊨ φ UI ψ iff v, j ⊨ ψ for some j ≥ i with τj − τi ∈ I and v, k ⊨ φ for all i ≤ k < j
v, i ⊨ φ SI ψ iff v, j ⊨ ψ for some j ≤ i with τi − τj ∈ I and v, k ⊨ φ for all j < k ≤ i

Fig. 1. MFOTL semantics for a fixed, infinite trace σ

We write fv(φ) and cs(φ) for the set of free variables and constants of a formula
φ, respectively. We define the active domain ADi(φ) of a formula φ at time-
point i as cs(φ) ∪

(⋃
j≤i{d | d is one of dk in e(d1, . . . , dι(e)) ∈ Dj}

)
. The active

domain of φ at i contains all constants occurring in φ together with all constants
occurring as event arguments in the trace up to time-point i.
Example 4. As cs(φlaw) = cs(φdel) = ∅, we have AD0(φlaw) = AD0(φdel) = {1, 2}
and AD1(φlaw)=AD1(φdel)={1, 2, 3} for σ1.

MFOTL’s semantics (Figure 1) is defined over infinite traces. Given a valu-
ation v, we define the interpretation of terms as Jx Kv = v(x) (for variables) and
J c Kv = c (for constants). We lift this operation straightforwardly to lists of terms.
A valuation update is denoted as v[d/x]. Each sequent v, i ⊨σ φ denotes that φ is
satisfied at time-point i of trace σ under valuation v. We omit σ whenever it is clear
from the context. The language of a formula φ is L(φ) = {σ ∈ Tω | ∃v. v, 0 ⊨σ φ}.

Lima et al. [43] present an algorithm and a tool, called WhyMon, that can
monitor an expressive safety fragment of MFOTL both online and offline. This
fragment contains all formulae with future-bounded until operators. Thus, it
strictly extends the fragments supported by other tools, e.g., MonPoly [13] and
VeriMon [9] which only support formulas in relational algebra normal form [20]
and DejaVu [31] which is restricted to past temporal operators.

Abstractly, WhyMon implements a function Sat(v, φ, i) = (v, i ⊨ φ) that
checks if a valuation satisfies the formula φ on a (fixed) trace σ at time-point i.
Internally, it manipulates objects representing proofs of φ’s subformulae. This
technique additionally allows WhyMon to output explanations [42] of its verdicts
(satisfactions or violations) in the form of proofs that can be checked using a
proof checker. An example proof that σ2 does not satisfy φdel is provided in
Appendix A. We refer to Lima et al.’s work [43] for further details.

3 Proactive, Real-Time, First-Order Enforcement

Our system model (Section 3.1) is inspired by Basin et al.’s model for proactive
propositional enforcement [11, 12] and Hublet et al.’s model for (non-proactive)
first-order enforcement [35]. Within the model, we define enforcers (Section 3.2).

3.1 System model

Figure 2 shows a system S supervised by an enforcer E described using a commu-
nication diagram [30]. The system S interacts with an environment X that E can-
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X S E

1.1: set of events D

1.2: reactive command ReCom(DC , DS)

2: proactive command PrCom(DC)

policyP

time τ

Fig. 2. System model for proactive real-time first-order enforcement

not control. The enforcer E must ensure that the sequence of actions executed by
S complies with a given policy P . To achieve this, S creates an event (from E) for
each of its observable actions, and sends (possibly several) such events to E. The
events are received by E in addition to the current time τ ∈ N, provided by a global
clock that is incremented by steps of 1. E can instruct S to cause and suppress
some of its observable actions. Actions that can be suppressed by E correspond to
suppressable events (Sup ⊆ E), while actions that can be caused by E correspond
to causable events (Cau ⊆ E). The remaining observable actions (neither suppress-
able nor causable) correspond to only-observable events (Obs = E \ (Sup∪Cau)).

Example 5. Suppose that the system from Example 1 can be instrumented so
that an enforcer can (observe and) prevent data usage and cause data deletion,
but only observe the remaining actions. The corresponding events are then
Cau={delete}, Sup={use}, and Obs={consent, legal_ground, deletion_request}.

To achieve its goal, we assume that E interacts with S in three modes: (1)
Before performing any suppressable actions, S sends the corresponding set of
(suppressable) events D ∈ DB to E. The enforcer inspects D and responds with a
reactive command which we denote as ReCom(DC , DS), where DC ∈ DB(Cau) is
a set of causable events and D ⊇ DS ∈ DB(Sup) is a set of suppressable events. S
then performs the actions corresponding to the events in (D \DS) ∪DC , i.e., all
actions corresponding to events in DC (resp. DS) are caused (resp. suppressed).
(2) After performing actions that are not suppressable, S sends the corresponding
set of events D ∈ DB to E. The enforcer inspects D and responds with a reactive
command ReCom(DC , ∅). As no suppressable actions were performed and the
events are sent after the actions, the enforcer can only (instruct S to) cause
actions, but not to suppress them. (3) Before any clock tick (‘in the nick of
time’ [12]), E can send a proactive command PrCom(DC) with DC ∈ DB(Cau)
to S. The system S then performs the actions corresponding to the events in DC .
Note that sending a proactive command before a tick is always possible, but that
the enforcer may instead choose not to send any command.

These modes of interaction cover different enforcement scenarios. In mode
(1), E reacts to suppressable events by possibly suppressing or causing events.
E.g., the formula φlaw from Example 3 can be enforced by suppressing data us-
age (the use events) if no appropriate event has previously occurred. In mode
(2), E reacts to only-observable events (e.g., the consent events) by possibly caus-
ing events corresponding to corrective actions after the executed action. Finally,
mode (3) enforces policies by causing events at times when the SuS does not on
its own send any observable events. This is the case, e.g., when enforcing φdel

on σ2: data 1 with category 2 must be deleted between timestamps 10 and 40.
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1: run(s, σ, σ′, τ) = case σ′ of
2: | ε⇒ ε
3: | (τ ′, D) · σ′′ when τ ′ > τ ⇒ let (o, s′) = µ(σ, s, τ) in
4: case o of | PrCom(DC)⇒ (τ,DC) · run(s′, σ · (τ,DC), σ

′, τ + 1)
5: | NoCom⇒ run(s′, σ, σ′, τ + 1)
6: | (τ ′, D) ·σ′′ when τ ′ = τ ⇒ let (o, s′) = µ(σ ·(τ ′, D), s,⊥);D′ = (D\DS)∪DC) in
7: case o of | ReCom(DC , DS)⇒ (τ ′, D′) · run(s′, σ · (τ ′, D′), σ′′, τ + 1)
8: E(σ) = run(s0, ε, σ, if σ = ε then 0 else fts(σ))

Algorithm 1: Enforced trace

Discussion. Assume that the enforcer E can ensure that the sequence of actions
it observes complies with P . When does this guarantee that the system actually
complies with P? Basin et al. [12] provide two necessary conditions: (a) the sys-
tem and enforcer must be synchronized and (b) the enforcer must be fast enough
to keep up with the real-time system behavior. Condition (a) ensures that the or-
der of events observed by E reflect the order of S’s actions. Condition (b) ensures
that the timestamps of events reflect the time at which the corresponding actions
are performed by S. The interval t between two clock ticks must satisfy the real-
time condition t > δS +2δS↔E + δE , where δS is the worst-case time needed by S
to create events before performing observable actions and process the enforcer’s
reactions, δS↔E is the worst-case communication time between S and E, and
δE is the worst-case latency of the enforcer. Threats to the model’s validity may
thus stem from high communication time, or poor SuS or enforcer performance.

3.2 Enforcers

An enforcer reads consecutive prefixes of a trace of a SuS and returns commands
as described by (1)–(3) in Section 3.1:

Definition 1. A command is any element of the form ReCom(DC , DS) (‘reactive
command’), PrCom(DC) (‘proactive command’), or NoCom (‘no command’)
where DC ∈ DB(Cau) and DS ∈ DB(Sup). The set of commands is denoted by C.

Definition 2. An enforcer E is a triple (S, s0, µ), where S is a set of states,
s0 ∈ S is an initial state, and µ : Tf × S × (N ∪ {⊥}) → C × S is a computable
update function such that the following two conditions hold:

∀σ, τ,D, s. ∃DC , DS , s
′. µ(σ · (τ,D), s,⊥) = (ReCom(DC , DS), s

′) ∧DS ⊆ D

∀σ, s, τ ∈ N. ∃DC , s
′. µ(σ, s, τ) ∈ {(PrCom(DC), s

′), (NoCom, s′)}.

If µ’s third argument is ⊥, then µ returns a reactive command; if it is an integer
timestamp, then µ returns either a proactive command for the corresponding
timestamp, or no command. Any enforcer induces the following trace transduction:

Definition 3. For any σ ∈ T and enforcer E = (S, s0, µ), the enforced trace E(σ)
is defined co-recursively in Algorithm 1, where fts(σ) is the first timestamp in σ.

Algorithm 1 formalizes the interaction described in Section 3.1: the enforcer is
called once at every time-point in the input trace σ to generate a reactive command
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(lines 6–7), and once before each clock tick to (possibly) generate a proactive
command (lines 3–5). The generated commands are executed sequentially to
produce the enforced trace E(σ). The enforced trace E(σ) thus reflects the actions
performed by the SuS when composed with the enforcer as in Section 3.1.

To be considered correct with respect to a given property P , enforcers are typ-
ically required to fulfill two properties: soundness and transparency [41]. Sound-
ness states that any trace modified by the enforcer must be compliant with P ,
while transparency states that the enforcer does not alter a trace that already
complies with the policy. A transparent enforcer modifies the system’s behavior
only when necessary. The following definition formalizes these notions.

Definition 4. An enforcer E is sound with respect to a property P iff for any
σ ∈ Tω we have E(σ) ∈ P . An enforcer E = (S, s0, µ) is transparent with respect
to a property P iff for all σ ∈ P , E(σ) = σ. A property P (resp. a formula φ) is
enforceable iff there exists a sound enforcer with respect to P (resp. L(φ)).

4 Enforceable MFOTL Formulae

In this section, we present EMFOTL, an expressive, enforceable fragment of
MFOTL. An enforcer for EMFOTL formulae will be presented in Section 5.

EMFOTL is defined using the typing rules in Figure 3. These consist of
sequents of the form Γ ⊢ φ : α, reading ‘φ types to α under Γ ’. Here, Γ : E →
{Cau,Sup} is a mapping from event names to either of the symbols Cau or Sup, φ is
an MFOTL formula, and α is a type in {Cau,Sup}. EMFOTL is defined as the set
of all φ for which ∃Γ. Γ ⊢ φ : Cau. Intuitively, a formula types to Cau under Γ (‘φ
is causable under Γ ’) if it can be enforced by causing events ec(t) such that Γ (ec) =
Cau and suppressing events es(t) such that Γ (es) = Sup. It types to Sup under Γ
(‘φ is suppressable under Γ ’) if ¬φ can be enforced under the same conditions on
Γ . The type names Cau and Sup overload the names of the sets of suppressable and
causable events in a natural way: any event ec(t) with ec ∈ Cau (resp. es ∈ Sup)
has type Cau (resp. Sup) under the context {ec 7→ Cau} (resp. {es 7→ Sup}).

We now review the typing rules presented in Figure 3. Our approach for
enforcing temporal operators is illustrated in Figure 4.

Constants and predicates (Rules True, False, Cau, Sup). The constant
⊤ (resp. ⊥) is causable (resp. suppressable). Event e(t1, . . . , tk) is causable (resp.
suppressable) under Γ if e ∈ Cau and Γ (e) = Cau (resp. e ∈ Sup and Γ (e) = Sup).

Negation (Rules NotCau, NotSup). The negation operator straightfor-
wardly exchanges Cau and Sup: a formula is causable iff its negation is suppress-
able; it is suppressable iff its negation is causable.

Conjunction (Rules AndCau, AndSupL/R). Causing and suppressing
conjunctions is straightforward: a conjunction is causable if both of its conjuncts
are causable; it is suppressable if either of its conjuncts is suppressable.

Quantifiers (Rules ExistsCau, ExistsSup). The formula φ′ = ∃x. φ is
causable if φ is causable, since it is enough to set x to any value v and cause
φ[x/v] to cause ∃x. φ. On the other hand, to suppress φ′ at i, we must ensure
that no value of v ∈ D can satisfy φ. If φ depends on the future, then values of v
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Past-guardedness

⊢ e(. . . , x, . . . ) : PG(x)+ PG+
⊢ φ : PG(x)¬p

⊢ ¬φ : PG(x)p
NotPG

x ̸= z ⊢ φ : PG(z)p

⊢ ∃x. φ : PG(z)p
ExistsPG

⊢ φ : PG(x)+

⊢ φ ∧ ψ : PG(x)+
AndPGL+

⊢ ψ : PG(x)+

⊢ φ ∧ ψ : PG(x)+
AndPGR+

⊢ φ : PG(x)+

⊢  I φ : PG(x)+
PrevPG+

0 /∈ I ⊢ φ : PG(x)+

⊢ φ SI ψ : PG(x)+
SincePGL+

⊢ ψ : PG(x)+

⊢ φ SI ψ : PG(x)+
SincePGR+

0 /∈ I ⊢ φ : PG(x)+

⊢ φ UI ψ : PG(x)+
UntilPGL+

⊢ φ : PG(x)+ ⊢ ψ : PG(x)+

⊢ φ UI ψ : PG(x)+
UntilPGLR+

⊢ φ : PG(x)− ⊢ ψ : PG(x)−

⊢ φ ∧ ψ : PG(x)−
AndPG−

0 ∈ I ⊢ ψ : PG(x)−

⊢ φ SI ψ : PG(x)−
SincePG−

0 ∈ I ⊢ ψ : PG(x)−

⊢ φ UI ψ : PG(x)−
UntilPG−

Typing of formulae as causable/suppressable

Γ ⊢ ⊤ : Cau
True

Γ ⊢ ⊥ : Sup
False

e ∈ Cau Γ (e) = Cau

Γ ⊢ e(t1, . . . , tk) : Cau
Cau

e ∈ Sup Γ (e) = Sup

Γ ⊢ e(t1, . . . , tk) : Sup
Sup

Γ ⊢ φ : Sup

Γ ⊢ ¬φ : Cau
NotCau

Γ ⊢ φ : Cau

Γ ⊢ ¬φ : Sup
NotSup

Γ ⊢ φ : Cau

Γ ⊢ ∃x. φ : Cau
ExistsCau

Γ ⊢ φ : Sup ⊢ φ : PG(x)+

Γ ⊢ ∃x. φ : Sup
ExistsSup

Γ ⊢ φ : Cau Γ ⊢ ψ : Cau

Γ ⊢ φ ∧ ψ : Cau
AndCau

Γ ⊢ φ : Sup

Γ ⊢ φ ∧ ψ : Sup
AndSupL

Γ ⊢ ψ : Sup

Γ ⊢ φ ∧ ψ : Sup
AndSupR

Γ ⊢ φ : Cau b > 0

Γ ⊢ #[0,b) φ : Cau
NextCau

Γ ⊢ φ : Sup

Γ ⊢ #I φ : Sup
NextSup

0 ∈ I Γ ⊢ ψ : Cau

Γ ⊢ φ SI ψ : Cau
SinceCau

0 /∈ I Γ ⊢ φ : Sup

Γ ⊢ φ SI ψ : Sup
SinceSupL

0 ∈ I Γ ⊢ φ : Sup Γ ⊢ ψ : Sup

Γ ⊢ φ SI ψ : Sup
SinceSupLR

b ̸=∞ Γ ⊢ ψ : Cau

Γ ⊢ φ U[0,b] ψ : Cau
UntilCauR

b ̸=∞ Γ ⊢ φ : Cau Γ ⊢ ψ : Cau

Γ ⊢ φ U[a,b] ψ : Cau
UntilCauLR

Γ ⊢ ψ : Sup

Γ ⊢ φ UI ψ : Sup
UntilSup

Fig. 3. Typing rules for EMFOTL

satisfying φ′ may only be discovered strictly after i. When this occurs, it may not
be possible to decide which φ[x/v] to suppress at time-point i. Our fragment rules
out this situation by requiring that x be past-guarded in φ, i.e., that any value of
x that satisfies φ true is a constant or present in the trace up until i. Formally:

Definition 5 (Past-guardedness). A variable x is past-guarded in φ iff
∀v, i. v, i ⊨ φ ∧ x ∈ dom v =⇒ v(x) ∈ ADi(φ).
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(a) φ SI ψ 0 ∈ I SinceCau

τi

•

τi−1

•

τi+1

{ ψ }

(b) φ SI ψ 0 /∈ I SinceSupL •••
{ψ} {φ} { φ }

(c) φ SI ψ SinceSupLR •••
{φ} {φ} { φ,ψ }

(d) φ U[a,b] ψ b ̸=∞ UntilCauLR

{ φ } { φ } . . . { ψ }
• • •

τj = τi + b

(e) φ U[0,b] ψ b ̸=∞ UntilCauR

{φ} {φ} . . . { ψ }
• • •

¬φ ∨ τj = τi + b

(f) φ UI ψ UntilSup • •
{ ψ }{ ψ } . . . until¬φ or

τj − τi /∈ I

(g) #[0,b) φ b > 0 NextCau • •
{ φ }. . .

(h) #I φ NextSup • •
{ φ }. . .

Fig. 4. Enforcement for temporal operators: φ = cause φ and φ = suppress φ

Past-guardedness can be soundly overapproximated using the type system in
the upper half of Figure 3. The PG typing rules define sequents of the form
⊢ φ : PG(x)p where p ∈ {+,−}. In Appendix B, we prove

Lemma 1. For p ∈ {+,−}, if ⊢ φ : PG(x)p, then x is past-guarded in pφ.

Since (Rules SinceCau, SinceSupL, SinceSupLR). As enforcers cannot
affect the past, causation of φ′ = φ SI ψ is only possible when 0 ∈ I and ψ is
enforceable. In this case, φ′ is caused by causing ψ in the present (Figure 4, a).
To suppress φ′, we consider two scenarios depending on whether 0 ∈ I. If 0 /∈ I,
then to suppress φ′, it is enough to suppress φ in the present (Figure 4, b). If
0 ∈ I, both φ and ψ may need to be suppressed (Figure 4, c).

Until (Rules UntilCauL, UntilCauLR, UntilSup). The formula φ′ =
φ UI ψ is causable if both φ and ψ are causable: one can cause φ until the in-
terval I has elapsed, and then ψ ‘in the nick of time’ (Figure 4, d). This requires
a finite upper bound for I; otherwise, the enforcer may wait indefinitely to cause
ψ, producing a non-compliant trace. (For I = [a,∞), we could enforce φ′ non-
transparently by causing ψ after an arbitrary, finite interval [a, b). In this case,
the user could have as well specified φU[a,b) ψ. Hence, our type system requires a
finite I.) Alternatively, if 0 ∈ I, then φ′ can be caused when ψ is causable, with
the enforcer causing ψ as soon as φ ceases to hold or the interval has elapsed (Fig-
ure 4, e). On the other hand, φ′ can be suppressed whenever ψ is suppressable
(Figure 4, f). This also applies when I is unbounded: if necessary, the formula ψ
can be suppressed indefinitely. Enforcement can thus be performed for formulae
that are generally not supported by existing monitors [18]. Namely, monitors ex-
clude non-future-bounded formulae, for which compliance cannot be guaranteed
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by observing a finite prefix of the trace and hence verdicts cannot be given in
finite time. However, an enforcer can ensure compliance at every time-point.

Previous The formula φ′ =  I φ can neither be caused nor suppressed with-
out editing databases of events that happened strictly in the past. This goes
beyond the enforcer’s capabilities in our model.

Next (Rules NextCau, NextSup). If φ is suppressable, the formula φ′ =
#I φ is also suppressable: φ′ is suppressed by suppressing φ at the next time-
point (Figure 4, g). In contrast, causing φ′ is not possible for arbitrary I. If
I = [a, b) with a > 0, then, to cause φ′ at i, one needs to ensure τi+1 ≥ τi + a.
But the next time-point in the input trace might be τi+1 < τi+a (e.g., τi+1 = τi),
and this timestamp cannot be suppressed. If I = [0, 0], then enforcing φ′′ = □φ′

is not possible, since no trace satisfies φ′′ (a trace must satisfy progress): one
cannot both support I = [0, 0] in rule NextCau and use the previous defini-
tion of UntilCau. Therefore, our fragment only supports causation of #I φ for
intervals I of the form [0, b), b > 0 (Figure 4, h).
Our use of the context Γ is inspired by Hublet et al. [35]. By ensuring that all
events with the same name are only caused or only suppressed, we exclude non-
enforceable formulae such as e ∧ ¬e, where e is both causable and suppressable.

The formulae φlaw and φdel are in EMFOTL (see typing in Appendix A).

5 Enforcing EMFOTL

We now describe our enforcement algorithm. First, we present the enforcer’s state
space, which consists of a set of obligations (Section 5.1). We then explain how
Lima et al.’s monitoring algorithm [43] can be extended to check the satisfaction of
a formula φ under assumptions about the future (Section 5.2). Finally, we present
our algorithm (Section 5.3) and show its soundness and transparency (Section 5.4).

5.1 Obligations

Our algorithm manipulates sets of obligations that encode the formulae to be
caused or suppressed in the future. There are two types of obligations, called
present and future obligations. A present obligation is a triple (φ, v, p) of an
MFOTL formula φ, a valuation v, and a polarity p ∈ {+,−} such that pφ ∈
EMFOTL. After reading a new time-point, our enforcer’s state will contain a
finite set of such present obligations. Some of these obligations will be immediately
discharged via causation or suppression. Others will be processed to generate
simpler present obligations and new future obligations that will then be propagated
to the next time-point. Future obligations are triples (ξ, v, p) where ξ : N →
MFOTL maps timestamps to EMFOTL formulae and v and p are as before. The
set of future obligations is denoted by FO. The mapping ξ is evaluated with the
next timestamp to generate present obligations at the next time-point in the trace.

In some cases (e.g., φdel), the enforcer must insert a time-point. In other cases
(e.g., φlaw), the enforcer can modify the events at existing time-points. To insert a
time-point only when necessary, we use a special, causable TP event encoding the
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foinit,φ1 = λ_. φ1

foτ,#,I,φ1
= λτ ′. if τ ′ − τ ≤ sup I then (¬TP) UI−(τ ′−τ) (TP ∧ φ1) else ⊥

foτ,U,I,φ1,φ2 = λτ ′. if τ ′ − τ ≤ sup I then (TP→ φ1) UI−(τ ′−τ) (TP ∧ φ2) else ⊥

Fig. 5. Mappings in the first component of future obligations

(foτ,#,I,φ1
, v,+) ∈ X

v, i,X ⊢+ #I φ1

#+
assm

v, i,X ⊢+ φ1 (foτ,U,I,φ1,φ2 , v,+) ∈ X
v, i,X ⊢+ φ1 UI φ2

U+
assm

(foτ,#,I,φ1
, v,−) ∈ X

v, i,X ⊢− #I φ1

#−
assm

0 ∈ I =⇒ v, i,X ⊢− φ2 (foτ,U,I,φ1,φ2 , v,−) ∈ X
v, i,X ⊢− φ1 UI φ2

U−
assm

Fig. 6. Additional proof rules

existence of a time-point. When processing a time-point already present in the
trace (l. 6 in Algorithm 1), the enforcer receives the additional present obligation
(TP, ∅,+) as the time-point cannot be suppressed. When computing proactive
commands (l. 3 in Algorithm 1), this obligation is not given to the enforcer, but
TP may be generated from other obligations, in which case a time-point is inserted.

Figure 5 shows the mappings used in the first component of future obligations.
There are three types of mappings, corresponding to the obligations passed to
the enforcer in the initial state and those generated from unrolling # and U.

5.2 Checking satisfaction of MFOTL formulae under assumptions

Our enforcer uses WhyMon’s monitoring algorithm to check the satisfaction of
formulae. Unlike Lima et al. [43], we must however compute satisfactions under
assumptions encoding future obligations. To guarantee, e.g., that causing φ in
the present and satisfying fo = (λτ ′.⊤ U (TP ∧ ¬φ), ∅,−) guarantees □φ, one
must be able to check that after causing φ, □φ evaluates to true at i assuming
that fo is satisfied at i+ 1. Since the enforcer will suppress all time-points not
containing TP, future time-points can be assumed to all contain TP.

Let {Cau}+ := Cau, {Cau}− := Sup and σTP = ⟨(τi, Di ∪ {TP})⟩i∈N for σ =
⟨(τi, Di)⟩i∈N. Consider φ ∈ EMFOTL, and obtain Γ such that Γ ⊢ φ : Cau.
Our satisfiability checker under assumptions is a function Sat : (V → D) ×
MFOTL×Tf ×P(FO) → {⊤,⊥} such that, for any p ∈ {+,−} and φ such that
Γ ⊢ φ : {Cau}p and X ⊆ FO, Sat(v, φ, σ′, X) implies

∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| ⊨
σ′·(ts,D)·σ′′TP p

′ξ(ts))

=⇒ v, |σ′| − 1 ⊨
σ′·(ts,D)·σ′′TP φ. (⋆)

For our algorithm to eventually recognize satisfaction and terminate, one
must ensure that for large enough X, the implication (⋆) is an equivalence. This
guarantees that after generating a finite set of reactions and future obligations,
the algorithm can use Sat to assess that no more immediate actions are needed.

To support assumptions about the future, we extend Lima et al’s algorithm [43]
with the proof rules in Figure 6. In Appendix B, we show:
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Lemma 2. The proof system of [43] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies (⋆).

Lemma 3. There exists a set FO+
i,ts(φ) such that whenever X ⊇ FO+

|σ|,τ|σ|
(φ),

the converse of (⋆) also holds for Sat constructed as in Lemma 2.

5.3 The enforcement algorithm

Our enforcer’s update function enf is shown in Algorithm 2. It is used to define
an enforcer Eφ = (S, sφ, enf), where S = P(FO) and sφ = {(foinit,φ, ∅,+)}.

As required by Definition 2, the function enf takes a trace σ, a set of future
obligations X, and a timestamp ts as input. If ts = ⊥, i.e., the enforcer processes
a time-point already present in the trace, then ts is set to the latest timestamp
τ|τ | (line 4). The enforcer computes a (closed) formula Φ that summarizes all
obligations at the present time-point (line 5). Then Φ, σ, an empty set of future
obligations, and an empty valuation are passed to enf+ts,⊥ (line 6). The function
enf+ts,b takes a formula φ, a trace σ, a set of (new) future obligations X, and a
valuation v as input, and returns a triple (DC , DS , X

′) such that DC is a set of
events to cause, DS is a set of events to suppress, and X ′ is an updated version of
X. The function enf is parameterized by the current timestamp ts and a boolean
b. The boolean b is true iff the current time-point is the last one with the current
timestamp. The definition of enf+ (resp. enf−) guarantees that if we update Di

according toDS andDC and assume that all obligations inX ′ are satisfied at time-
point i+ 1, then φ is always (resp. never) satisfied under v at i on the new trace.

After computing DS , DC , and X ′, a reactive command ReCom(DC , DS) is
returned (line 7) and the state is updated to X ′. If ts ̸= ⊥, a similar approach is
followed, but now TP is not conjoined with Φ (line 9) and the boolean b is set
to ⊤ as enforcement happens ‘in the nick of time.’ If TP is part of the set DC

returned by enf+, then a proactive command PrCom(DC) and a new state X ′

are returned. Otherwise, NoCom is returned and the state is not updated.
The functions enf+ and enf− recurse over the structure of φ. The traversal

of φ is guided by the typing: the function enf+ (resp. enf−) is only called on
subformulae of type Cau (resp. Sup). The algorithm implements the approach
described in Section 4. For space reasons, we only explain the more complex
cases: φ = φ1 ∧AndCau φ2, φ = ∃ExistsSupx. φ1, and φ = φ1 U

UntilCauLR
I φ2.

Causing φ1 ∧ φ2 (Algorithm 2, enf+ l. 9). Causing φ1 ∧ φ2 where both φ1

and φ2 are causable requires a fixed-point computation [35]. Consider, e.g., the
EMFOTL formula φ = ψ ∧ (ψ → χ), where ψ and χ both type to Cau. If nei-
ther ψ nor χ is true, then the right conjunct of φ is true; however, to make the
left conjunct true, formula ψ must be caused. But after causing ψ, the right con-
junct becomes false, and χ must be caused too. In general, the two conjuncts are
repeatedly enforced until both are satisfied. This is achieved by combining the
function fp (performing a fixed-point computation) and enf+and,φ1,φ2,v,ts

that calls
the function enf+ on both φ1 and φ2 if none of these formulae is satisfied. In Ap-
pendix B, we prove that this fixed-point computation terminates. (Theorem 11).
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Suppressing ∃x. φ1 (Algorithm 2, enf− l. 13). The suppression of ∃ follows
a similar pattern, but this time there are AD|σ|(φ1) rather than just 2 cases to
consider, corresponding to all potential values of the (past-guarded) variable x.
Similar to the previous case, we prove termination in Appendix B.

Causing φ1 U[a,b] φ2, b ̸= ∞ (Algorithm 2, enf+ l. 17–22). There are two
cases for causing φ1 UI φ2: we cause φ1 and generate the future obligation
foτ,U,I,φ1,φ2

if I ̸= [0, 0] or b = ⊥; otherwise, we cause φ2 and TP.
A detailed execution of the enforcement algorithm on the example traces σ1

and σ2 and formulae φlaw and φdel is described in Appendix A.

5.4 Correctness

In this section, let φ be a closed formula to be enforced. The proofs of all lemmata
are given in Appendix B. First, recall the following standard definition of safety [6]:

Definition 6. P is a safety property iff for any σ ∈ Tω \ P , there exists a finite
prefix σ′ ∈ Tf of σ such that for all σ′′ ∈ Tω, we have σ · σ′′ /∈ P . A formula φ
is a safety formula when L(φ) is a safety property.

Our algorithm can enforce formulae that are not safety formulae. This is the
case, e.g., for any ψ ∨ ♢χ ≡ ¬(¬ψ ∧ ¬(⊤ U χ)), where ψ types to Cau. In this
case, enforcement is performed greedily: if the monitor cannot construct a proof
of ♢χ (which occurs whenever χ cannot be proven true in the present), then ψ
is caused. Thus our algorithm actually enforces a stronger formula, which we
denote by [ψ ∨ ♢χ]+ ≡ ¬(¬ψ ∧Rω ¬(⊤ U χ)), where ∧Rω has the semantics

v, i ⊨σ φ ∧Rω ψ iff v, i ⊨σ φ and ∃σ′. v, i ⊨σ|..i·σ′ ψ.

The formula [ψ ∨ ♢χ]+, unlike ψ ∨ ♢χ, is safety. In Appendix B, we define a
similar transformation [•]p, p ∈ {+,−} for all operators and prove

Lemma 4. For any φ such that Γ ⊢ φ : {Cau}p, we have v, i |=σ p[φ]p =⇒
v, i |=σ pφ. In particular, L([φ]+) ⊆ L(φ).

We prove that Eφ soundly enforces [φ]+, and hence φ:

Theorem 1 (Soundness). If φ ∈ EMFOTL, the enforcer Eφ is sound with
respect to L([φ]+) ⊆ L(φ). As a consequence, φ is enforceable.

In our model, transparent enforcement of non-safety formulae such as ψ ∨♢χ
is generally not possible, since the necessity to cause ψ depends on future events:

Lemma 5. If a property admits a transparent enforcer, it is a safety formula.

Thus, when enforcing a non-safety formula φ, one can at best achieve trans-
parency with respect to some sound safety approximation φ′ of φ. We prove:

Theorem 2 (Transparency). If φ ∈ EMFOTL, the enforcer Eφ is transparent
with respect to L([φ]+).

By imposing more constraints on the formulae (e.g., formula χ must not
depend on the future in ψ ∧SupAndL χ), one can obtain an EMFOTL fragment
for which [φ]+ = φ and the enforcer Eφ is transparent (Appendix C).
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1: function enf(σ,X, ts)
2: let ⟨τ⟩, ⟨D⟩ = unzip(σ) in
3: if ts = ⊥ then
4: let ts = τ|τ | in
5: let Φ = TP ∧

∧
(ξ,v,⊤)∈X ξ(ts)[v] ∧

∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

6: let (DC , DS , X
′) = enf+ts,⊥(Φ, σ, ∅, ∅) in

7: (ReCom(C \ {TP}, S), X ′)
8: else
9: let Φ =

∧
(ξ,v,⊤)∈X ξ(ts)[v] ∧

∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

10: let (DC , DS , X
′) = enf+ts,⊤(Φ, σ · (ts, ∅), ∅, ∅) in

11: if TP ∈ DC then (PrCom(DC \ {TP}), X ′) else (NoCom, X)
12: end if
13: end function

1: function enf+ts,b(φ, σ,X, v)
2: if φ = ⊤True then
3: (∅, ∅, ∅)
4: else if φ = p(t) then
5: ({(p, (J t Kv))}, ∅, ∅)
6: else if φ = ¬NotCauφ1 then
7: enf−ts,b(φ1, σ,X, v)

8: else if φ = φ1 ∧AndCau φ2 then
9: fp(σ,X, enf+and,φ1,φ2,v,ts

)

10: else if φ = ∃ExistsCaux. φ1 then
11: enf+ts,b(φ1, σ,X, v[0/x])

12: else if φ = #NextCau
I φ1 then

13: (∅, ∅, {(foτ,#,I,φ1
, v,+)})

14: else if φ = φ1 S
SinceCau
I φ2 then

15: enf+ts,b(φ2, σ,X, v)

16: else if φ = φ1 U
UntilCauLR
I φ2 then

17: if I = [0, 0] ∧ b then
18: enf+ts,b(φ2, σ,X, v) ⋓ ({TP}, ∅, ∅)
19: else
20: enf+ts,b(φ1, σ,X, v) ⋓
21: (∅, ∅, {(foτ,U,I,φ1,φ2 , v,+)})
22: end if
23: else if φ = φ1 U

UntilCauR
I φ2 then

24: if I = [0, 0] ∧ b then
25: enf+ts,b(φ2, σ,X, v) ⋓ ({TP}, ∅, ∅)
26: else if ¬Sat(v, φ1, σ,X) then
27: enf+ts,b(φ2, σ,X, v)
28: else
29: (∅, ∅, {(foτ,U,I,φ1,φ2 , v,+)})
30: end if
31: end if
32: end function

1: function fp(σ · ⟨(τ,D)⟩ , X, f)
2: (DC , DS)← (∅, ∅)
3: r ← None
4: while (DC , DS , X) ̸= r do
5: r ← (DS , DC , X)
6: let D′ = (D \DS) ∪DC in
7: (DC , DS , X)← r ⋓ f(σ · ⟨(τ,D′)⟩ , X)
8: end while
9: (DC , DS , X)

10: end function

1: function enf−ex,φ1,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: for d ∈ AD|σ|(φ1) do
4: if ¬Sat(v[d/x],¬φ1, σ,X) then
5: r ← r ⋓ enf−ts,b(φ1, σ,X, v[d/x])
6: end if
7: end for
8: r
9: end function

1: function enf−ts,b(φ, σ,X, v)
2: if φ = ⊥False then
3: (∅, ∅, ∅)
4: else if φ = p(t) then
5: (∅, {(p, (J t Kv))}, ∅)
6: else if φ = ¬NotSupφ1 then
7: enf+ts,b(φ1, σ,X, v)

8: else if φ = φ1 ∧AndSupL φ2 then
9: enf−ts,b(φ1, σ,X, v)

10: else if φ = φ1 ∧AndSupR φ2 then
11: enf−ts,b(φ2, σ,X, v)

12: else if φ = ∃ExistsSupx. φ1 then
13: fp(σ,X, enf−ex,φ1,v,ts,b

)

14: else if φ = #NextSup
I φ1 then

15: (∅, ∅, {(foτ,#,I,φ1
, v,−)})

16: else if φ = φ1S
SinceSupL
I φ2 then

17: enf−ts,b(φ1, σ,X, v)

18: else if φ = φ1S
SinceSupR
I φ2 then

19: let φ′ =
20: ¬(φ1 ∧AndSupL (φ1 SI φ2)) in
21: fp(σ,X, enf+and,φ′,¬φ2,v,ts,b

)

22: else if φ = φ1U
UntilSup
I φ2 then

23: fp(σ,X, enf−until,I,φ1,φ2,v,ts,b
)

24: end if
25: end function

1: function enf−until,I,φ1,φ2,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: if 0 ∈ I ∧ ¬Sat(v,¬φ2, σ,X) then
4: r ← enf−ts,b(φ2, σ,X, v)
5: end if
6: if ¬Sat(v,¬φ1, σ,X) then
7: r ← r ⋓ (∅, ∅, {(foτ,U,I,φ1,φ2 , v,−)}
8: end if
9: r

10: end function

1: function enf+and,φ1,φ2,v,ts,b
(σ,X)

2: r ← (∅, ∅, ∅)
3: if ¬Sat(v, φ1, σ,X) then
4: r ← r ⋓ enf+ts,b(φ1, σ,X, v)
5: end if
6: if ¬Sat(v, φ2, σ,X) then
7: r ← r ⋓ enf+ts,b(φ2, σ,X, v)
8: end if
9: r

10: end function

Algorithm 2: Proactive real-time first-order enforcement algorithm
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collect(c, d, u)699 use(c, d, u)-2316 consent(u, c)699 legal_grounds(u, d)397 revoke(u, c)+8

inform(u)+0 deletion_request(c, d, u)8 delete(c, d, u)+521 share(p, d)982 notify(p, d)+0

“Minimization” φmin = □(∀c, d, u. collect(c, d, u)→ ♢ use(c, d, u))

“Limitation” φlim = □(∀c, d, u. collect(c, d, u)→ ♢ delete(c, d, u))

“Lawfulness” φlaw = □(∀c, d, u. use(c, d, u)→ ♦(consent(u, c) ∨ legal_grounds(u, d)))

“Consent” φcon = □(∀c, d, u. use(c, d, u)→ (♦ legal_grounds(u, d)) ∨ (¬revoke(u, c) S consent(u, c)))

“Information” φinf = □(∀c, d, u. collect(c, d, u)→ ((# inform(u)) ∨ (♦ inform(u))))

“Deletion” φdel = □(∀c, d, u. deletion_request(c, d, u)→ ♢[0,30] delete(c, d, u))

“Sharing” φsha = □(∀c, d, u, p. deletion_request(c, d, u) ∧ (♦ share(p, d))→ ♢[0,30] notify(p, d))

c: data category; d: data ID; u: user ID; p: processor ID; -: suppressable; +: causable

Fig. 7. Selected events and policies from Arfelt et al. [7]

6 Evaluation

We implemented our type system and enforcement algorithm in a tool, called
WhyEnf, consisting of 2 800 lines of OCaml code. WhyEnf uses a modified
version of WhyMon [43], which we call WhyMon*. It ignores the explanations’
structures (not required by our algorithm) and returns only Boolean verdicts.

Our evaluation aims to answer the following research questions:
RQ1. Is EMFOTL expressive enough to formalize real-world policies?

Is manual formula rewriting necessary, as in previous works [14, 37]?
RQ2. At what maximum event rate can WhyEnf perform real-time enforcement?
RQ3. Do WhyEnf’s performance and capabilities improve the state of the art?
The notion of ‘real-world policies’ in RQ1 is domain-dependent. In the following,
we demonstrate the effectiveness of our approach in the case of privacy regulations.

Case study. Arfelt et al. [7] define events and MFOTL formulae formalizing
core GDPR provisions that they monitor on a trace produced by a real-world
system [24]. Relevant events (superscripted by their number of occurrences in the
trace) and formulae are shown in Figure 7 and Examples 1 and 3. We pre-process
the trace to obtain 3 846 time-points containing 5 630 system events distributed
over 515 days. We interpret the ‘Lawyer review’ and ‘Architect review’ events as
both use and share (sharing with third-parties) events, and the ‘Abort’ events as
both revoke (revoking consent) and deletion_request. Otherwise, we follow Arfelt
et al.’s pre-processing. We make the following assumptions [37]: use events are
suppressable, while delete, inform (informing the user), and notify (notifying a
third-party) events are causable. All metric constraints are specified in days.

RQ1: Expressiveness. Except for φmin, all formulae are in EMFOTL. Unlike in
previous works [15, 18, 37], no further policy engineering (e.g., manual rewrit-
ing to equivalent formulae in supported fragments) is needed. For all enforce-
able formulae except φlim, our algorithm guarantees transparent enforcement.
For φlim, which contains an unbounded ♢ operator, non-transparent enforcement
is possible by enforcing the stronger formula φb

lim = □(∀c, d, u. collect(c, d, u) →
♢[0,b] delete(c, d, u)) for any b ∈ N. The formula φmin, capturing data minimiza-
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Fig. 8. RQ2: Maximum latency of WhyEnf and event rate for the formulae in Figure 7.

tion, is intrinsically non-enforceable, as a sound Eφmin must either always suppress
collect, or eventually cause use, which is only suppressable.

WhyEnf’s type system helps determine appropriate suppressible and caus-
able events. For instance, if use was marked as only-observable, the type checker
would state that φlaw is not enforceable and suggest to make use suppressible,
or otherwise make either consent or legal_ground causable. Since use actually is
suppressable, the type checker concludes that φlaw is transparently enforceable.

RQ2: Maximum event rate. We enforce the enforceable formulae from Figure 7
(i.e., all but φmin). As we do not have access to the SuS, we simulate online
enforcement by reproducing [39] the events from the above trace to WhyEnf at
the speed specified by the trace’s timestamps. We consider different accelerations
of the original trace’s real-time behavior to challenge WhyEnf. We measure
WhyEnf’s latency ℓ and processing time t for each time-point. Latency is the
time delay between the emission of a time-point to WhyEnf and the reception of
the corresponding command, whereas processing time is time WhyEnf effectively
takes to process the time-point. We report the average latency (avgℓ(a)) and
maximum latency (maxℓ(a)) given an acceleration a, as well as average processing
time (avgt), and maximum processing time (maxt) all computed over the entire
trace. If maxℓ(a) is smaller than the interval 1

a between two timestamps in the
accelerated trace, then the real-time condition (Section 3.1) can be met assuming
that the SuS’s and communication latency are small enough.

All measurements were performed on a 2.4 GHz Intel i5-1135G7 CPU computer
with 32 GB RAM. For each formula and acceleration a ∈ {105 ·20, . . . , 105 ·29}, we
plot maxℓ(a), the function 1

a (right y-axis), and the corresponding average event
rate avger(a) (left y-axis) in Figure 8. We include similar plots for WhyMon*
and EnfPoly and latency profiles for some individual runs in Appendix D.

As presented in Figure 9, for all formulae, WhyEnf meets the real-time
condition for all accelerations up to 4 · 105, which corresponds to a maximum
latency of 96 ms and an average event rate of 51 events/s. Hence, even though
the analyzed trace specifies time intervals in days, the enforcement of the same
trace can in fact be performed for much shorter real-time intervals. Note that
the average latency is much lower (20 ms for the most challenging policy), with
the maximum latency occurring when many events occur within a short time
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WhyEnf WhyMon* EnfPoly
Policy a avgℓ maxℓ avgt maxt avger a avgℓ maxℓ avgt maxt avger a avgℓ maxℓ avgt maxt avger
φlim 3.2e6 0.19 14 0.22 1.0 632 has unbounded future requires proactivity
φlaw 3.2e6 2.6 15 2.6 15 405 3.2e6 2.5 12 2.5 12 405 5.1e7 0.10 1.0 0.14 1.0 6479
φcon 4e5 20 96 20 96 51 8e5 9.3 51 9.3 52 101 5.1e7 0.10 1.0 0.14 1.0 6479
φinf 1.6e6 2.9 13 3.0 13 202 3.2e6 0.16 16 0.19 1.0 405 requires proactivity
φdel 3.2e6 0.19 19 0.22 1.0 632 1e5 42 434 42 434 13 requires proactivity
φsha 1.6e6 4.6 26 4.7 26 202 1e5 69 289 69 299 13 requires proactivity

Fig. 9. RQ2–3: Latency and processing time for the largest a such that maxℓ(a) ≤ 1/a.

span. The two formulae that only define future obligations, φlim and φdel, have
much lower maximum latency, of 14 and 19 ms, respectively, corresponding to
an average event rate of about 600 events/s. Due to proactivity, the enforcer
does not need to keep the history of past events for these formulae. Overall, our
experiments show that WhyEnf can efficiently enforce a real-world SuS.

RQ3: Comparison with the state of the art. We compare WhyEnf’s performance
to its two most closely related tools: WhyMon*, which provides similar expres-
siveness as WhyEnf but no enforcement, and EnfPoly [35], the only tool sup-
porting non-proactive enforcement of an MFOTL fragment. In addition to the
real-world log [24], we generate synthetic traces with n ∈ {100 · 20, . . . , 100 · 28}
time-points each containing k ∈ {20, . . . , 28} random events. We report avgt for
the three tools and six formulae in Figure 10, imposing a 10-minute timeout (t.o.).

WhyMon* cannot monitor φlim, as the formula has an unbounded ♢ opera-
tor. For all other formulae, WhyMon* satisfies the real-time condition for ac-
celerations a ≤ 105. WhyEnf’s latency is at most twice WhyMon*’s for φlaw

and φcon as the enforcer calls the monitor at least once per iteration and also
performs fixed-point computations (Figure 9). In contrast, WhyEnf can enforce
φlim and has significantly (up to 22 times) lower latency for φinf , φsha, and φdel.
Unlike WhyMon*, WhyEnf is able to lazily evaluate implications involving fu-
ture obligations, which improves its runtime performance. WhyEnf’s processing
time also scales better than WhyMon*’s for large values of n and k (Figure 10).

Only φlaw and φcon are transparently enforceable without proactivity. We
enforce them using EnfPoly after manually rewriting them into equivalent
formulae in EnfPoly’s fragment. WhyEnf’s average and maximum latencies are
higher than EnfPoly’s, but WhyEnf’s algorithm covers a much larger fragment
of MFOTL than EnfPoly, which makes the computation of verdicts more costly.
The same behavior is observed in terms of average processing time (Figure 10).

7 Related Work

Security automata [49, 26] were first used for enforcement by terminating the
SuS. Bauer et al. [21] support enforcers that can cause and suppress events,
as do Ligatti et al. [41], who used edit automata. Basin et al. [15] distinguish
between suppressable and only-observable events, without considering causation.
More complex bidirectional enforcement [3, 4] and enforcement through delaying
events [47, 27] have also been proposed.

Most runtime enforcement approaches (and tools [28, 29]) rely on automata as
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WhyEnf WhyMon* EnfPoly
k = 10 n : 100 400 1.6e3 6.4e3 2.6e4 n : 100 400 1.6e3 6.4e3 2.6e4 n : 100 400 1.6e3 6.4e3 2.6e4

φlim .29 .28 .28 .30 .30 has unbounded future requires proactivity
φlaw .73 1.3 2.0 2.2 2.7 .26 .57 1.4 3.5 15 .16 .16 .16 .16 .16
φcon 1.8 4.9 9.1 11 12 .53 1.7 7.4 11 t.o. .19 .16 .18 .17 .17
φinf .78 1.0 1.2 1.1 1.2 .22 .31 .51 1.0 2.2 requires proactivity
φdel .17 .24 .26 .28 .56 .40 1.2 2.9 4.4 4.9 requires proactivity
φsha .86 2.3 5.3 7.6 7.0 .54 2.3 13 56 t.o. requires proactivity

n = 1000 k : 1 4 16 64 256 k : 1 4 16 64 256 k : 1 4 16 64 256

φlim .24 .24 .35 .83 4.7 has unbounded future requires proactivity
φlaw .61 1.2 2.2 2.9 6.1 .38 .71 1.3 1.6 2.3 .14 .19 .18 .22 .38
φcon 1.4 4.1 9.5 11.5 13.3 1.2 4.3 5.3 4.2 4.9 .14 .16 .16 .20 .32
φinf .48 .79 1.4 4.8 24 .21 .28 .44 .78 1.1 requires proactivity
φdel .23 .24 .32 .40 1.0 .44 1.1 3.0 4.8 6.3 requires proactivity
φsha .78 3.2 7.4 7.1 12 1.2 4.3 9.7 14 16 requires proactivity

Fig. 10. RQ3: Average processing time (ms) for different trace and time-point sizes.

policies. Metric interval temporal logic formulae can be enforced via translation
to timed automata [46, 48]. Basin et al. [11, 12] use dynamic condition response
graphs [32] to formalize and enforce obligations in real time by suppressing and
(proactively) causing events. Finally, controller synthesis tools for LTL [38, 25,
51], Timed CTL [22, 45], or MTL [40, 34] can generate enforcement mechanisms.

To the best of our knowledge, only two approaches enforce first-order tempo-
ral policies. Hublet et al. [35, 37] provide the EnfPoly tool that enforces policies
from a fragment of MFOTL that can contain future operators, but only nested
with past ones such that the formula overall does not refer to the future. Indepen-
dently, Aceto et al. [2–5] consider the safety fragment of Hennessy-Milner Logic
(HML) with recursion as their policy language. They generalize HML to allow
quantification over event parameters, but still do not support time constraints.
They also focus on instrumentation scenarios where all events are suppressable.

Many runtime monitoring tools support (different fragments of) MFOTL [23],
including MonPoly [13, 17–19], VeriMon [9, 10, 50] and DejaVu [31]. Lima et
al. [42] recently introduced the Explanator2, an MTL monitor that outputs
explanations. They later extended their work to MFOTL with the WhyMon
tool [43], on which our enforcer relies. WhyMon supports a larger fragment of
MFOTL than in earlier works, as a consequence of using partitioned decision
trees (PDTs) to represent variable assignments. To the best of our knowledge, all
existing monitoring tools only support safety formulae of the form □φ. Our work
additionally supports (non-transparent) enforcement of some non-safety formulae.

8 Conclusion

We have presented the first proactive real-time enforcement algorithm and an
efficient tool, WhyEnf, for metric first-order temporal logic. The approach lends
itself to a number of extensions. For instance, WhyMon’s runtime performance
can be optimized for large formulae. Features like complex data types [44],
let bindings [52], and aggregations [16] would further improve our enforcer’s
expressiveness. Finally, refinements of the type system in which the same event can
be both caused and suppressed in different contexts would be a useful addition.
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A Further examples

A.1 WhyMon (Section 2)

WhyMon’s algorithm [43] shows that σ2 violates φdel (without □) at time-point
0 by constructing the proof

deletion_request(2, 1, 1) ∈ D0

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 ⊢+ deletion_request(c, d, u)
p+

P

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 ⊢− deletion_request(c, d, u) → ♢[0,30] delete(c, d, u)
→−

{c 7→ 2, d 7→ 1}, 0 ⊢− ∀u. deletion_request(c, d, u) → ♢[0,30] delete(c, d, u)
∀−

{c 7→ 2}, 0 ⊢− ∀d, u. deletion_request(c, d, u) → ♢[0,30] delete(c, d, u)
∀−

∅, 0 ⊢− ∀c, d, u. deletion_request(c, d, u) → ♢[0,30] delete(c, d, u)
∀−

where P corresponds to the subproof

delete(2, 1, 1) /∈ D0

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 ⊢− delete(c, d, u)
p−

{c 7→ 2, d 7→ 1, u 7→ 1}, 0 ⊢− ♢[0,30] delete(c, d, u)
♢−

A.2 EMFOTL (Section 4)

For ∀, ♦, →, □, and ♢, we can straightforwardly derive from the rules in Figure 3
the following simpler rules:

x ̸= z ⊢ φ : PG(z)−

⊢ ∀x. φ : PG(z)−
ForallPG−

⊢ φ : PG(x)+

⊢ ♦φ : PG(x)+
OncePG+

⊢ φ : PG(x)+

⊢ φ→ ψ : PG(x)−
ImpPGL−

⊢ ψ : PG(x)−

⊢ φ→ ψ : PG(x)−
ImpPGR− ⊢ φ : PG(x)− Γ ⊢ φ : Cau

Γ ⊢ ∀x. φ : Cau
ForallCau

⊢ φ : Sup

Γ ⊢ φ→ ψ : Cau
ImpCauL

⊢ ψ : Cau

Γ ⊢ φ→ ψ : Cau
ImpCauR

b ̸=∞ Γ ⊢ φ : Cau

Γ ⊢ □[a,b] φ : Cau
AlwaysCau

Γ ⊢ φ : Cau

Γ ⊢ ♢I φ : Cau
EventuallyCau

Further, let

φ11 = ∀c. φ12 φ12 = ∀d. φ13 φ13 = ∀u. φ14

φ14 = use(c, d, u) → ♦(consent(u, c) ∨ legal_ground(u, u)).

With these, we prove that φlaw types to Cau as follows:

P3

P2

P1

use ∈ Sup

{use 7→ Sup} ⊢ use(c, d, u) : Sup
Sup

{use 7→ Sup} ⊢ φ14 : Cau
ImpCauL

{use 7→ Sup} ⊢ φ13 ≡ ∀d. φ14 : Cau
ForallCau

{use 7→ Sup} ⊢ φ12 ≡ ∀d. φ13 : Cau
ForallCau

{use 7→ Sup} ⊢ φ11 ≡ ∀c. φ12 : Cau
ForallCau

{use 7→ Sup} ⊢ φlaw ≡ □φ11 : Cau
AlwaysCau
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where P1,2,3 stand for the subproofs

⊢ use(c, d, u) : PG(c)+
PG+

⊢ φ14 : PG(c)−
ImpPGL−,

d ̸= u

⊢ use(c, d, u) : PG(d)+
PG+

⊢ φ14 : PG(d)−
ImpPGL−

⊢ φ13 ≡ ∀u. φ14 : PG(d)−
ForallPG−,

and
c ̸= d

c ̸= u

⊢ use(c, d, u) : PG(c)+
PG+

⊢ φ14 : PG(c)−
ImpPGL−

⊢ φ13 ≡ ∀u. φ14 : PG(c)−
ForallPG−

⊢ φ12 ≡ ∀d. φ13 : PG(c)−
ForallPG−,

respectively. Similarly, with

φ21 = ∀c. φ22 φ22 = ∀d. φ23 φ23 = ∀u. φ24

φ24 = deletion_request(c, d, u) → ♢[0,30] delete(c, d, u),

we prove that φdel types to Cau as follows:

P6

P5

P4

delete ∈ Cau
{delete 7→ Cau} ⊢ delete(c, d, u) : Cau

Cau

{delete 7→ Cau} ⊢ ♢[0,30] delete(c, d, u) : Cau
EventuallyCau

{delete 7→ Cau} ⊢ φ24 : Cau
ImpCauR

{delete 7→ Cau} ⊢ φ23 ≡ ∀d. φ24 : Cau
ForallCau

{delete 7→ Cau} ⊢ φ22 ≡ ∀d. φ23 : Cau
ForallCau

{delete 7→ Cau} ⊢ φ21 ≡ ∀c. φ22 : Cau
ForallCau

{delete 7→ Cau} ⊢ φdel ≡ □φ21 : Cau
AlwaysCau

where P4,5,6 stand for the subproofs

⊢ delete(c, d, u) : PG(c)+
PG+

⊢ φ24 : PG(c)−
ImpPGL−,

d ̸= u

⊢ delete(c, d, u) : PG(d)+
PG+

⊢ φ24 : PG(d)−
ImpPGL−

⊢ φ23 ≡ ∀u. φ24 : PG(d)−
ForallPG−,

and
c ̸= d

c ̸= u

⊢ delete(c, d, u) : PG(c)+
PG+

⊢ φ24 : PG(c)−
ImpPGL−

⊢ φ23 ≡ ∀u. φ24 : PG(c)−
ForallPG−

⊢ φ22 ≡ ∀d. φ23 : PG(c)−
ForallPG−,

respectively.

A.3 Enforcement of φlaw and φdel over σ1 and σ2 (Section 5.3)

Recall the following formulae:

φlaw = □(∀c, d, u. use(c, d, u) → ♦(consent(u, c) ∨ legal_grounds(u, d)))

φdel = □(∀c, d, u. deletion_request(c, d, u) → ♢[0,30] delete(c, d, u))

– Enforcing φlaw over σ1 (the trace is already compliant).
Let fo1 = (λ_.⊤ U ¬φ11, ∅,−). The enforcement is as follows:
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tp ts Dtp b X Φ C S X ′ o σ
0 10 {consent(1, 1), consent(1, 2)} ⊥ {(λ_. φlaw, ∅,+)} TP ∧ φlaw {TP} ∅ {fo1} ReCom(∅, ∅) ⟨(10, D0)⟩
– 10 – ⊤ {fo1} φlaw ∅ ∅ {fo1} NoCom ⟨(10, D0)⟩
– 11 – ⊤ {fo1} φlaw ∅ ∅ {fo1} NoCom ⟨(10, D0)⟩
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – ⊤ {fo1} φlaw ∅ ∅ {fo1} NoCom ⟨(10, D0)⟩
1 50 {use(1, 3, 1), use(2, 1, 1)} ⊥ {fo1} TP ∧ φlaw {TP} ∅ {fo1} ReCom(∅, ∅) ⟨(10, D0), (50, D1)⟩

At time-point 0, the only future obligation is (foinit,φlaw
, ∅,+) = (λ_. φlaw, ∅,+),

which is conjoined with TP as a time-point already exists. The goal formula
Φ = TP ∧ φlaw is computed and passed to enf+ with ts = 10 and b = ⊥. The
function enf+ first decomposes the goal into the present obligations (TP, ∅,+)
and (φlaw, ∅,+) = (□φ11, ∅,+). It discharges the former by causing TP, and un-
rolls the latter into the present obligation (φ11, ∅,+) and the future obligation
fo1 = (foU,[0,∞),⊤,¬φ11

, ∅,−) = (λ_.⊤ U ¬φ11, ∅,−) (recall that □φ11 is syntac-
tic sugar for ¬(⊤ U ¬φ11)). The present obligation (φ11, ∅,+) is already satis-
fied since no use event takes place in the present. Hence the enforcer returns
C = {TP} and X ′ = {fo1}, which emits the command ReCom(∅, ∅). Next, as the
next time-point has timestamp 50 > 0, the enforcer processes the timestamps 10
to 49 ‘in the nick of time.’ For each of these timestamps, the function computes
Φ = foU,[0,∞),⊤,¬φ11

(ts) = □φ11 = φlaw and calls enf+ on Φ using ts and b = ⊤.
It decomposes Φ into the present obligation (φ11, ∅,+), which is immediately sat-
isfied since no use takes place, and the future obligation fo1, which is propagated
to the next iteration with the command NoCom. At time-point 1 with timestamp
50, we have the same goal TP ∧ φlaw as in iteration 0. Again the present obliga-
tion (φ11, ∅,+) derived from φlaw is already satisfied, since every use(c, d, u) is
matched by some consent(u, c) in the past (use(1, 3, 1) by consent(1, 1); use(2, 1, 1)
by consent(1, 2)). Hence ReCom(∅, ∅) is again emitted, and the set of obligations
X ′ = {fo1} is propagated. The trace, which was already compliant with φlaw,
has not been modified.
– Enforcing φdel over σ1 (the trace is already compliant).
Let fo2 = (λ_.⊤ U ¬φ21, ∅,−). The enforcement is as follows:
tp ts Dtp b X Φ C S X ′ o σ
0 10 {consent(1, 1), consent(1, 2)} ⊥ {(λ_. φdel, ∅,+)} TP ∧ φdel {TP} ∅ {fo2} ReCom(∅, ∅) ⟨(10, D0)⟩
– 10 – ⊤ {fo2} φdel ∅ ∅ {fo2} NoCom ⟨(10, D0)⟩
– 11 – ⊤ {fo2} φdel ∅ ∅ {fo2} NoCom ⟨(10, D0)⟩
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – ⊤ {fo2} φdel ∅ ∅ {fo2} NoCom ⟨(10, D0)⟩
1 50 {use(1, 3, 1), use(2, 1, 1)} ⊥ {fo2} TP ∧ φdel {TP} ∅ {fo2} ReCom(∅, ∅) ⟨(10, D0), (50, D1)⟩

Again, there are no violations. The execution is similar to the previous case,
but this time satisfaction of φ11 is obtained at all time-points because no
deletion_request event is ever present in the trace.
– Enforcing φlaw over σ2 (violation at time-point 1 : no prior consent given).
tp ts Dtp b X Φ C S X ′ o σ
0 10 {deletion_request(2, 1, 1)} ⊥ {(λ_. φlaw, ∅,+)} TP ∧ φlaw {TP} ∅ {fo1} ReCom(∅, ∅) ⟨(10, D0)⟩
– 10 – ⊤ {fo1} φlaw ∅ ∅ {fo1} NoCom ⟨(10, D0)⟩
– 11 – ⊤ {fo1} φlaw ∅ ∅ {fo1} NoCom ⟨(10, D0)⟩
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – ⊤ {fo1} φlaw ∅ ∅ {fo1} NoCom ⟨(10, D0)⟩
1 50 {use(1, 3, 1)} ⊥ {fo1} TP ∧ φlaw {TP} {use(1, 3, 1)} {fo1} ReCom(∅, {use(1, 3, 1)}) ⟨(10, D0), (50, ∅)⟩

The execution is similar to the enforcement of φlaw on σ2 until time-point 1.
There, the goal TP ∧ φlaw is decomposed into the present obligations (TP, ∅,+)
and (φ11, ∅,+) and the future obligation fo1. But now φ11 is violated, since
use(1, 3, 1) is not matched by any past consent(1, 1) event. To recover satisfaction,
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the use event needs to be suppressed. Note that the corresponding → operator
is labeled with ImpSupL, thus guiding enfp towards suppression of use(c, d, u)
whenever the implication is false. Hence enf+ returns S = {use(1, 3, 1)} together
with X ′ = {fo1}. This results in the command ReCom(∅, {use(1, 3, 1)}) being
emitted, and the second time-point in the enforced trace is (50, ∅).
– Enforcing φdel over σ2 (violation at timestamp 40 : deletion missing).
Let fox,y3 = (λτ ′. ♢[0,x]−(τ ′−y) TP∧delete(c, d, u), {c 7→ 2, d 7→ 1, u 7→ 1},+), σ1 =
⟨(10, D0), (30, {delete(2, 1, 1)})⟩, σ2 = ⟨(10, D0), (30, {delete(2, 1, 1)}), (50, D1)⟩
tp ts Dtp b X Φ C S X ′ o σ

0 10 {deletion_request(2, 1, 1)} ⊥ {(λ_. φdel, ∅,+)} TP ∧ φdel {TP} ∅ {fo2, fo30,103 } ReCom(∅, ∅) ⟨(10, D0)⟩
– 10 – ⊤ {fo2, fo30,103 } φdel ∧ ♢[0,30] delete(2, 1, 1) ∅ ∅ {fo2, fo30,103 } NoCom ⟨(10, D0)⟩
– 11 – ⊤ {fo2, fo30,103 } φdel ∧ ♢[0,29] delete(2, 1, 1) ∅ ∅ {fo2, fo29,113 } NoCom ⟨(10, D0)⟩
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 39 – ⊤ {fo2, fo2,383 } φdel ∧ ♢[0,1] delete(2, 1, 1) ∅ ∅ {fo2, fo1,393 } NoCom ⟨(10, D0)⟩
– 40 – ⊤ {fo2, fo1,393 } φdel ∧ ♢[0,0] delete(2, 1, 1) {TP, delete(2, 1, 1)} ∅ {fo2} PrCom({delete(2, 1, 1)}) σ1
– 41 – ⊤ {fo2} φdel ∅ ∅ {fo2} NoCom σ1
– . . . – . . . . . . . . . . . . . . . . . . . . . . . .
– 49 – ⊤ {fo2} φdel ∅ ∅ {fo2} NoCom σ1
1 50 {use(1, 3, 1)} ⊥ {fo2} TP ∧ φdel {TP} ∅ {fo2} ReCom(∅, ∅}) σ2

At time-point 0, the function enf+ first decomposes its goal TP ∧ φdel into the
present obligations (TP, ∅,+) and (φdel, ∅,+) = (□φ21, ∅,+). It discharges the
former by causing TP, and unrolls the latter into the present obligation (φ21, ∅,+)
and the future obligation fo2 = (foU,[0,∞),⊤,¬φ21

, ∅,−) = (λ_.⊤ U ¬φ11, ∅,−).
The present obligation (φ21, ∅,+) is violated, since deletion_request(2, 1, 1) is
true but there is no corresponding delete in the future yet. The corresponding →
operator is labeled with ImpCauR, leading enf+ to generate the future obligation
fo30,103 = (λτ ′. ♢[0,30]−(τ ′−10) TP ∧ delete(c, d, u), {c 7→ 2, d 7→ 1, u 7→ 1},+).
Satisfying this future obligation guarantees the satisfaction of Φ, hence the
algorithm proceeds to the next iteration. Next, it processes timestamp 10 ‘in
the nick of time.’ The function enf+ computes Φ = fo2(10) ∧ fo30,103 (10) =
φdel ∧ ♢[0,30](TP ∧ delete(2, 1, 1)) and calls enf+ on Φ using ts and b = ⊤. It
first decomposes Φ into the present obligations (φ21, ∅,+) and (♢[0,30](TP ∧
delete(2, 1, 1)), ∅,+) and the future obligation fo2. The first present obligation is
immediately satisfied since no deletion_request takes place. The second present
obligation features a top-level ♢ labeled EventuallyCau with a non-[0, 0]
interval, and can thus be satisfied by satisfying the future obligation (fo30,103 , ∅,+)
at the next time-point. Hence the enforcer emits the order NoCom and propagates
the future obligations X ′ = {fo2, fo30,103 } to the next time-point. In the next
iteration, the timestamp 11 is processed ‘in the nick of time.’ The goal Φ =
fo2(30)∧fo30,103 (11) = φdel∧♢[0,29](TP∧delete(2, 1, 1)) is computed, and similarly
reduced to the future obligations X ′ = {fo2, fo29,113 }. Similar iterations repeat
until timestamp 40, when the goal becomes Φ = fo2(40) ∧ fo1,393 (40) = φdel ∧
♢[0,0](TP∧delete(2, 1, 1)), which contains a [0, 0] interval. Being called with b = ⊤
(in the nick of time), the enf+ function enters the ♢, generating the present
obligations (TP, ∅,+) and (delete(2, 1, 1), ∅,+) which it discharges by causing TP

and delete(2, 1, 1), respectively. Hence C = {TP, delete(2, 1, 1)} and the command
PrCom({delete(2, 1, 1)}) is emitted, leading to (30, {delete(2, 1, 1)}) being inserted
into the trace. The future obligations X ′ = {fo2} are propagated to the next
timestamp. The rest of the execution is as with σ1.
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B Proofs of lemmata and theorems

B.1 Past-guarded fragment (Section 4)

We first observe that

Lemma 6. Let φ,φ′ ∈ MFOTL and i, i′ ∈ N. Assume that i′ ≤ i and φ′ is a
subformula of φ. Then ADi′(φ

′) ⊆ ADi(φ).

Proof. Since φ′ is a subformula of φ, we have cs(φ′) ⊆ cs(φ). Hence

ADi′(φ
′)

def.
= cs(φ′) ∪

(⋃
j≤i′

{d | d is one of dk in e(d1, . . . , da(e)) ∈ Dj}
)

⊆ cs(φ) ∪
(⋃

j≤i
{d | d is one of dk in e(d1, . . . , da(e)) ∈ Dj}

)
def.
= ADi(φ).

Lemma 1. For p ∈ {+,−}, if ⊢ φ : PG(x)p, then x is past-guarded in pφ, i.e.,
for any v, i such that if v, i ⊨ pφ and x ∈ dom v, we have v(x) ∈ ADi(φ).

Proof. Fix x and σ. We prove

P (φ) ≡ ∀p, v, i. ⊢ φ : PG(x)p =⇒ v, i ⊨ pφ =⇒ x ∈ dom v =⇒ v(x) ∈ ADi(φ)

by structural induction on φ.

– If φ = e(t1, . . . , tn), then ⊢ e(t1, . . . , tn) : PG(x)p implies p = +. We obtain
1 ≤ j ≤ n such that tj = x. Then v, i ⊨ φ implies (r, (v(t1), . . . , v(tk))) ∈ Di,
and v(x) = v(tj) ∈ ADi(φ).

– If φ = ¬φ′ and P (φ′) holds, then ⊢ φ : PG(x)p yields ⊢ φ′ : PG(x)−p. Since
v, i ⊨ p¬φ′ ⇐⇒ v, i ⊨ (−p)φ′, the assumption P (φ′) instantiated with −p, v,
and i immediately provides v(x) ∈ ADi(φ

′) ⊆ ADi(φ) using Lemma 6.
– If φ = ∃z. φ′ and P (φ′) holds, then C ⊢ φ : PG(x)p yields ⊢ φ′ : PG(x)p

and x ̸= z. Since v, i ⊨ p(∃z. φ′) ⇐⇒ ∃d. v[z 7→ d], i ⊨ pφ′, we obtain d
be such that v[z 7→ d], i ⊨ pφ′ holds. The assumption P (φ′) instantiated
with p, v[z 7→ d], and i provides v[z 7→ d](x) ∈ ADi(φ

′). As x ≠ z, we get
v(x) = v[z 7→ d](x) ∈ ADi(φ

′) ⊆ ADi(φ) using Lemma 6.
– If φ = φ1 ∧ φ2 and both P (φ1) and P (φ2) hold, there are three cases

depending on which typing rule is used to derive ⊢ φ1 ∧ φ2 : PG(x)p.
• With AndPGL+, we get p = + and ⊢ φ1 : PG(x)+. The fact that
v, i ⊨ φ1 ∧ φ2 implies v, i ⊨ φ1 allows us to instantiate P (φ1) with p, v,
and i to get v(x) ∈ ADi(φ1) ⊆ ADi(φ) using Lemma 6.

• With AndPGR+, the proof is similar using φ2 instead of φ1.
• With AndPG−, we get p = −, ⊢ φ1 : PG(x)−, and ⊢ φ1 : PG(x)−. Now,

observe that v, i ⊨ ¬(φ1∧φ2) ⇐⇒ (v, i ⊨ ¬φ1 or v, i ⊨ ¬φ2). If v, i ⊨ ¬φ1

holds, we instantiate P (φ1) with −, v, and i to get v(x) ∈ ADi(φ1) ⊆
ADi(φ) using Lemma 6. If v, i ⊨ ¬φ2 holds, we similarly instantiate P (φ2)
to get v(x) ∈ ADi(φ2) ⊆ ADi(φ) using Lemma 6.
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– If φ = φ1 SI φ2 and both P (φ1) and P (φ2) hold, there are again three cases
depending on which typing rule is used to derive ⊢ φ1 SI φ2 : PG(x)p.
• With SincePGL+, we get p = +, 0 /∈ I, and ⊢ φ1 : PG(x)+. Since
v, i ⊨ φ1 SI φ2, we obtain i′ ≤ i such that v, j ⊨ φ1 for all i′ < j ≤ i and
τi − τ ′i ∈ I. Since 0 /∈ I, we have i′ < i, hence v, i ⊨ φ1 holds. We can
now instantiate P (φ1) with +, v, and i to get v(x) ∈ ADi(φ1) ⊆ ADi(φ)
using Lemma 6.

• With SincePGR+, we get p = + and ⊢ φ2 : PG(x)+. Since v, i ⊨ φ1SIφ2,
we obtain i′ ≤ i such that v, i′ ⊨ φ2. We instantiate P (φ2) with +, v,
and i′ to get v(x) ∈ ADi′(φ1) ⊆ ADi(φ) using Lemma 6.

• With SincePG−, we get p = −, 0 ∈ I, ⊢ φ2 : PG(x)−. As 0 ∈ I,
v, i ⊨ ¬(φ1 SI φ2) implies v, i ⊨ ¬φ2. We instantiate P (φ2) with −, v,
and i to get v(x) ∈ ADi(φ2) ⊆ ADi(φ) using Lemma 6.

– If φ = φ1 UI φ2 and both P (φ1) and P (φ2) hold, there are again three cases
depending on which typing rule is used to derive ⊢ φ1 UI φ2 : PG(x)p.
• With UntilPGL+, we get p = +, 0 /∈ I, and ⊢ φ1 : PG(x)+. Since v, i ⊨
φ1UIφ2, we obtain i′ ≥ i such that v, j ⊨ φ1 for all i ≤ j ≤ i′ and τ ′i−τi ∈
I. Since 0 /∈ I, we have i′ > i, hence v, i ⊨ φ1 holds, and we can instantiate
P (φ1) with +, v, and i to get v(x) ∈ ADi(φ1) ⊆ ADi(φ) using Lemma 6.

• With UntilPGLR+, we get p = +, ⊢ φ1 : PG(x)+, and ⊢ φ2 : PG(x)+.
Since v, i ⊨ φ1 UI φ2, we obtain i′ ≥ i such that v, i′ ⊨ φ2 and, for all,
i ≤ j < i′, v, j ⊨ φ1. If i′ > i, we have v, i ⊨ φ1 and we conclude as in
the previous case. Otherwise, i′ = i and v, i ⊨ φ2 holds. We can then
instantiate P (φ2) with +, v, and i to get v(x) ∈ ADi(φ2) ⊆ ADi(φ) using
Lemma 6.

• With UntilPG−, we get p = −, 0 ∈ I, ⊢ φ2 : PG(x)−. As 0 ∈ I,
v, i ⊨ ¬(φ1 UI φ2) implies v, i ⊨ ¬φ2. We instantiate P (φ2) with −, v,
and i to get v(x) ∈ ADi(φ2) ⊆ ADi(φ) using Lemma 6.

B.2 Helper operators and approximated EMFOTL formulae

We use the following helper operators:

v, i ⊨σ φ ∧Lω ψ iff ∃σ′. v, i ⊨σ|..i·σ′ φ and v, i ⊨σ ψ

v, i ⊨σ φ ∧Rω ψ iff v, i ⊨σ φ and ∃σ′. v, i ⊨σ|..i·σ′ ψ

v, i ⊨σ φ SLω−
I ψ iff ∃j ≤ i. ∃σ′. v, j ⊨σ|..i·σ′ ψ with τi − τj ∈ I and ∀k ∈ [j + 1 . . . i]. ∃σ′. v, k ⊨σ|..i·σ′ φ

v, i ⊨σ φ SLω+
I ψ iff ∃j ≤ i. ∀σ′. v, j ⊨σ|..i·σ′ ψ with τi − τj ∈ I and ∀k ∈ [j + 1 . . . i], σ′. v, k ⊨σ|..i·σ′ φ

v, i ⊨σ φ SRω
I ψ iff ∃j ≤ i. ∃σ′. v, j ⊨σ|..i·σ′ ψ with τi − τj ∈ I and ∀k ∈ [j + 1 . . . i]. ∃σ′. v, k ⊨σ|..i·σ′ φ

v, i ⊨σ φ ULω−
I ψ iff ∃j ≥ i. v, j ⊨ ψ with τj − τi ∈ I and ∀k ∈ [i . . . j − 1]. ∃σ′. v, k ⊨σ|..i·σ′ φ

v, i ⊨σ φ ULω+
I ψ iff ∃j ≥ i. v, j ⊨ ψ with τj − τi ∈ I and ∀k ∈ [i . . . j − 1], σ′. v, k ⊨σ|..i·σ′ φ

Fig. 11. Semantics of helper operators
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Consider the following transformation on (typed) MFOTL formulae:

[r(t1, . . . , tn)]p = r(t1, . . . , tn) [¬φ]p = ¬[φ]−p

[∃x. φ]− = ∃x. [φ]− [∃x. φ]+ = [φ]+[x/0]

[φ ∧ ψ]+ = [φ]+ ∧ [ψ]+ [φ ∧AndSupL ψ]− = [φ]− ∧Rω ψ

[φ ∧AndSupR ψ]− = φ ∧Lω [ψ]− [#I φ]p = #I [φ]p

[φ SI ψ]+ = φ SLω+
I [ψ]+ [φ SSinceSupLR

I ψ]− = [φ]− SRω
I ψ

[φ SSinceSupR
I ψ]− = φ SLω−

I [ψ]− [φ UUntilCauLR
I ψ]+ = [φ]+ UI [ψ]+

[φ UUntilCauR
I ψ]+ = φ ULω+

I [ψ]+ [φ UI ψ]− = φ ULω−
I [ψ]−

The transformed formulae soundly approximate the original formulae:

Lemma 4. For any φ such that Γ ⊢ φ : {Cau}p, if v, i ⊨ p[φ]p holds, then
v, i ⊨ pφ holds. In particular, L([φ]+) ⊆ L(φ).

Proof. By straightforward structural induction on the typing rules using the
definition of [·], and observing that

∀σ′. v, k ⊨σ|..i·σ′ φ =⇒ v, k ⊨σ φ

¬
(
∃σ′. v, k ⊨σ|..i·σ′ φ

)
=⇒ v, k ⊨σ ¬φ.

B.3 Satisfaction-checking under assumptions (Section 5.2)

We inductively define the set of future obligations of a (typed) formula φ at time-
point i and timestamp ts, denoted FO+

i,ts(φ), as

FO+
i,ts(φ) = {(fo, v, p) | (∀x ∈ fv(φ). v(x) ∈ ADi(φ)) ∧ (∀x /∈ fv(φ). v(x) = 0)

∧ (fo, p) ∈ FO+
ts(φ)}

where

FOp
ts(¬φ1) = FO−p

ts (φ1)

FO+
ts(φ1 ∧ φ2) = FO+

ts(φ1) ∪ FO+
ts(φ2)

FO−
ts(φ1 ∧AndSupL φ2) = FO−

ts(φ1)

FO−
ts(φ1 ∧AndSupR φ2) = FO−

ts(φ2)

FOp
ts(∃x. φ1) = FOp

ts(φ1)

FOp
ts(#I φ1) = {(fots,#,I,φ1

, p)}
FO+

ts(φ1 SI φ2) = FO+
ts(φ2)

FO−
ts(φ1 S

SinceSupL
I φ2) = FO−

ts(φ1)

FO−
ts(φ1 S

SinceSupR
I φ2) = FO−

ts(φ2)

FO+
ts(φ1 U

UntilCauLR
I φ2) = FO+

ts(φ1) ∪ FO+
ts(φ2) ∪ {(fots,U,I,φ1,φ2 ,+)}

FO+
ts(φ1 U

UntilCauR
I φ2) = FO−

ts(φ2) ∪ {(fots,U,I,φ1,φ2
,+)}

FO−
ts(φ1 UI φ2) = FO−

ts(φ2) ∪ {(fots,U,I,φ1,φ2 ,−)}.
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Note that the above sets are always finite since ADi(φ) and fv(φ) are finite, too.
We prove

Lemma 2. The proof system of [43] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies (⋆).

by showing the stronger lemma

Lemma 7. The proof system of [43] extended with the rules from Figure 6 yields
a decision procedure Sat that satisfies

Sat(v, φ, σ′, X)

(⋆⋆)
=⇒

(
∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| ⊨

σ′·(ts,D)·σ′′TP p
′ξ(ts))

=⇒ v, |σ′| − 1 ⊨
σ′·(ts,D)·σ′′TP [φ]+

)
.

Proof. First, note that for all v′, σ′, ts, d, ts′, D′, σ′′, p′, τ , I, φ1, and φ2:

v′, |σ′|+ 1 ⊨
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′foτ,#,I,φ1
(ts′)

⇐⇒ v′, |σ′|+ 1 ⊨
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′#I φ1

and v′, |σ′|+ 1 ⊨
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′foτ,U,I,φ1,φ2
(ts′)

⇐⇒ v′, |σ′|+ 1 ⊨
σ′·(ts,D)·(ts′,D′)·σ′′TP p

′(φ1 UI φ2)

by definition of the fo and •TP. The conclusion follows by induction on φ, using
the definition of [•]+ and the standard unrolling rules for # and U.

Lemma 3. Whenever X ⊇ FO+
|σ|,τ|σ|

(φ), the converse of (⋆) also holds for Sat
constructed as in Lemma 2.

Proof. By structural induction of φ, applying the additional rules greedily. The
premisses of the additional rules that depend on future obligations are always
satisfied, since X ⊇ FO+. The parts of the proof that remain to be discharged
using rules from the original proof system do not depend on the future. The
conclusion follows from the completeness of the proof system in [42].

B.4 Soundness (Section 5.4)

For safety properties, we have the following characterization of soundness:

Lemma 8. An enforcer E is sound with respect to a safety formula φ iff for any
σ ∈ Tω and any prefix σ′ of E(σ), there exists σ′′ such that σ′ · σ′′ ∈ P .

Proof. Straightforward by definition of safety.

In the following, we write σ ⪯ σ′, or equivalenty, σ′ ⪰ σ, when σ ∈ Tf , σ′ ∈ T,
and σ is a prefix of σ′, i.e., there exists σ′′ ∈ T such that σ′ = σ · σ′′.
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Lemma 9. For any φ such that Γ ⊢ φ : Cau, the formula [φ]+ is safety.

Proof. We prove, for all φ:

P (φ) ≡ ∀p ∈ {+,−}, σ0 ∈ Tf \ {ε}, v ∈ V → D, σ ∈ Tω.

Γ ⊢ φ : {Cau}p ∧ v, |σ0| − 1 ⊨σ0·σ (−p)[φ]p
=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, |σ0| − 1 ⊨σ0·σ′′ (−p)[φ]p

by induction on φ. Let φ, p, σ0 ̸= ε, v, σ such that Γ ⊢ p : {Cau}p, v, |σ0|−1 ⊨σ0·σ

(−p)[φ]p. For any σ′′ ∈ T, denote σ̂′′ := σ0 · σ′′. Let i := |σ0| − 1.

– If φ = ⊤, φ = ⊥, or φ = e(t1, . . . , tk), then φ is non-temporal and [φ]p = φ,
and hence setting σ′ = σ guarantees ∀σ′′ ⪰ σ′. v, |σ0| ⊨σ̂′′ (−p)[φ]p.

– If φ = ¬φ1, assume P (φ1). Since Γ ⊢ φ : {Cau}p, then Γ ⊢ φ1 : {Cau}−p

(using rules NotCau and NotSup). From v, i ⊨σ̂ (−p)[φ]p and [φ]p =
¬[φ1]−p we get v, i ⊨σ̂ p[φ1]−p and obtain σ′ ⪯ σ such that ∀σ′′ ⪰ σ′. v, i ⊨

σ̂′′

p[φ1]−p by P (φ1). Hence, ∀σ′′ ⪰ σ′. v, i ⊨
σ̂′′ (−p)[φ]p.

– If φ = ∃x. φ1, assume P (φ1); there are two cases:
• If p = +, then Γ ⊢ φ1 : Cau using rule ExistsCau. Furthermore,
[φ]+ = [φ1]+[x/0]. From v, i ⊨σ̂ ¬[φ]+ we get v[x 7→ 0], i ⊨σ̂ ¬[φ1]+ and
obtain a finite σ′ ⪯ σ such that ∀σ′′ ⪰ σ′. v[x 7→ 0], i ⊨

σ̂′′ ¬[φ1]+ ⇐⇒
∀σ′ ⪰ σ′. v, i ⊨

σ̂′′ ¬[φ]+.
• If p = −, then Γ ⊢ φ : Sup using rule ExistsSup and [∃x. φ]− =
∃x. [φ1]−. Then

v, i ⊨σ̂ [φ]−
def. ⊨⇐⇒ ∃d. v[x := d], i ⊨σ̂ [φ1]−
P (φ1)
=⇒ ∃d. ∃σ′ ⪯ σ.∀σ′′ ⪰ σ′. v[x := d], i ⊨

σ̂′′ [φ1]−

=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. ∃d. v[x := d], i ⊨
σ̂′′ [φ1]−

def. ⊨⇐⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i ⊨
σ̂′′ [φ]−.

– If φ = φ1 ∧ φ2, we have P (φ1) and P (φ2); there are two cases:
• If p = +, then Γ ⊢ φ1 : Cau and Γ ⊢ φ2 : Cau by rule AndCau and
[φ1 ∧ φ2]+ = [φ1]+ ∧ [φ2]+. Then

v, i ⊨σ̂ ¬[φ]+
def. ⊨⇐⇒ v, i ⊨σ̂ ¬[φ1]+ or v, i ⊨σ̂, ¬[φ2]+

P (φ1),P (φ2)
=⇒ (

∃σ′
1 ⪯ σ. ∀σ′′ ⪰ σ′

1. v, i ⊨σ̂′′ ¬[φ1]+
)

or
(
∃σ′

2 ⪯ σ. ∀σ′′ ⪰ σ′
2. v, i ⊨σ̂′′ ¬[φ2]+

)
(⋆)
=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. (v, i ⊨σ̂ ¬[φ1]+ or v, i ⊨σ̂ ¬[φ2]+)

def. ⊨⇐⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i ⊨
σ̂′′ ¬[φ]+

where (⋆) is obtained by choosing as witness for σ′ the shortest of the
witnesses for σ′

1 and σ′
2.
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• If p = −, assume w.l.o.g. that rule AndSupL is applied (the case of
AndSupR is similar up to symmetry). Then Γ ⊢ φ1 : Sup by rule
AndSupL and [φ]− = [φ1]

− ∧Rω φ2. We have, for arbitrary σ,

v, i ⊨σ̂ [φ]−
def. ⊨⇐⇒ v, i ⊨σ̂ [φ1]− and ∃σ′

2. v, i ⊨σ̂′
2
φ2

P (φ1)
=⇒ ∃σ′

1 ⪯ σ. ∀σ′′ ⪰ σ′
1. v, i ⊨σ̂′′ [φ1]− and ∃σ′

2. v, i ⊨σ̂′
2
φ2

=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. (v, i ⊨
σ̂′′ [φ1]− and ∃σ′

2. v, i ⊨σ̂′
2
φ2)

def. ⊨
=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i ⊨

σ̂′′ [φ]−.

– If φ = #I φ1, we have P (φ1). Let σ = (τ ′, D′) · σ1; there are two cases:

• If p = +, then Γ ⊢ φ1 : Cau and I = [0,∞) by rule NextCau and
[#I φ1]+ = #I [φ1]+. We have

v, i ⊨σ̂ ¬[φ]+
def. ⊨⇐⇒ v, i+ 1 ⊨σ0·⟨(τ ′,D′)⟩·σ1

¬[φ1]+

P (φ1)
=⇒ ∃σ′

1 ⪯ σ1.∀σ′′ ⪰ σ′
1. v, i+ 1 ⊨σ0·⟨(τ ′,D′)⟩·σ′′ ¬[φ1]+

(⋆)
=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i+ 1 ⊨σ0·σ′′ ¬[φ1]+

def. ⊨⇐⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i ⊨
σ̂′′ ¬[φ]+

where (⋆) is obtained by choosing as witness for σ′ the prefix σ′
1 · (τ ′, D′)

where σ′
1 is a witness of the LHS.

• If p = −, then Γ ⊢ φ1 : Sup by rule NextSup and [#I φ1]− = #I [φ1]−.
We have

v, i ⊨σ̂ [φ]−
def. ⊨⇐⇒ v, i+ 1 ⊨σ0·σ1 [φ1]− and τ ′ − τ ∈ I

P (φ1)
=⇒ ∃σ′

1 ⪯ σ1.∀σ′′ ⪰ σ′
1. v, i+ 1 ⊨σ0·⟨(τ ′,D′)⟩·σ′′ [φ1]−

and τ ′ − τ ∈ I

(⋆)
=⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i+ 1 ⊨σ0·σ′′ [φ1]− and τ ′ − τ ∈ I

def. ⊨⇐⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i ⊨
σ̂′′ [φ]−

where (⋆) is obtained as in the previous case.

– If φ = φ1 SI φ2, we have P (φ1) and P (φ2) for all j. There are three cases:
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• If p = +, then Γ ⊢ φ2 : Cau and 0 ∈ I by rule SinceCau, and [φ]+ =
φ1 S

Lω+
I [φ2]+. We have

v, i ⊨σ̂ ¬[φ]+
def. ⊨⇐⇒∀j ≤ i. τi − τj ∈ I ⇒(

∃σ′
1. v, j ⊨σ|..i·σ′

1
¬[φ2]+

or ∃k ∈ [j + 1..i]. v, k ⊨σ̂|..i·σ′
1
¬φ1

)
P (φ2)
=⇒ ∀j ≤ i. τi − τj ∈ I ⇒(

∃σ′
2 ⪯ σ. ∀σ′′ ⪰ σ′

2. v, j ⊨σ̂′′ ¬[φ2]+

or ∃k ∈ [j + 1..i], σ′
1. v, k ⊨

σ̂′
1
¬φ1

)
=⇒∃σ′ ⪯ σ. ∀j ≤ i. τi − τj ∈ I ⇒(

∀σ′′ ⪰ σ′
2. v, j ⊨σ̂′′ ¬[φ2]+

or ∃k ∈ [j + 1..i], σ′
1. v, k ⊨

σ̂′
1
¬φ1

)
def. ⊨
=⇒∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. v, i ⊨

σ̂′′ ¬[φ]+.

• If p = − and either SinceSupL or SinceSupLR, the proof is similar,
using the semantics of φ1 S

Lω− φ2 or φ1 S
Rω− φ2.

– If φ = φ1 U[a,b] φ2, assume P (φ1) and P (φ2). There are again three cases:

• If p = + and rule UntilCauLR is used, then Γ ⊢ φ1 : Cau, Γ ⊢ φ2 : Cau,
and b ̸= ∞. Furthermore, [φ]+ = [φ1]+ UI [φ2]+. We have:

v, i ⊨σ̂ ¬[φ]+
def. ⊨⇐⇒∀j ≥ i. τj − τi ∈ I ⇒

(v, j ⊨σ̂ ¬[φ2]+ or ∃k ∈ [i..j − 1]. v, k ⊨σ̂ ¬[φ1]+)

P (φ1),P (φ2)
=⇒ ∀j ≥ i. τj − τi ∈ I ⇒(

∃σ′
2 ⪯ σ. ∀σ′′ ⪰ σ′

2. v, j ⊨σ̂′′ ¬[φ2]+

or ∃k ∈ [i..j − 1].∃σ′
1 ⪯ σ. ∀σ′′ ⪰ σ′

1. v, k ⊨
σ̂′′ ¬[φ1]+

)
(⋆)
=⇒∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′

2.∀j ≥ i. τj − τi ∈ I ⇒(
v, j ⊨

σ̂′′ ¬[φ2]+ or ∃k ∈ [i..j − 1]. v, k ⊨
σ̂′′ ¬[φ1]+

)
def. ⊨
=⇒∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′

2. v, i ⊨σ̂′′ ¬[φ]+

where (⋆) is obtained by choosing as witness for σ′ the longest of a witness
for σ′

2 and either a witness for σ′
1 for each value of j such that τj − τi ∈ I.

The progress property of the trace σ guarantees that the set of such
indices j is finite, and hence the witness for σ′ is finite.

• If p = + and rule UntilCauR is used, the proof is similar, using the
semantics of φ1 U

Lω+ φ2.
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• If p = − and rule UntilSup is used, then Γ ⊢ φ1 : Sup. Furthermore,
[φ]− = [φ1]− URω φ2. We have:

v, i ⊨σ̂ [φ]−
def. ⊨⇐⇒∃j ≥ i.

(
τj − τi ∈ I and ∃σ′

2. v, j ⊨σ̂|..i·σ′
2
φ2

and ∀k ∈ [i..j − 1]. v, k ⊨σ̂ [φ1]−)

P (φ1)
=⇒ ∃j ≥ i.

(
τj − τi ∈ I and ∃σ′

2. v, j ⊨σ̂′
2
φ2

and ∀k ∈ [i..j − 1].∃σ′
1 ⪯ σ. ∀σ′′ ⪰ σ′

1. v, k ⊨
σ̂′′ [φ1]−

)
(⋆)
=⇒∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′.∃j ≥ i.(

τj − τi ∈ I and ∃σ′
2. v, j ⊨σ̂′

2
φ2

and ∀k ∈ [i..j − 1]. v, k ⊨
σ̂′′ [φ1]−

)
def. ⊨
=⇒∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′

2. v, i ⊨σ̂′′ [φ]−.

where (⋆) is obtained by choosing as witness for σ′ the longest of the
witnesses for σ′

1 for each value of j such that τj − τi ∈ I. The progress
property of the trace σ guarantees that the set of such indices j is finite,
and hence the witness for σ′ is also finite.

Given any trace ⟨(τ,D)⟩ · σ ∈ Tω, we can now use P (φ) instantiated with p = +,
σ0 = ⟨(τ,D)⟩, and σ to obtain

Γ ⊢ φ : Cau ∧ v, 0 ⊨⟨(τ,D)⟩·σ ¬[φ]p =⇒ ∃σ′ ⪯ σ.
(
∀σ′′ ⪰ σ′. v, i ⊨(τ,D)·σ′′ ¬[φ]p

)
,

which implies

∀σ ∈ Tω. Γ ⊢ φ : Cau ∧ σ /∈ L(φ) =⇒ ∃σ′ ⪯ σ. ∀σ′′ ⪰ σ′. σ′′ /∈ L(φ),

i.e., φ is safety.

Having proved in Lemma 4 that the transformed formulae soundly approxi-
mate the original formulae, we will use the following weakening of (⋆⋆) where
the transformed future obligations are assumed to be satisfied.

Sat(v, φ, σ′, X)

(⋆⋆⋆)
=⇒

(
∀ts ∈ N, D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| ⊨

σ′·(ts,D)·σ′′TP p
′[ξ(ts)]p′)

=⇒ v, |σ′| − 1 ⊨
σ′·(ts,D)·σ′′TP [φ]+

)
.

Lemma 10. Let σ ∈ Tf , (τ ′, D′) · σ′ ∈ Tω, τ ∈ N such that τ ′ ≥ τ , and
enfpτ,b(φ, σ · (τ,D), X ′, v) = (S,C,X) (in particular, enfpτ,b terminates on these
inputs). Assume further that the following hold:

P1 ≡ Γ ⊢ φ : {Cau}p;
P2 ≡ τ ′ > τ =⇒ b;
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P3 ≡ ∀(ξ, v′, p′) ∈ X. v′, |σ|+ 1 ⊨
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP p

′[ξ(τ ′)]p′

Then Q ≡ v, |σ| ⊨
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP p[φ]p holds.

Proof. Fix Γ,X ′, σ, σ′, τ, τ ′, D′. We prove

P (φ)

≡ ∀D, v, b, S, C,X, p. enfpτ,b(φ, σ · (τ,D), X ′, v) = (S,C,X)

∧ P1(Γ, φ, p) ∧ P2(b) ∧ P3(X,D, S,C) =⇒ Q(v,D, S,C, p, φ)

by structural induction on φ.

– If φ = ⊥, then P1 yields p = − (rule False). In this case, Q is simply
v, |σ| ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP −⊥ ≡ ⊤, which always holds.

– If φ = ⊤, then P1 yields p = + (rule True). In this case, Q is simply
v, |σ| ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP ⊤, which always holds.

– If φ = e(t1, . . . , tk), we know by P1 that either p = −, e ∈ Sup, and Γ (e) =
Sup (rule Sup); or p = +, e ∈ Cau, and Γ (e) = Cau (rule Cau). Consider the
former case. By definition of enf−, we have S = {(r, (v(t1), . . . , v(tn)))}, C =
∅,X = ∅. Hence (r, (v(t1), . . . , v(tn))) /∈ D\S∪C, andQ ≡ v, |σ| ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP

−r(t1, . . . , tn) holds. The other case is similar using the definition of enf+.

– If φ = ¬φ′, assume P (φ′). We know by P1 (rules NotCau and NotSup) that
Γ ⊢ φ′ : {Cau}−p ≡ P1(Γ, φ

′,−p). Observe that P2 and P3 do not depend on
φ. Hence, we can use P (φ′) to show Q(v,D, S,C,−p, φ′), which is exactly
Q(v,D, S,C, p, φ) by the semantics of ¬ and the definition of [·].

– If φ = ∃x. φ′, assume P (φ′); there are two cases:

• If p = +, then P1(Γ, φ, p) (rule ExistsCau) yields Γ ⊢ φ′ : Cau ≡
P1(Γ, φ

′, p). Furthermore, enf+τ,b(φ, σ,X, v) = enf+τ,b(φ
′, σ,X, v[x 7→ 0]).

Observe that P2 and P3 do not depend on φ and v. Hence, we can use
P (φ′) to show Q(v[x 7→ 0], D, S, C, p, φ′), which implies Q(v,D, S,C, p, φ)
by the semantics of ∃.

• If p = −, then P1(Γ, φ, p) (rule ExistsSup) yields Γ ⊢ φ′ : Cau ≡
P1(Γ, φ

′, p) and ⊢ φ′ : PG(x)+. Furthermore, enf−τ,b(φ, σ,X, v) = fp(σ,X, enf−ex,φ′,v,τ,b).
Let σ1 = σ · (τ,D \ S ∪ C). Since enf−τ,b terminates, the fixpoint compu-
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tation also does, and we have

∀d ∈ AD|σ1|−1(φ
′).Sat(v[x 7→ d],¬φ′, σ1, X)

(⋆⋆⋆)
=⇒∀d ∈ AD|σ1|−1(φ

′). (∀(ξ, v′, p′) ∈ X. v′, |σ1| ⊨σ1·(τ ′,D)·σ′TP p
′[ξ(τ ′)]p′)

=⇒ v[x 7→ d], |σ1| − 1 ⊨
σ1·(τ ′,D′)·σ′TP ¬[φ′]−

Lm. 1
=⇒∀d ∈ D. (∀(ξ, v′, p′) ∈ X. v′, |σ1| ⊨σ1·(τ ′,D′)·σ′TP p

′[ξ(τ ′)]p′)

=⇒ v[x 7→ d], |σ1| − 1 ⊨
σ1·(τ ′,D′)·σ′TP ¬[φ′]−

def. ⊨
=⇒

(
(∀(ξ, v′, p′) ∈ X. v′, |σ1| ⊨σ1·(τ ′,D′)·σ′TP p

′[ξ(τ ′)]p′)

=⇒ v, |σ1| − 1 ⊨
σ1·(τ ′,D′)·σ′TP ¬[φ]−

)
⇐⇒(P3 =⇒ Q)

which concludes the proof.
– If φ = φ1 ∧ φ2, assume P (φ1) and P (φ2); there are two cases:

• If p = −, then P1(Γ, φ, p) yields either P1(Γ, φ1, p) (rule AndSupL)
or P1(Γ, φ2, p) (rule AndSupR). W.l.o.g., consider the former case
(the latter case is similar exchanging the role of φ1 and φ2). We have
enf+τ,b(φ, σ,X, v) = enf+τ,b(φ1, σ,X, v). Observe that P2 and P3 do not
depend on φ and v. Hence we get Q(v,D, S,C, p, φ1), which implies
Q(v,D, S,C, p, φ) by the semantics of ∧Rω and [φ ∧AndSupL ψ]− =
[φ1]−∧Rωφ2: the conjunction [φ1]−∧Rωφ2 is false at i if [φ1]− is false at i.

• If p = +, then P1(Γ, φ, p) (rule AndCau) yields Γ ⊢ φ1 : Cau ≡
P1(Γ, φ1, p) and Γ ⊢ φ2 : Cau ≡ P1(Γ, φ2, p) . Furthermore, enf+τ,b(φ, σ,X, v) =
fp(σ,X, enf+and,φ1,φ2,v,τ,b

). Let σ1 = σ · (τ,D \ S ∪ C). Since enf+ termi-
nates, the fixpoint computation also does, and we have

Sat(v, φ1, σ1, X) ∧ Sat(v, φ2, σ1, X)

(⋆⋆⋆)
=⇒

(
∀(ξ, v′, p′) ∈ X. v′, |σ1| ⊨σ1·(τ,D′)·σ′TP p

′[ξ(τ)′]p′)

=⇒ v, |σ1| − 1 ⊨
σ1·(τ ′,D′)·σ′TP [φ1]+ ∧ v, |σ1| − 1 ⊨

σ1·(τ ′,D′)·σ′TP [φ2]+

def. ⊨⇐⇒
(
∀(ξ, v′, p′) ∈ X. v′, |σ1| ⊨σ1·(τ ′,D′)·σ′TP p

′[ξ(τ ′)]p′)

=⇒ v, |σ1| − 1 ⊨
σ1·(τ ′,D′)·σ′TP,+

[φ]+

⇐⇒(P3 =⇒ Q)

which concludes the proof using [φ1 ∧ φ2]+ = [φ1]+ ∧ [φ2]+.
– If φ = #I φ

′, assume P (φ′); there are two cases:
• If p = −, then by P1 (rule NextSup) we get Γ ⊢ φ : Sup. By definition of
enf−, we have S = C = ∅ andX = {(foτ,#,I,φ′ , v,−)}. By definition of •TP
and foτ,#,I,φ′ , then if τ ′−τ ∈ I, P3 yields v, |σ|+1 ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP

¬[φ′]− which implies Q ≡ v, |σ| ⊨
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP ¬#I [φ

′]−. If
τ ′ − τ /∈ I, the semantics of #I similarly guarantees Q.
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• If p = +, then by P1 (rule NextCau) we get Γ ⊢ φ : Cau. By defini-
tion of enf+, we have S = C = ∅ and X = {(foτ,#,I,φ′ , v,+)}. Then
P3 yields v, |σ| + 1 ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP,+
[φ′]+, which implies Q ≡

v, |σ| ⊨
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP,+

#[φ′]+.
– If φ = φ1 SI φ2, assume P (φ1) and P (φ2); there are three cases:

• If p = +, then by P1 (rule SinceCau) we get 0 ∈ I, Γ ⊢ φ2 : Cau.
We have enf+τ,b(φ, σ,X, v) = enf+τ,b(φ2, σ,X, v); as before, P2 and P3 are
independent of φ and v. Hence we get Q(v,D, S,C, p, φ2), which implies
Q(v,D, S,C, p, φ) using the semantics of SLω+

I , the equation [φ1SIφ2]+ =
φ1 S

Lω+
I [φ2]+, and the fact that 0 ∈ I.

• If p = − and SinceSupL is used, we have 0 /∈ I and Γ ⊢ φ1 : Cau
by P1. Further, enf−τ,b(φ, σ,X, v) = enf−τ,b(φ1, σ,X, v), and P2 and P3

are independent of φ and v. Hence Q(v,D, S,C, p, φ2), which implies
Q(v,D, S,C, p, φ) using the semantics of SLω−

I , the equation [φ1SIφ2]+ =
φ1 S

Lω−
I [φ2]+, and the fact that 0 /∈ I.

• If p = − and SinceSupLR is used, we have 0 ∈ I, Γ ⊢ φ1 : Cau, and
Γ ⊢ φ2 : Cau by P1. Further,

enf−τ,b(φ, σ,X, v) = fp(σ,X, enf+and,¬(φ1∧AndSupL(φ1SIφ2)),¬φ2,v,τ,b
)

whereby Γ ⊢ ¬φ2 : Cau and Γ ⊢ ¬(φ1 ∧AndSupL (φ1 SI φ2)) : Cau. The
same proof as for ∧ and p = + above shows Q(v,D, S,C,−p,¬φ2 ∧
¬(φ1 ∧ (φ1 SI φ2)) since, when 0 ∈ I, we have

¬ (φ1 SI φ2) ≡ ¬φ2 ∧ ¬ (φ1 ∧ (φ1 SI φ2))

Hence Q(v,D, S,C, p, φ) holds.
– If φ = φ1 UI φ2, assume P (φ1) and P (φ2); there are three cases:

• If p = +, then by P1 (rule UntilCau) we get Γ ⊢ φ1 : Cau and
Γ ⊢ φ2 : Cau. If I = [0, 0] and b = ⊤, we have enf+τ,b(φ, σ,X, v) =

enf+τ,b(φ2, σ,X, v); as before, P2 and P3 are independent of φ and v. Hence
we get Q(v,D, S,C, p, φ2), which implies Q(v,D, S,C, p, φ) by the seman-
tics of [φ1]+ UI [φ2]+ = [φ1 UI φ2]+ and the fact that 0 ∈ I. Otherwise,
enf+τ,b(φ, σ,X, v) = enf+τ,b(φ1, σ,X, v, b) ⋓ (∅, ∅, {(foτ,U,I,φ1,φ2

, v,+)}. Us-
ing P3 and the definition of •TP, we get v, |σ|+ 1 ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP

[φ1]+ UI−(τ ′−τ) [φ2]+. Using P (φ1), we also get Q(v,D, S,C, p, φ1). To-
gether, these two facts imply

v, |σ| ⊨
σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP [φ1]+ ∧#

(
[φ1]+ UI−(τ ′−τ) [φ2]+

)
=⇒ v, |σ| ⊨

σ·(τ,D\S∪C)·(τ ′,D′)·σ′TP [φ1]+ UI [φ2]+ ≡ Q.

• If p = + and UntilCauR is used, the proof is similar to the previous case.
• If p = − and UntilSupL is used, we have 0 /∈ I and Γ ⊢ φ1 : Cau

by P1. Further, enf−τ,b(φ, σ,X, v) = enf−τ,b(φ1, σ,X, v), and P2 and P3

are independent of φ and v. Hence Q(v,D, S,C, p, φ1), which implies
Q(v,D, S,C, p, φ) using the semantics of URω−

I , the equation [φ1 UI

φ2]− = [φ1]− URω−
I φ2, and the fact that 0 /∈ I.
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Lemma 11. When Γ ⊢ φ : {Cau}, for all p, σ,X, τ, v, b, any call to enfpτ,b(φ, σ,X, v)
terminates.

Proof. By structural induction on φ. The only non-trivial cases are those that
lead to a call to fp: φ = φ1 ∧ φ2 for p = −, and φ = ∃x. φ1, φ1SISinceSupLRφ2,
φ1UIUntilSupφ2 for p = +.

In all four cases, a similar proof is obtained by combining three facts:

(1) At each iteration of the loop in fp, |S|+ |C|+ |X| grows strictly.
(2) Any event added to S or C by any call to enf− or enf+ takes its arguments in

AD|σ|(φ), which is finite; thus |S|+ |C| ≤ (|Sup|+ |Cau|)|AD(σ)|max ι(E) <∞.
(3) Any triple added toX is in FO+

|σ|,τ (φ), which is also finite, and hence |X| <∞.

Therefore every call fp terminates, and thus enfpτ,b terminates, too.

Lemma 12. Let φ such that Γ ⊢ φ : {Cau}p, σ ∈ Tf , v a valuation such that
v(fv(φ)) ⊆ AD|σ|(φ). Then there exists σ′ such that v, |σ| ⊨σ·σ′ p[φ]p.

Proof. Construct

∆ := AD|σ|(φ)

D :=
⋃

e∈Γ−1(Cau)

{(e, (d1, . . . , da(e))) | (d1, . . . , da(e)) ∈ ∆a(e)}

σ′ := ⟨(τ ′, D), (τ ′ + 1, D), (τ ′ + 2, D), . . .⟩ .

We show

P (φ)

≡ ∀v, p, i ≥ |σ|. Γ ⊢ φ : {Cau}p ∧ v(fv(φ)) ⊆ ADi(φ) =⇒ v, i ⊨σ·σ′ p[φ]p.

by structural induction on φ. Let φ such that Γ ⊢ φ : {Cau}p, v(fv(φ)) ⊆ ADi(φ).

– If φ = ⊥ and p = − or φ = ⊤ and p = +, the result is trivial.
– If φ = e(t1, . . . , tk) with e ∈ Sup and p = −, then the typing guarantees
Γ (e) = Sup, and therefore e /∈ Γ−1(Cau) and (e, (v(t1), . . . , v(tk))) /∈ D,
yielding v, i ⊨σ·σ′ ¬[φ]−.

– If φ = e(t1, . . . , tk) with e ∈ Cau and p = +, then the typing guarantees
Γ (e) = Cau. Furthermore, v(tj) ∈ AD|σ|(φ) = ∆ for every j ∈ [1..a(e)] by
our assumption. Therefore (e, (v(t1), . . . , v(tk))) ∈ D, yielding v, i ⊨σ·σ′ [φ]+.

– If φ = ¬φ1, assume P (φ1). The typing of φ yields Γ ⊢ φ1 : {Cau}−p. By
P (φ1), we get v, i ⊨σ·σ′ (−p)[φ1]−p, and hence v, i ⊨σ·σ′ p[φ]p.

– If φ = ∃x. φ1, assume P (φ1); there are two cases:
• If p = +, the typing of φ yields Γ ⊢ φ1 : Cau. By P (φ1) with v′ =
v[x 7→ 0] and the fact that 0 ∈ ADi(φ), we get v′, i ⊨σ·σ′ [φ1]+. Hence
v, i ⊨σ·σ′ [φ]+[x/0] and v, i ⊨σ·σ′ [φ]+.

• If p = −, the typing of φ guarantees Γ ⊢ φ1 : Sup and ⊢ φ1 : PG(x)+.
Let d ∈ ADi(φ) and vd = v[x 7→ d]. By P (φ1) with v′, we get v′, i ⊨σ·σ′

¬[φ1]−. As this holds for any d in ADi(φ), we get v, i ⊨σ·σ′ ¬[φ]−.
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– If φ = φ1 ∧ φ2, assume P (φ1) and P (φ2); there are three cases:
• If p = +, the typing of φ yields Γ ⊢ φ1 : Cau and Γ ⊢ φ2 : Cau. By
P (φ1) and P (φ2), we get v, i ⊨σ·σ′ [φ1]+ and v, i ⊨σ·σ′ [φ2]+, and hence
v, i ⊨σ·σ′ [φ]+.

• If p = − and φ is typed using AndSupL, then Γ ⊢ φ1 : Sup. By P (φ1),
we get v, i ⊨σ·σ′ ¬[φ1]−, and hence v, i ⊨σ·σ′ ¬[φ]−.

• If p = − and φ is typed using AndSupR, then Γ ⊢ φ2 : Sup. By P (φ2),
we get v, i ⊨σ·σ′ ¬[φ2]−, and hence v, i ⊨σ·σ′ ¬[φ]−.

– If φ = #I φ1, assume P (φ1); there are two cases:
• If p = +, the typing of φ yields I = [0..∞) and Γ ⊢ φ1 : Cau. By P (φ1)

with v and i+ 1, we get v, i+ 1 ⊨σ·σ′ [φ1]+, and hence v, i ⊨σ·σ′ [φ]+.
• If p = −, the typing of φ yields Γ ⊢ φ1 : Sup. By P (φ1) with v and i+ 1,

we get v, i+ 1 ⊨σ·σ′ ¬[φ1]−, and hence v, i ⊨σ·σ′ ¬[φ]−.
– If φ = φ SI ψ, assume P (φ1) and P (φ2); there are three cases:

• If p = +, the typing of φ yields 0 ∈ I and Γ ⊢ φ2 : Cau. By P (φ2), we
get v, i ⊨σ·σ′ [φ2]+, and hence v, i ⊨σ·σ′ [φ]+ since 0 ∈ I.

• If p = − and φ is typed using SinceSupL, then Γ ⊢ φ1 : Sup and 0 /∈ I.
By P (φ1), we get v, i ⊨σ·σ′ ¬[φ1]−, and hence v, i ⊨σ·σ′ ¬[φ]− since 0 /∈ I.

• If p = − and φ is typed using SinceSupLR, then Γ ⊢ φ2 : Sup, and
0 ∈ I. By P (φ2), we get v, i ⊨σ·σ′ ¬[φ2]−, and hence v, i ⊨σ·σ′ ¬[φ]−.

– If φ = φ UI ψ, assume P (φ1) and P (φ2); there are three cases:
• If p = +, the typing of φ gives I = [a, b] with b < ∞, Γ ⊢ φ1 : Cau,

and Γ ⊢ φ2 : Cau. Let δ ∈ I and k = i + δ. By P (φ2), we have
v, k ⊨σ·σ′ [φ2]p. By P (φ1), we also have ∀j ∈ [i..k − 1]. v, j ⊨σ·σ′ [φ1]+.
Hence v, i ⊨σ·σ′ [φ]+.

• If p = − and φ is typed using UntilSupL, then Γ ⊢ φ1 : Sup and 0 /∈ I.
By P (φ1), we get v, i ⊨σ·σ′ ¬[φ1]−, and hence v, i ⊨σ·σ′ ¬[φ]− since 0 /∈ I.

• If p = − and φ is typed using UntilSup, then Γ ⊢ φ2 : Sup. By P (φ2),
we get ∀j ∈ I + i. v, j ⊨σ·σ′ ¬[φ2]. Hence v, i ⊨σ·σ′,− [φ]−.

For σ = ε and p = +, we get as a corollary:

Lemma 13. For any φ ∈ EMFOTL, there exists σ such that σ ∈ L([φ]+).

Our choice of σ′ in the proof of Lemma 12 depends on Γ and σ, but not on the
specific formula φ and valuation v. We thus obtain the following generalization:

Lemma 14. Fix σ ∈ Tf , τ ′ ≥ lts(σ), and Γ . Let X be a set of triples (ξ, v, p′)
all satisfying Γ ⊢ ξ(τ ′) : {Cau}p′ and v(fv(ξ(τ ′))) ⊆ AD|σ|(φ). Then there exists
σ′ such that fts(σ′) = τ ′ and for all (ξ, v, p′) ∈ X, v, |σ| ⊨σ·σ′ p′[ξ(τ ′)]p′ .

Proof. As in Lemma 12, repeating the same proof for each of the triples (ξ(τ ′), v, p′).

Lemma 15. Assume that Γ ⊢ φ : {Cau}p. If enfpτ,b(φ, σ · ⟨(τ,D)⟩ , X ′, v) =
(S,C,X) and (ξ, v, p′) ∈ X, then for all τ ′ ∈ {τ, τ +1} such that τ ′ = τ +1 =⇒ b,
we have Γ ⊢ ξ(τ ′) : {Cau}p′ .
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Proof. By systematic inspection of Algorithm 2, we see that whenever enfp2(φ2, ...)
is called recursively in enfp1(φ1, ...) and Γ ⊢ φ1 : {Cau}p1

, then Γ ⊢ φ2 : {Cau}p2
.

Now assume that some enfp
′
(φ′, ...) with Γ ⊢ φ′ : {Cau}p′ adds a new triple to

X. There are four cases:

– If φ′ = #I φ1, then ξ(τ ′) = (¬TP) UI−(τ ′−τ) (TP ∧ φ1) if τ ′ − τ ≤ sup I, and
ξ(τ ′) = ⊥ otherwise. There are two cases:
• If p = −, then Γ ⊢ φ′ : Sup implies Γ ⊢ φ1 : Sup. We can use UntilSup,

AndSupR, and Γ ⊢ φ1 : Sup to obtain Γ ⊢ ξ(τ ′) : Sup if τ ′ − τ ≤ sup I.
If τ ′ − τ > sup I, then we obtain the same conclusion using rule False.

• If p = +, then Γ ⊢ φ′ : Cau implies Γ ⊢ φ1 : Cau and I = [0, b) with
b > 0 (rule NextCau). Since τ ′ ∈ {τ, τ + 1}, we have τ ′ − τ ≤ 1 ≤ sup I.
Hence ξ(τ ′) = (¬TP) UI−(τ ′−τ) (TP ∧ φ1), and we obtain Γ ⊢ φ′ : Cau by
using UntilCauR, AndCau, and TP ∈ Cau.

– If φ′ = φ1UI φ2, then ξ(τ ′) = (TP → φ1)UI−(τ ′−τ) (TP∧φ1) if τ ′− τ ≤ sup I,
and ξ(τ ′) = ⊥ otherwise. There are again two cases:
• If p = −, then Γ ⊢ φ′ : Sup implies Γ ⊢ φ2 : Sup (rule UntilSup). We can

use UntilSup, AndSupR, and Γ ⊢ φ2 : Sup to obtain ξ(τ ′) ⊢ φ′ : Sup
if τ ′ − τ ≤ sup I. If τ ′ − τ > sup I, then we obtain the same conclusion
using rule False.

• If p = +, we observe that the future obligation can only be in X if
I ̸= [0, 0] or b is false. This implies that sup I ≥ 1 or τ ′ − τ = 0, and
hence τ ′ − τ ≤ sup I and ξ(τ ′) = (TP → φ1) UI−(τ ′−τ) (TP ∧ φ2). If
Γ ⊢ φ′ : Cau is obtained using UntilCauLR, then we have Γ ⊢ φ1 : Cau
and Γ ⊢ φ2 : Cau. We prove that Γ ⊢ ξ(τ ′) : Cau using TP ∈ Cau and
rules UntilCauLR, ImpCauR (defined Appendix A), and AndCau. If
Γ ⊢ φ′ : Cau is obtained using UntilCauR, then Γ ⊢ φ2 : Cau and I =
[0, b] for some b ∈ N. We prove that Γ ⊢ ξ(τ ′) : Cau using TP ∈ Cau, the
fact that I− [0, b] = [0, b− (τ ′−τ)], and rules UntilCauR and AndCau.

Lemma 16. Let Γ , I, φ1, φ2, and p such that Γ ⊢ φ1 UI φ2 : {Cau}p. If
sup I ≥ 1, then Γ ⊢ φ1 UI−1 φ2 : {Cau}p.

Proof. If sup I ≥ 1, then I − 1 is a non-empty interval. The proof is by case
distinction on the rule used to derive Γ ⊢ φ1 UI φ2.

– UntilSup, p = −: We have Γ ⊢ φ2 : Sup, hence by applying UntilSup
again we get Γ ⊢ φ1 UI−1 φ2.

– UntilCauR, p = +: We have Γ ⊢ φ2 : Cau, and I = [0, b] for some b ∈ N.
Hence I−1 = [0, b−1]. By applying UntilCauR again we get Γ ⊢ φ1UI−1φ2.

– UntilCauLR, p = +: We have Γ ⊢ φ1 : Cau, Γ ⊢ φ2 : Cau, and sup I ≠ ∞.
By applying UntilCauLR again we get Γ ⊢ φ1 UI−1 φ2.

Lemma 17. Assume that Γ ⊢ φ : Cau. Let X be the state of the enforcer at the
beginning of the kth iteration of run, σ be the trace produced in the first k − 1
iterations, and ts the timestamp in the kth iteration. Then ∀(ξ, v, p) ∈ X.Γ ⊢
ξ(ts) : {Cau}p.
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Proof. By induction on k. If k = 0, then X = {(λ_. φ, ∅,+)} and the result if
trivial. Let k > 0 such that the property holds for k − 1. Let X ′ and ts′ be the
state of the enforcer and the timestamp at the beginning of the k − 1st iteration,
respectively. There are two cases:

– If the k−1st iteration returned NoCom, then X ′ = X, ts′ = ts+1, and b was
true in iteration k− 1. Moreover, there exists C and S such that (C, S,X) =
enf+ts,b(Φ, σ, ∅, ∅) and TP /∈ C. By systematic inspection of Algorithm 2, we
see that none of the ξ in X ′ is such that ξ(ts′) = φ1 UI−(ts′−τ) φ2 for
some φ1, φ2, and τ such that I − (ts′ − τ) = [0, 0] (otherwise, TP would
have been caused at k − 1 and the returned command would not have been
NoCom). Hence, all future obligations in X have a first component of the
form ξ = λτ ′. φ1 UI−(τ ′−τ) φ2 where sup I ≥ ts′ − τ + 1. By Lemma 16 and
ts′ = ts+ 1, this guarantees that ∀(ξ, v, p) ∈ X.Γ ⊢ ξ(ts′) : {Cau}p.

– Else, there exists C and S such that (C, S,X) = enf+ts,b(Φ, σ, ∅, ∅), where Φ =∧
(ξ,v,+)∈X′ ξ(ts′)[v]∧

∧
(ξ,v,−)∈X′ ¬ξ(ts′)[v] or Φ = TP∧

∧
(ξ,v,+)∈X′ ξ(ts′)[v]∧∧

(ξ,v,−)∈X′ ¬ξ(ts′)[v]. Using the IH and rules AndCau and NotCau, we
get Γ ⊢ Φ : Cau. Hence, by Lemma 15, enf+ts,b(Φ, σ, ∅, ∅) yields ∀(ξ, v, p) ∈
X.Γ ⊢ ξ(ts) : {Cau}p.

Lemma 18. Let Φ be the formula computed by enf at the beginning of the kth
iteration of run, ts and ts′ the timestamps in the kth and k + 1st iterations
respectively, σ the trace produced in the first k − 1 iterations, and X the state of
the formula at the end of the kth iteration. We have

∀D,σ′.
(
∀(ξ, v, p) ∈ X. v, |σ| ⊨

σ·(ts,D)·σ′TP p[ξ(ts
′)]p

)
=⇒ v, |σ| − 1 ⊨

σ·(ts,D)·σ′TP [Φ]+.

Proof. Let X ′ be the state of the enforcer at the beginning of the kth iteration
of run. By Lemma 17, we have ∀(ξ, v, p) ∈ X ′. Γ ⊢ ξ(ts) : {Cau}p, and hence, as
above, Γ ⊢ Φ : Cau. The definition of run ensures that b is set to true whenever
ts′ > ts. Moreover, as above, Γ ⊢ Φ : Cau. Using Lemma 10, we conclude that
v, |σ| − 1 ⊨

σ·(ts,D)·σ′TP [Φ]+ holds.

Lemma 19. Assume that Γ ⊢ φ : Cau. Let X be the state of the enforcer at the
beginning of the kth iteration of run, σ be the trace produced in the first k − 1
iterations, and ts be the timestamp in the kth iteration of run. Then there exists
σ′ such that ∀(ξ, v, p) ∈ X. v, |σ| ⊨σ·σ′ p[ξ(ts)]p.

Proof. Straightforward from Lemmata 14 and 17.

Lemma 20. Let X be the state of the enforcer at the beginning of the kth
iteration of run. For any (ξ, v, p) ∈ X, σ ∈ Tω, i, ts ∈ N, and φ any subformula
of ξ(ts′), the truth value of v, i ⊨σ φ does not depend on the presence of any
TP events occurring at time-points 0, . . . , i − 1 in σ. As a corrolary, we have
v, i ⊨

σ|..i−2·σ|i−1..
TP φ⇐⇒ v, i ⊨

σ|..i−1·σ|i..
TP φ.
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Proof. In every iteration, TP predicates are only inserted in foτ,#,I,φ1
and

foτ,U,I,φ1,φ2
, where they appear above all past operators. In every call to µ, the

formula Φ is process top-down, generating future obligations only when reaching
a future operator. Hence, one can show by induction that all TP predicates in Φ
occur above all past operators. This implies the desired property.

Lemma 21. Let k ≥ 1. Let σ the trace produced in the first k − 1 iterations (1-
indexed) of run, ts and ts′ the timestamps in the k − 1st iteration (or 0 if k = 0)
and the kth iteration, respectively, and X the state of the formula at the beginning
of the kth iteration. We have

∀D,σ′.
(
∀(ξ, v, p) ∈ X. v, |σ| ⊨

σ·(ts′,D)·σ′TP p[ξ(ts
′)]p

)
=⇒ σ · (ts′, D) · σ′ ∈ L([φ]+).

Proof. We prove

∀k ∈ N. P (k) ≡

∀D,σ′.
(
∀(ξ, v, p) ∈ Xk. v, |σk| ⊨σk·(tsk,D)·σ′TP p[ξ(tsk)]p

)
=⇒ σk · (tsk, D) · σ′ ∈ L([φ]+)

where Xk, σk, and tsk denote the state of the enforcer, the already generated
trace prefix, and the timestamp at the beginning of the kth iteration. The proof
is by induction on k.

If k = 1, then σ1 = ε, ts0 = τ0, and X1 = {(λ_. φ, v,+)}. Let D, and σ′. The
LHS of the implication to be proven is v, 0 ⊨

(ts0,D)·σ′TP [φ]+. As φ does not contain
any TP event, then v, 0 ⊨(ts0,D)·σ′ [φ]+. This is exactly (ts0, D) · σ′ ∈ L([φ]+).

Let k > 1 such that P (k − 1) holds. Let D, and σ′ such that

∀(ξ, v, p) ∈ Xk. v, |σk| ⊨σk·(tsk,D)·σ′TP p[ξ(tsk)]p (∗)

holds. There are two cases:

– If enf did not return NoCom in the k− 1st iteration, then there exists D̂ such
that σk = σk−1 · (tsk−1, D̂). By Lemma 18, we get

∀D′, D′′, σ′′.(
∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 ⊨

σk−1·(tsk−1,D̂)·(tsk,D′′)·σ′′
TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| ⊨

σk−1·(tsk−1,D̂)·(tsk,D′′)·σ′′
TP [Φk−1]+

where Φk−1 is the formula Φ computed at the beginning of the k−1st iteration.
Setting D′′ := D and σ′′ := σ′, we obtain(

∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 ⊨
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| ⊨

σk−1·(tsk−1,D̂)·(tsk,D)·σ′
TP [Φk−1]+.
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By (∗), equation σk = σk−1 · (tsk−1, D̂ \ S ∪ C), and Lemma 20, we obtain

∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 ⊨
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP p[ξ(tsk)]p.

Moreover,

v, |σk−1| ⊨
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP [Φk−1]+

⇐⇒ ∀(ξ, v, p) ∈ Xk−1. v, |σk−1| ⊨
σk−1·(tsk−1,D̂)·(tsk,D)·σ′

TP p[ξ(tsk−1)]p.

given the construction of Φ using ∧AndCau, ¬NegCau, and substitution. From
P (k − 1) and the last two equations, we conclude that

σk · (tsk, D) · σ′ = σk−1 · (tsk−1, D̂) · (tsk, D) · σ′ ∈ L([φ]+).
– If enf returned NoCom in the k−1st iteration, then σk = σk−1. By Lemma 18,

we get

∀D′, D′′, σ′′.(
∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 ⊨

σk−1·(tsk,D′′)·σ′′TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| ⊨σk−1·(tsk,D′′)·σ′′TP [Φk−1]+

where Φk−1 is the formula Φ computed at the beginning of the k−1st iteration.
Setting D′′ := D, and σ′′ := σ′, we obtain(

∀(ξ, v, p) ∈ Xk. v, |σk−1|+ 1 ⊨
σk−1·(tsk,D)·σ′TP p[ξ(tsk)]p

)
=⇒ v, |σk−1| ⊨σk−1·(tsk,D)·σ′TP [Φk−1]+.

Moreover,

v, |σk−1| ⊨σk−1·(tsk,D)·σ′TP [Φk−1]+

⇐⇒ ∀(ξ, v, p) ∈ Xk−1. v, |σk−1| ⊨σk−1·(tsk,D)·σ′TP p[ξ(tsk−1)]p.

given the construction of Φ using ∧AndCau, ¬NegCau, and substitution. From
P (k − 1) and the last two equations, we conclude that

σk · (tsk, D) · σ′ = σk−1 · (tsk, D) · σ′ ∈ L([φ]+).
Lemma 22. Assume that φ ∈ EMFOTL. Let σ ∈ Tf be a prefix of Eφ(σ). There
exists σ′ such that σ · σ′ ∈ L(φ).
Proof. If σ = ε, Lemma 13 provides the desired property.

If |σ| = k > 0, then by Lemmata 18 and 21, it is sufficient to find some
ts′ ≥ ts, D, and σ′ such that ∀(ξ, v, p) ∈ X. v, |σ| ⊨φ

σ·(ts′,D)·σ′TP
p[ξ(ts′)]p, where

X is the state of the enforcer at the end of the iteration producing the last time-
point in σ. This is exactly what Lemma 19 guarantees, hence the conclusion.

We finally conclude:

Theorem 1. If φ ∈ EMFOTL, the enforcer Eφ is sound with respect to L([φ]+) ⊆
L(φ). As a consequence, φ is enforceable.

Proof. By Lemmata 8 and 22.
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B.5 Transparency (Section 5.4)

Lemma 5. If a property admits a transparent enforcer, it is a safety formula.

Proof. Let P be a property and E be a transparent enforcer for φ. Let σ ∈ Tω \P .
Since E is an enforcer for φ, then E(σ) ∈ P and hence E(σ) ̸= σ. Set i ∈ N
such that E(σ)|i ̸= σ|i. Observe that since enforcers can neither suppress time-
points nor modify the past, the value of E(σ)|i was computed using information
from σ|..i only. Therefore, for any σ′ ∈ Tω, we have E(σ|i · σ′)|i = E(σ)|i. Hence,
E(σ|i · σ′)|i ̸= (σ|i · σ′)|i and finally E(σ|i · σ′) ̸= σ|i · σ′. By the transparency of
E , we conclude that σ|i · σ′ /∈ P . Hence P is a safety property.

Theorem 2. If φ∈EMFOTL, the enforcer Eφ is transparent w.r.t. L([φ]+).

Proof. Fix σ ∈ L([φ]+]). We prove by induction on k that at every iteration k
(1) the goal Φk computed at the begin of iteration k satisfies ∅, |σk| ⊨σTP [Φk]+,
where σk is the trace produced in the first k − 1 iterations and (2) the trace is
not modified by the enforcer (no causation, suppression, or insertion of time-
points) in the kth iteration. For k = 0, Φk = TP ∧ φ and (1) is trivial by our
choice of σ. Given (1), a straightforward induction on the structure of φ shows
that no events are caused or suppressed and that all generated future obligations,
evaluated with the second timestamp in σ, are satisfied on σ at |σk| + 1 = 1.
This proves (2). For k > 0, (1) is obtained through the same argument about the
generated future obligations at k − 1, observing that when all future obligations
generated in iteration k − 1 are satisfied at time-point |σk|, then Φk is satisfied
at time-point |σk|, too. Using (1), (2) is proved as in the previous case.

C Transparently enforceable subset of EMFOTL

Theorem 2 guarantees that for any φ ∈ EMFOTL, the enforcer Eφ transparently
enforces [φ]+ and hence, any φ ∈ EMFOTL such that [φ]+ = φ is transparently
enforceable. In this section, we describe TEMFOTL, a syntactically defined
fragment of EMFOTL satisfying this condition and transparently enforced by
our algorithm. WhyEnf’s type-checker also checks membership in TEMFOTL,
issuing a warning when transparent enforcement cannot be guaranteed.

To define TEMFOTL, we use the notion of strictly relative-past formulae
introduced by Hublet et al. [36]. Strictly relative-past formulae constitute a
syntactically defined subset of MFOTL. The truth value of such formulae at a
given point in time only depends on events that happened before that time, i.e.,
all strictly relative-past formulae are future-free:

Definition 7 (adapted from [35]). An MFOTL formulae is future-free iff for
all trace prefix σ ∈ Tf , valuation v, and i = |σ| − 1, we have ∀σ1, σ2. v, i ⊨σ·σ1

φ⇐⇒ ∀σ1, σ2. v, i ⊨σ·σ2
φ.

The set of strictly relative-past formulae contains all past-only formulae, but
also some formulae with future operators that can only be evaluated on past
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time-points. For example, the formula ♦[10,20] ♢[0,5] use(c, d, u) is strictly relative-
past, although it contains a future operator. In the following, SRP denotes the
set of strictly relative-past formulae. The reader is referred to Hublet et al.’s
work [36] for details.

TEMFOTL is defined as the fragment of EMFOTL containing all formulae
that are typable under the following stricter typing rules (the typing rules
from Figure 3 not listed below being unchanged):

Γ ⊢ φ : Sup ψ ∈ SRP

Γ ⊢ φ ∧ ψ : Sup
AndSupL

Γ ⊢ ψ : Sup φ ∈ SRP

Γ ⊢ φ ∧ ψ : Sup
AndSupR

0 ∈ I Γ ⊢ ψ : Cau φ,ψ ∈ SRP

Γ ⊢ φ SI ψ : Cau
SinceCau

0 /∈ I Γ ⊢ φ : Sup φ,ψ ∈ SRP

Γ ⊢ φ SI ψ : Sup
SinceSupL

0 ∈ I Γ ⊢ φ,ψ : Sup φ,ψ ∈ SRP

Γ ⊢ φ SI ψ : Sup
SinceSupLR

b ̸=∞ Γ ⊢ ψ : Cau φ ∈ SRP

Γ ⊢ φ U[0,b] ψ : Cau
UntilCauR

Γ ⊢ ψ : Sup φ ∈ SRP

Γ ⊢ φ UI ψ : Sup
UntilSup

Fig. 12. Modified typing rules for TEMFOTL

With the future-free property of strictly relative-past formulae, we can show that

Lemma 23. For all φ ∈ TEMFOTL and p ∈ {+,−}, we have [φ]p ≡ φ.

Proof. By straightforward induction on φ, using the definition of [•]p and the
future-freeness assumption.

D Additional graphs

Fig. 13. WhyMon’s latency and event rate for the formulae in Figure 7, except φlim.
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Fig. 14. EnfPoly’s latency and event rate for the formulae φlaw and φcon of Figure 7.

Fig. 15. WhyEnf’s latency when enforcing φcon, φinf , and φsha over the log [24].


