Witnessing (Co)datatypes

Jasmin Christian Blanchette!, Andrei Popescu?, and Dmitriy Traytel!

L Fakulet fiir Informatik, Technische Universitidt Miinchen, Germany
2 School of Science and Technology, Middlesex University, UK

Abstract. Datatypes and codatatypes are useful for specifying and reasoning
about (possibly infinite) computational processes. The Isabelle/HOL proof as-
sistant has recently been extended with a definitional package that supports both.
We describe a complete procedure for deriving nonemptiness witnesses in the
general mutually recursive, nested case—nonemptiness being a proviso for intro-
ducing types in higher-order logic.

1 Introduction

Proof assistants, or interactive theorem provers, are becoming increasingly popular as
vehicles for formalizing the metatheory of logical systems and programming languages.
Such developments often involve datatypes and codatatypes in various constellations.
For example, Lochbihler’s formalization of the Java memory model represents possibly
infinite executions using a codatatype [28]. Codatatypes are also useful to capture lazy
data structures, such as Haskell’s lists.

A popular and expanding family of proof assistants, heavily used in software and
hardware verification, are those based on higher-order logic (HOL)—examples include
HOLA4 [39], HOL Light [19], Isabelle/HOL [32], HOL Zero [1] and ProofPower [5].
They are traditionally implemented around a trusted inference kernel through which all
theorems are generated. Various definitional packages reduce high-level specifications
to primitive inferences; characteristic theorems are derived rather than postulated. This
reduces the amount of code that must be trusted. We recently extended Isabelle/HOL
with a definitional package for mutually recursive, nested (co)datatypes [10, 14]. While
some proof assistants support codatatypes (e.g., Agda, Coq, and PVS), Isabelle is the
first to provide a definitional implementation.

In this paper, we focus on a fundamental problem posed by any HOL development
that extends the type infrastructure: proofs of, or “witnesses” for, the nonemptiness of
newly introduced types. Besides its importance to formal logic engineering, the problem
also enjoys theoretical relevance, since it essentially amounts to the decision problem
for the nonemptiness of open-ended, mutual, nested (co)datatypes. Furthermore, our
modular witness generation algorithm is relevant outside the proof assistant world, in
areas such as program synthesis [18].

Our starting point is the nonemptiness requirement on HOL types. This is a well-
known design decision connected to the presence of Hilbert choice in HOL [17,33]—it
is embraced by all HOL-based provers. The inductive specification

datatype « fstream = FSCons @ (a fstream)

of “finite streams” must be rejected because it would lead to an empty datatype.

While checking nonemptiness appears to be an easy reachability test, nested recur-
sion complicates the picture, as shown by this attempt to define infinitely branching
trees with finite branches by nested recursion via a codatatype of streams:

codatatype @ stream = SCons « (@ stream)
datatype «@ tree = Node @ ((« tree) stream)

The second definition should fail: To get a witness for « tree, we would need a
witness for (a tree) stream, and vice versa. Replacing streams with finite lists should
make the definition acceptable, because the empty list stops the recursion. Even though
final coalgebras are never empty (except in trivial cases), here the datatype provides a
better witness (the empty list) than the codatatype (which requires an « tree to build an
(a tree) stream). Mutual, nested datatype specifications can be arbitrarily complex:

datatype («,p) tree = Leaf 8 | Branch ((@ + (@, B) tree) stream)
codatatype (a,p) ltree = LNode B ((@ + (e, B) Itree) stream)

datatype t; = T (((t1,t2) ltree) stream) | Ty2 (t; X (t2 +t3) stream)
and tp =T, ((t; X tp) list) and t3 = T3 ((t1, (t3,t3) tree) tree)

The definitions are legitimate, but the last group should be rejected if t; is replaced by
t3 in the constructor Tq;.

What makes the problem interesting is our open-endedness assumption: The type
constructors handled by our package are not syntactically predetermined. In particular,
they are not restricted to polynomial functors—the user can register new type construc-
tors in the package database after establishing a few semantic properties.

Our solution exploits the package’s abstract, functorial view of types. Each (co)data-
type, and more generally each functor (type constructor) that participates in a definition,
carries its own witnesses together with soundness proofs. Operations such as functorial
composition, initial algebra, and final coalgebra derive their witnesses from those of
the operands. Each computational step performed by the package is certified in HOL.
The solution is complete: Given precise information about the functors participating in
a definition, all nonempty datatypes are identified as such.

We start by recalling the package’s abstract layer, which is based on category theory
(Section 2). Then we look at a concrete instance: a variation of context-free grammars
acting on finite sets and their associated possibly infinite derivation trees (Section 3).
The example supplies precious building blocks to the nonemptiness proofs (Section 4).
It also displays some unique characteristics of our package, such as support for nested
recursion through non-free types. Many other features and user conveniences are de-
scribed elsewhere [10, 13]. The Isabelle formalization covering the results presented
here is publicly available [12]. The implementation is part of the latest Isabelle re-
lease [25] (Section 5).

Conventions. We work informally in a mathematical universe .# of sets but adopt
many conventions from higher-order logic and functional programming. Function ap-
plication is normally written in prefix form without parentheses (e.g., f x y). Sets are

ranged over by capital Roman letters (A, B, ...) and Greek letters («, 8, ...). For n-ary
functions, we often prefer the curried form f:a; — --- = @, — 8 to the tuple form
f a1 X+ Xa, — B but occasionally pass tuples to curried functions. Polymorphic
operators are regarded as families of higher-order constants indexed by sets.

Operators on sets are normally written in postfix form: « set is the powerset of «,
consisting of sets of elements of @; « fset is the set of finite sets over a. Given f : @ — §3,
A Ca,and BC B, image f A, or f« A, is the image of A through f, and f~ B is the
inverse image of B through f. The set unit contains a single element (), and [n] =
{1,...,n}. Prefix and postfix operators bind more tightly than infixes, so that & x 3 set
isread as @ x (Bset) and f« gxas f« (g x).

The notation @,, or simply @, denotes (ay, ...,a,). Given @, and b,, (@, b) denotes
the flat tuple (ay,...,am, b1,...,b,). Given n m-ary functions fi, ..., f,, the notation
f a stands for (f1@, ..., f, @), and similarly @ F = (@ Fy, ..., @ F,,). Depending on the
context, @, F either denotes the application of F to @ or merely indicates that F is an
n-ary set operator.

2 The Category Theory behind the Package

User-specified (co)datatypes and their characteristic theorems are derived from underly-
ing constructions adapted from category theory. The central concept is that of bounded
natural functors, a well-behaved class of functors with additional structure.

2.1 Functors and Functor Operations

We consider operators F on sets, which we call set constructors. We are interested in
set constructors that are functors on the category of sets and functions, i.e., that are
equipped with an action on morphisms commuting with identities and composition.
This action is a polymorphic constant Fmap : (¢; = 1) — -+ = (ay, = By) > @ F —
B F that satisfies Fmap id"” = id and Fmap (g0 fi) ... (gn o f,) = Fmap g o Fmap f.
Formally, functors are pairs (F, Fmap). Basic examples are presented below.

Identity functor (ID, id). The identity maps any set and any function to itself.

(n, @)-Constant functor (Cpq, Cmapyq). The (n, @)-constant functor (Cy,e, Cmapy,qe)

is the n-ary functor consisting of the set constructor 8 C, , = @ and the action Cmap,, o
fi ... fo=1id. We write C, for Cy 4.

Sum functor (+, ®). The sum @; + a; consists of a copy Inl a; of each element a; : @
and a copy Inr a; of each element a; : a;. Given f] : @y — B and f> : ap — B2, let
fi® fo:ay +a — B + B2 be the function sending Inl a; to Inl (f; a;) and Inr a; to

Inr (fz (12).

Product functor (X, ®). Letfst: @) X @y — a; and snd : @] X @y — @, denote the two
projection functions. Given f : @ — 81 and f> : @ — B2, let (fi, f2) : @ — B1 X B be the
function Aa. (fl a, > a). Given fi a1 — Brand fh:ar = Bo, let 1R fHr a1 Xap —
B1 X B2 be <f1 ofst, fo osnd).

a-Function space functor (func,, comp,). Given a set «, let 8 func, = @ — B. For all
g:B— v, letcomp, g : Bfunc, — v func, be comp, g f =go f.

Powerset functor (set, image). For all f : @ — 3, the function image f : a set — 3 set
sends each subset A of « to the image of A through the function f: @ — S.

Bounded k-powerset functor (sety, image). Given a cardinal , for all sets «, the set
a sety carves out from a set only those sets of cardinality less than k. The finite powerset
functor fset corresponds to sety,,.

Functors can be composed to form complex functors. Composition requires the
functors F; to take the same type arguments @ in the same order. The operations of
permutation and lifting, together with the identity and (n, @)-constant functors, make it
possible to compose functors freely. Let Func, be the collection of n-ary functions.

Composition. Given@ F; for j € [n] and B, G, the functor composition G o F is defined
on objects as (@ F) G and similarly on morphisms.

Permutation. Given F € Func, and i,j € [n] with i < j, the (i,j)-permutation of F,
written F"/) € Func,,, is defined on objects as @ Fld) = (@1, ... qi @), @i, ..., @)1,
iy X jls s a,) F and similarly on morphisms.

Lifting. Given F € Func,, the lifting of F, written Ft € Func,. 1, is defined on objects
as (@, @y+1) Ft = @, F and similarly on morphisms. In other words, F1 is obtained from
F by adding a superfluous argument.

Datatypes are defined by taking the initial algebra of a set of functors and codata-
types by taking the final coalgebra. Both operations are partial.

Initial algebra. Given n (m+ n)-ary functors (@, 3,) F;, their (mutual) initial algebra
consists of n m-ary functors @ IF; that satisfy the isomorphism @ IF; = (@, @ IF) F;
minimally. (The variables @ are the passive parameters, and 3 are the fixpoint variables.)
The functors IF; are characterized by

e n polymorphic folding bijections (constructors) ctor; : (@,@ IF)F; — @ IF; and
e n polymorphic iterators fold; : (er[n] (@.B)Fr— Br) = @IF; = B,

and subject to the following properties (for all j € [n]):

o Iteration equations: fold; 5 o ctor; = s; o Fmap id" (fold 5).
¢ Unique characterization of iterators: Given § and s, the only functions f;: @ IF; —
Bj satisfying f; o ctor; = s; o Fmap id"™ f are fold; 5.

The functorial actions IFmap; for IF; are defined by iteration in a standard way.

Final coalgebra. The final coalgebra operation is categorically dual to initial algebra.
Given n (m+ n)-ary functors (@,$,) Fj, their (mutual) final coalgebra consists of n
m-ary functors @ JF; that satisfy the isomorphism @ JF; = (@, @ JF) F; maximally. The
functors JF; are characterized by

e n polymorphic unfolding bijections (destructors) dtor; : @ JF; — (@, @ JF) F; and
e n polymorphic coiterators unfold; : ([1xepy Bx — (@.B) Fx) — Bj — @ JF;

and subject to the following properties:

o Coiteration equations: dtor; o unfold; s = Fmap id” (unfold 5) o s;.
¢ Unique characterization of coiterators: Given § and 5, the only functions f; : 8; —
@ JF; satisfying dtor;j o fj = Fmap id” f o s; are unfold; 5.

The functorial actions JFmap; for JF; are defined by coiteration in the standard way.

2.2 Bounded Natural Functors

The (co)datatype package is based on a class Z of functors, called bounded natural
functors (BNFs). The particular axioms defining % are described in [14]. The class &
contains all the basic functors (except for unbounded powerset) and is closed under the
operations described in Section 2.1.

Unlike the (co)datatype specification mechanisms of most state-of-the-art proof as-
sistants (including those based on higher order logic or type theory [9, 15,39, etc.]), in
our package the involved types are not syntactically predetermined by a fixed grammar.
A does include the class of polynomial functors, but is open-ended in that users may
register further functors as members of %.

The registration process takes place as follows. The user provides a type constructor
F and its associated BNF structure (in the form of polymorphic HOL constants), includ-
ing the Fmap functorial action on objects. Then the user verifies the BNF properties,
e.g., that (F, Fmap) is indeed a functor. After this, the new BNF is integrated and can
appear nested in future (co)datatype definitions. For example, Isabelle users have re-
cently introduced the BNFs « bag, of bags (i.e., bags with finite-multiplicity elements)
over a, and «a lists, of lists of at most five elements. Other nonstandard BNFs can be
produced using the nonfree datatype package [38].

Besides closure under functor operations, another important question for theorem
proving is how to state induction and coinduction abstractly, irrespective of the shape
of the functor. We know how to state induction on lists, or trees, but how about on initial
algebras of arbitrary functors?

Our answer is based on enriching the structure of functors @, F with additional data:
For each i € [n], BNFs must provide a natural transformation Fset’ : @ F — «; set that
gives, for x € @ F, the set of a;-atoms that take part in x. For example, if (a1, ;) F =
@) X ay, then Fset! (a1, a;) = {a;} and Fset? (aj,a;) = {az}; if a F = a list (the list
functor, obtained as minimal solution to 8 2 unit+ @ x f), then Fset (= Fset!) applied
to a list x gives all the elements appearing in x.

Given j € [n], the elements of Fset;“k x (for k € [n]) are the recursive components

of ctor; x. (Notice that subscripts select functors F; in the tuple F, whereas superscripts
select Fset operators for different arguments of F;.) The explicit modeling of the re-
cursive components makes it possible to state induction and coinduction abstractly for
arbitrary BNFs— [14] and Appendix A give more details.

3 This Fset has similarities with Pierce’s notion of support from his account of (co)inductive
types [35] and with Abel and Altenkirch’s urelement relation from their framework for strong
normalization [3]. A distinguishing feature of our notion is the additional consideration of
categorical structure [14].

3 Coinductive Derivation Trees

We next study a concrete codatatype definable with our package. It consists of deriva-
tion trees for a context-free grammar, where we perform the following changes to the
usual setting: Trees are possibly infinite and the generated words are not lists, but finite
sets. The formalization of this example [12] lays at the heart of our results presented
in the next section. Indeed, this particular codatatype will provide the infrastructure for
tracking nonemptiness of arbitrary (co)datatypes.

We take a few liberties with Isabelle notations to lighten the presentation; in partic-
ular, until Section 4, we ignore the distinction between types and sets.

Definition of Derivation Trees. We fix a set T of terminals and a set N of nonterminals.
The command

codatatype dtree = Node (root: N) (cont: (T + dtree) fset)

introduces a constructor Node : N — (T + dtree) fset — dtree and two selectors root :
dtree — N, cont : dtree — (T + dtree) fset. A tree has the form Node n as, where n is
a nonterminal (the tree’s root) and as is a finite set of terminals and trees (its continua-
tion). The codatatype keyword indicates that this tree formation rule may be applied
an infinite number of times.

Given the above definition of dtree, the package first composes the input BNF to
the final coalgebra operation pre_dtree = (x) o (Cy, fset o ((+) o (C+,1D))) from the
constants N and T, identity, sum, product, and finite set. In the sequel, we prefer the
more readable notation a pre_dtree = N x (T + @) fset. Then it constructs the final
coalgebra dtree (= JF) from pre_dtree (= F).

The unfolding bijection dtor : dtree — dtree pre_dtree is decomposed in two selec-
tors: root = fst o dtor and cont = snd o dtor. The constructor Node is defined as the
inverse of the unfolding bijection. The basic properties of constructors and selectors
(e.g., injectiveness, distinctness) are derived from those of sums and products.

After some preprocessing that involves splitting according to the indicated destruc-
tors, the abstract coiterator from Section 2 instantiates to the dtree coiterator unfold :
(B— N) = (8 — (T +p) fset) — B — dtree characterized as follows: For all sets 3,
functions r: 8 — N, ¢ : B — (T +) fset, and elements b € 3,

root (unfold rcb) =rb cont (unfold r ¢ b) = (id @ unfold r¢) s c b

Intuitively, the coiteration contract reads as follows: Given a set 3, to define a function
f : B — dtree we must indicate how to build a tree for each b € B. The root is given by r,
and its continuation is given corecursively by ¢. Formally, f = unfold r c.

A Variation of Context-Free Grammars. We consider a variation of context-free gram-
mars, acting on finite sets instead of sequences. We assume that the previously fixed
sets T and N, of terminals and nonterminals, are finite and that we are given a set of
productions P C N x (T + N) fset. The triple Gr = (T, N, P) forms a (set) grammar,
which is fixed for the rest of this section. Both finite and infinite derivation trees are of
interest. The codatatype dtree provides the right universe for defining well-formed trees
as a coinductive predicate.

Fixpoint (or Knaster—Tarski) (co)induction is provided in Isabelle/HOL by a sepa-
rate package [34]. Fixpoint induction relies on the minimality of a predicate (the least
fixpoint); dually, fixpoint coinduction relies on maximality (the greatest fixpoint). It is
well-known that datatypes interact well with definitions by fixpoint induction. For co-
datatypes, both fixpoint induction and coinduction play an important role—the former
to express safety properties, the latter to express liveness.

Well-formed derivation trees for Gr are defined coinductively as the greatest predi-
cate wf : dtree — bool such that, for all ¢ € dtree,

wft < (roott, (id @ root) « contt) € P A root is injective on Inr™ (cont £) A
V¢ €lnr (contr). wf?

Each nonterminal node of a well-formed derivation tree ¢ represents a production. This
is achieved formally by three conditions: (1) the root of ¢ forms a production together
with the terminals constituting its successor leaves and the roots of its immediate sub-
trees; (2) no two immediate subtrees of ¢ have the same root; (3) properties 1 and 2 also
hold for the immediate subtrees of ¢. The definition’s coinductive nature ensures that
these properties hold for arbitrarily deep subtrees of 7, even if ¢ has infinite depth.

In contrast to wellformedness, the notions of subtree, frontier (the set of terminals
appearing in a tree), and interior (the set of nonterminals appearing in a tree) require in-
ductive definitions. The subtree relation is defined as the least predicate subtr : dtree —
dtree — bool such that subtr ¢ < r=7¢ Vv (3¢". subtrz¢’ Alnr¢’ € cont) holds for
all ¢,/ € dtree. We write Subtr ¢ for the set of subtrees of . Frontier Fr : dtree — T set
and interior Itr : dtree — N set are defined similarly.

The language generated by the grammar Gr from a nonterminal n € N (via possibly
infinite derivation trees) is defined as %, (n) = {Fr¢ | wft A root t = n}.

Regular Derivation Trees. A derivation tree is regular if each subtree is uniquely
determined by its root. Formally, we define regular z as the existence of a function
f N — Subtr ¢ such that V¢ € Subtr ¢. f (root 1) = ¢'. The regular language of a non-
terminal is defined as .Z¢, (n) = {Fr | wft A roott = n A regular r}.

Given a possibly nonregular derivation tree fy, a regular cut of ty is a regular tree
rcut #y such that Fr (rcut #p) C Fr #p. Here is one way to perform the cut:

1. Choose a subtree of #(for each interior node n € ltr fy via a function pick : Itr 7y —
Subtr 1y with Vn € Itr £y. root (pick n) = n.

2. Traverse foy and replace each subtree with root n with pick n. The replacement
should be performed hereditarily, i.e., also in the emerging subtree pick 7.

This replacement task is elegantly achieved by the corecursive function H : Itr fg —
dtree defined as unfold r ¢, where r: Itr tp — N and ¢ : Itr 1o — (T + Itr 1) fset are
specified as follows: rn =n and ¢ n = (id @ root) « cont (pick n). H is therefore charac-
terized by the corecursive equations root (H n) =n and cont (Hn) = (id4 (H o root)) «
cont (pick n). It is not hard to prove the following by fixpoint coinduction:

Lemma 1. For all n € Itr tp, H n is regular and Fr (H n) C Fr #. Moreover, H n is
well-formed provided #(is well-formed.

ni ni
7 N (/ N
n ® n ([]
7/ AN Q
niy ny
Fig. 1. A derivation tree (left) and its simplest regular cut (right)

We define rcut 7y to be H (root f). Fig. 1 shows a derivation tree and its simplest
regular cut. The bullet denotes a terminal, and #; and £, are arbitrary trees with roots n;
and ny. The loops denote infinite trees that are their own subtrees.

4 Computing Nonemptiness Witnesses

In the previous two sections, we referred to the codatatype dtree and other collections
of elements as sets, ignoring an important aspect of HOL. While for most purposes sets
and types can be identified in an abstract treatment of HOL, types have the additional
restriction that they may not be empty. The main primitive way to define custom types in
HOL is to specify from an existing type @ a nonempty subset A : « set that is isomorphic
to the desired type. Hence, to register a collection of elements as a HOL type it is
necessary to prove it nonempty.

Mutual datatype definitions are a particular case of the above situation, with the ad-
ditional requirement that the nonemptiness proof should be performed automatically by
the package. In the context of our package, we need to produce the relevant nonempti-
ness proofs taking into consideration arbitrary combinations of datatypes, codatatypes
and user-defined BNFs.

A first temptation to tackle the problem is to follow the traditional approach of
HOL datatype packages [7]: Try to unfold all the definitions of the involved nested
datatypes, inlining them as additional components of the mutual definition, until only
sums of products remain, and then perform a reachability analysis. At a closer inspec-
tion, this approach turns out problematic in our framework for several reasons. Due to
open-endedness, there is no fixed set of basic types. Delving into nested types requires
reproving nonemptiness facts, which is extremely inefficient. Moreover, it is not clear
how to unfold datatypes nested in codatatypes or vice versa.

Counting on everything being eventually reducible to the fixed situation of sums
of products, the traditional approach worries about nonemptiness only at datatype-
definition time. Here, we look for a prophylactic solution instead, trying to prepare
the BNFs in advance for future nonemptiness checks involving them. To this end, we
ask the following: Given a mutual datatype definition involving several n-ary BNFs,
what is the relevant information we need to know about their nonemptiness without
knowing what they look like (hence, with no option to “delve” into them)? To answer
this, we use a generalization of pointed types [23,27], maintaining witnesses that assert
conditional nonemptiness for combinations of arguments. We first present the solution
by examples.

4.1 Examples

We start with the easy cases of products and sums. For a x 3, the proof is as follows:
Assuming « # 0 and 8 # 0, we construct the witness (a, b) € @ x 8 for some a € « and
b € B. For @ + B, two proofs are possible: Assuming a # 0, we can construct Inl a for
some a € a; alternatively, assuming 8 # 0, we can construct Inr b for some b € 3.

To each BNF @ F, we associate a set of witnesses, each of the form Fwit : a;; —
-+ = aj, — @ F for a subset {ij,..., i} C [n]. From a witness, we can construct a
set-theoretic proof by following its signature (in the spirit of the Curry—Howard corre-
spondence). Accordingly, Inr : 8 — a + 8 can be read as the following contract: Given
a proof that 8 is nonempty, Inr yields a proof that & 4 is nonempty.

When BNFs are composed, so are their witnesses. Thus, the two possible witnesses
for the list-defining functor (a,8) pre_list = unit +« x B are wit_pre_list; = Inl () and
wit_pre_list, a b = Inr (a,b). The first witness subsumes the second one, because it
unconditionally shows the collection nonempty, regardless of the potential emptiness of
a and B. From this witness, we obtain the unconditional witness list_ctor wit_pre_list;
(i.e., Nil) for e list.

Because they can store infinite objects, codatatype set constructors are never empty
(provided their arguments are nonempty). Compare the following:

datatype « fstream = FSCons a (« fstream)

codatatype @ stream = SCons « (@ stream)

The datatype definition fails because the best witness has a circular signature: @ —
a fstream — « fstream. In contrast, the codatatype definition succeeds and produces
the witness (da. us. SCons a s) : @ — a stream, namely the (unique) stream s such that
s = SCons a s for a given a € @. This stream is easy to define by coiteration.

Let us look at a pair of examples involving nesting:

datatype (a,p) tree = Leaf 8 | Branch ((a@ + (@, B) tree) stream)
codatatype (a,p) Itree = LNode 8 ((@ + («, B) Itree) stream)

In the tree definition, the two constructors hide a sum BNF, giving us some flex-
ibility. For the Leaf constructor, all we need is a witness b € 8, from which we con-
struct Leaf b. For Branch, we can choose the left-hand side of the nested +, com-
pletely dodging the recursive right-hand side: From a witness a € @, we construct
Branch (us. SCons (Inl a) s).

For the Itree functor, the two arguments to LNode are hiding a product, so the ltree-
defining functor is (@, 3, y) pre_ltree =8 X (a+7) stream with y representing the core-
cursive component. Composition yields two witnesses for pre_ltree:

wit_pre_ltree; a b= (b, us. SCons (Inl a) s)
wit_pre_ltree, b ¢ = (b, us. SCons (Inrc) s)

These can serve to build infinitely many witnesses for Itree. Fig. 2 enumerates the
possible combinations, starting with wit pre ltree,. This witness requires only the
non-corecursive components & and S being nonempty, and hence immediately yields

wit_pre_ltree, wit_pre_lItree, wit_pre_ltree, wit_pre_ltree,

/N /N /N 0
a B B wit_pre_ltree, B wit_pre_ltree, B
/N /N
a B B wit_pre_ltree,
/N
a

Fig. 2. Derivation trees for Itree witnesses

a witness ltree_wit, : @ — 8 — (a,B) ltree (by applying the constructor LNode). The
second witness wit_pre_ltree, requires both 8 and the corecursive component y to be
nonempty; it effectively “consumes” another ltree witness through y. The consumed
witness can again be either wit_pre_lItree; or wit_pre_ltree,, and so on. At the limit,
wit_pre_ltree, is used infinitely often. The corresponding witness ltree wit, : § —
(@,B) Itree can be defined by coiteration as Ab. ut. wit_pre_ltree, b z. It subsumes
Itree_wit, and all the other finite witnesses. Were Itree to be defined as a datatype
instead of a codatatype, Itree_wit; would be its best witness.

4.2 A General Solution

The nonemptiness problem for an n-ary set constructor F and a set of indices I C [n] can
be stated as follows: Does it hold that, for all sets @,, @ F = 0 whenever Vi € I. a; # 0?
We call F I-witnessed if the above question has a positive answer. E.g., set sum (+)
is {1}-, {2}-, and {1, 2}-witnessed; set product (x) is {1,2}-witnessed; and « list is
0-witnessed.

We are led to the following notion of soundness. Given an n-ary functor F, a set
& C [n] set is (witness-)sound for F if F is I-witnessed for all / € .#.

Now, when is such a set .# also complete, in that it covers all witnesses? To answer
this, first note that, if I C I, then I;-witnesshood implies I,-witnesshood. Therefore,
we are interested in retaining the witnesses completely only up to inclusion of sets of
indices. We call a set .7 C [n] set (witness-)complete for F if for all J C [n] such that F
is J-witnessed, there exists I € . such that I C J; (witness-)perfect for F if it is both
sound and complete.

Here are perfect sets . for some basic BNFs:

o Identity: ., p = {{a}} e Product: Zyyp = {{e.B}}
e Constant: fc,, = {0} (a#0) e Function space: Hgfunc, = {{B}} (@ #0)
o Sum: S5 ={{a},{B}} ¢ Bounded k-powerset: &, ser, = {0}

Parameters «; are identified with their indices j to improve readability.
We need to maintain perfect sets across BNF operations. Let us start with composi-
tion, permutation, and lifting.

Theorem 1. Let H= G o F,,, where G € Func, has a perfect set # and each F; € Func,
has a perfect set .#;. Then {Uc, I; | J € 7 A (1))jes €11 jes #j} is a perfect set for H.

10

Proof sketch: Let & = {U;c; Ij| J € # N (1j); €11 jes Fj}- We first prove that 2
is sound for H. Let K € ¢ and @,, such that Vi € K. ; # 0. By the definition of JZ", we
obtain J € _# and (I;)je; such that (1) K = J;c; I; and (2) Vj € J. I; € .7;. Using (1),
we have Vj € J. Vi€ I;. &; # 0. Hence, since each .} is sound for F;, Vje J a F; # 0.
Finally, since _# is sound for G, we obtain aFG #£0,ie.,aH#0.

We now prove that ¢ is complete for H. Let K C [m] be a H-witnessed set of
indices. Let 8, be defined as 8; = unit if j € K and = @ otherwise and let J = {j € [n] |
BF;#0}. Since K is H-witnessed, we obtain that 3H # 0, i.e., (1) BF G # 0.

We show that (3) G is J-witnessed. Let ¥, such that Vj € J. y; # 0. Thanks to the
definition of J, we have Vj € [n].F; # 0 = y; # 0, and therefore we obtain the functions
(fj:BF; = ¥j)icps- With Gmap f: BF G —7¥ G, by (1) we obtain 7 G # 0.

From (3), since ¢ is complete for J, we obtain J; € _# suchthat J; CJ. Let j€ J;.
By the definition of J, we have 8 F; # 0, making 3 F; K-witnessed (by definition of B);
hence, since .#; is Fj-complete, we obtain /; € .#; such that I; C K. Then K = Ujejl I;
belongs to . and is included in K. a

Theorem 2. Let .# C [n] set be a perfect set for F. Then . and . (/) are perfect sets
for Ft and F(/), respectively (where . (tJ) is .# with i and Jj exchanged in each of its
elements).

Theorems 1 and 2 hold not only for functors but also for plain set constructors
(with a further cardinality-monotonicity assumption needed for the completeness part
of Theorem 1). The most interesting cases are the genuinely functorial ones of initial
algebras and final coalgebras, which we discuss next.

Witnesses for initial algebras and final coalgebras will be essentially obtained by
repeated compositions of the witnesses of the involved BNFs and the folding bijec-
tions, inductively in one case and coinductively in the other. The derivation trees from
Section 3 turn out to be perfectly suited for recording the combinatorics of these com-
positions, so that both soundness and completeness yield easily.

For the rest of this subsection, we fix n (m + n)-ary functors 8 F; and assume each
F; has a perfect set .%;. We start by constructing a (set) grammar Gr = (T, N, P) with
T =[m],N=[n],and P = {(j,cp(K)) | K € %;}, where, for each K C [m+n], cp(K)
is its copy to [m] + [n] defined as Inl« ([m]NK) U Inre {k € [n] | m+k € K}.

Here is the idea behind this construction. A mutual datatype definition as above
introduces n isomorphisms:

alf, = (@alfy,....@lF)F, - @lF, = @alF,...,alF,)F,

We are searching for conditions guaranteeing nonemptiness of the IF;’s. To this
end, we walk these isomorphisms from left to right, reducing nonemptiness of @ IF;
to that of (@, @ IFy,...,@IF,)F j- Moreover, nonemptiness of the latter can be reduced
to nonemptiness of some @iy ..o @,y and some @ IF;,,...,@ Iqu, along a witness for
F; of the form {iy,...,i,} U {m+ ji,...,m+ j,}. This yields a grammar production
J—={Inliy,....Inliy} U {Inr ji,...,Inr j,}, where the i;’s are terminals and the j;’s
are, like j, nonterminals. The ultimate goal is to eventually obtain reductions of the non-
emptiness of @ |F; to that of components of @ alone, i.e., to terminals—this precisely
corresponds to derivations in the grammar of terminal sets. It should be intuitively clear

11

that by considering finite derivations we obtain sound witnesses for |F;. We shall ac-
tually prove more: For initial algebras, finite derivations are also witness-complete; for
final coalgebras (replacing IF with JF), accepting infinite derivations is still sound, and
becomes complete.

Theorem 3. Assume that the final coalgebra of F exists and consists of n m-ary functors
@y JFj (as in Section 2.1). Then £, (/) is a perfect set for JF; for j € [n].

To prove soundness, we define a nonemptiness witness to @ JF; corecursively (by
abstract JF-corecursion). More interestingly: To prove completeness, we define a func-
tion to dtree corecursively (by concrete tree corecursion), obtaining a derivation tree,
from which we then cut a regular derivation tree via Lemma 1.

Proof sketch: Let jo € [n]. We first show that .Z£, (jio) is sound. Let 7y be a well-
formed regular derivation tree with root jo. We need to prove that Fj; is Fr fp-witnessed.
For this, we fix @, such that Vi € Fr #y. a; # 0, and aim to show that @ JF;, # 0.

For each j € Itr #o, let ¢; be the corresponding subtree of #y. (It is well-defined, since
1y is regular.) Note that 7y = ¢;,. For each K such that (j,cp(K)) € P, since K € .%; and
; is sound for F;, we obtain a K-witness for Fj, i.e., a function wjk : (yi)kex — 7 F;
(polymorphic in).

Let 3, be defined as 8; = unit if j € Itr) and = @ otherwise. We build a coalgebra
structure on B3, (s;: B — (@,B) F;) je[u)» as follows: If j ¢ Itr 19, s; is the unique function
from 0. If j € Itr 1o, then s; () = wjk (i) icknm] OIKObm+tmin]l - where cp(K) is the
right-hand side of the top production of ¢;, i.e., (id @ root) « cont tj. Now, for each
Jj € ltr 1y, unfold; 5 : unit — @ JF; ensures the nonemptiness of @ JF;. In particular,
a JF;, #0.

We now show that .Z¢ (jo) is complete. Let I C [m] such that JFj; is I-witnessed.
We need to find 1) € Z¢,(jo) such that I; C I. Let @, be defined as ¢; = unitif i € [and
=0 otherwise. Let J = {j | @ F; # 0}. We define ¢ : J — ([m] +J) fset by c j = cp(Kj),
where K; is such that (j,cp(K;)) € Pand K; CIU{m+j|je J}.

Let now g : J — dtree be unfold id c. Thus, forall j € J, root (g j) = jand cont (g j) =
(id@dg)ecj=Inle(K;NI) U lnre{gj|m+je K;}. Taking o = g jo and using
Lemma 1, we obtain the regular well-formed tree #; such that Fr¢; C Fr ¢y C I. Hence
Fr #; is the desired I;. O

The above completeness proof provides an example of self-application of codata-
types: A specific codatatype, of infinite derivation trees, figures in the metatheory of
general codatatypes. And this may well be unavoidable: While for soundness the regu-
lar trees are replaceable by some equivalent (finite) inductive items, it is not clear how
completeness could be proved without first appealing to arbitrary infinite derivation
trees and then cutting them down to regular trees.

An analogous result holds for initial algebras. For each i € N, let féf(z) be the
language generated by i by means of regular finite Gr derivation trees. Since N is finite,
these can be described more directly as trees for which every nonterminal path has no
repetitions.

Theorem 4. Assume that the initial algebra of F exists and consists of 7 m-ary functors
@ IF; (as in Section 2.1). Then ZZL() is a perfect set for IF; for j € [n].

12

Let us see how Theorems 1-4 can be combined in establishing or refuting non-
emptiness for some of our motivating examples from Sections. 1 and 4.1.

.p) pre_list = {0} by Th. 1; Fy it = {0} by Th. 4

@B) pre_fstream = {{@,B}}; Fatstream = 0 by Th. 4 (i.e. @ fstream is empty)
(a,B) pre_stream — {{a,ﬂ}}; I stream = {{a}} by Th. 3

(@,B,7) pre_ ltree — {{Q,ﬂ}, {ﬂ’ 7}} by Th. I; <ﬂ(a,ﬁ) ltree — {{ﬁ}} by Th. 3
(@.B,y) pre_t; — {{ﬁ}’ {a" 7}}’ =ﬂ(a,ﬁ,y) pre_t, — {0}’ and

(@.B,y) pre_t; — {{a}’ {7}} by Th. 1; ‘ﬂti = {@} by Th. 4

Since we have maintained perfect sets throughout all the BNF operations, we obtain
the following central result:

AVAVARA VA WA

Theorem 5. Any BNF built from BNFs endowed with perfect sets of witnesses (in par-
ticular all basic BNFs discussed in this paper) by repeated applications of the composi-
tion, initial algebra, and final coalgebra operations has a perfect set defined as indicated
in Theorems 1-4.

Corollary 1. The nonemptiness problem is decidable for arbitrarily nested, mutual
(co)datatypes.

Consequently, a procedure implementing Theorems 1—4 will preserve enough non-
emptiness witnesses to ensure that all specifications describing nonempty datatypes are
accepted. The next subsection presents such a procedure.

4.3 Computational Aspects

Theorem 3 reduces the computation of perfect sets for final coalgebras to that of £, (n).
Our use of infinite regular trees in the definition of -Z, (n) had the advantage of allow-
ing a simple proof of soundness, and the only natural proof of completeness we could
think of, relating the coinductive nature of arbitrary mutual codatatypes with that of in-
finite trees. However, from the computational point of view, the explicit use of infinite
trees is of course excessive.

In fact, already %5, (n) and Z{,(n), the non-regular versions of the generated lan-
guages, are computable by fixpoint iteration on finite sets. Indeed, it is not hard to prove
that %, and ,,Sfér are the greatest and least solutions of the following fixpoint equation,
involving the variable X : N — ((T + N) set) set, where the order is componentwise
inclusion:

Xn = {lInl"ss U U Ky | (n,ss)eP A K€ H Xn'}

n'Elnr~ss n'€lnrss

The equation simply states, in our notations, the expected closure under the grammar
productions, familiar from classic formal language theory. In our case though, since
the “words” are not lists, but finite sets (i.e., elements of (T 4+ N) set), we have finite
convergence of the fixpoint iteration. By analyzing the height of the lattice, we can
actually determine that, both for the least and the greatest solutions, the fixpoint iteration
stops after at most card(N) steps.

13

However, it is easier to settle this computational aspect by working with the regular
versions -2, (n) and £ (n), whose structure nicely exhibits boundedness. Namely, we
prove for these languages a bounded version of the above fixpoint equation, featuring a
decumulator that witnesses the finite convergence of the computation.

First, we relativize the notion of frontier to that of “frontier through ns,” Fr ns ¢,
containing the leaves of ¢ accessible by paths of nonterminals from ns C N. We also
define the corresponding ns-restricted regularly generated language £¢, ns n.

In what follows, by “word” we mean “finite set of terminals.” We can think of a
generated word as being more precise than another provided the former is a subword
(subset) of the latter. This leads us to defining, for languages (sets of words), the notions
of word-inclusion subsumption,* <, by L < L' iff Yw € L. 3w’ € L. w' C w, and equiv-
alence, =, by L= L' iff L< L' and L' < L. It is easy to see that any set =-equivalent to
a perfect set is again perfect. Note also that Lemma 1 implies .2, (n) = Z¢,(n), which
qualifies regular trees as a generated-language optimization of arbitrary trees.

We compute .Z¢, ns n up to word-inclusion equivalence = by recursively applying
available productions whose source nonterminals are in ns, removing each time from ns
the expanded nonterminal. Thus, if n is in ns, Z&, ns n calls £E, ns’ n’ recursively with
ns' = ns\ {n'} for each nonterminal n’ in the chosen production from n, and so on, until
the current node is no longer in the decumulator rs:

Theorem 6. Forallns CNandne N, £E nsn=

{{0} if n ¢ ns

{InI7ss U Upcinrss K | (n.55) EP AKET] L& (ns\ {n}) n'} otherwise

n' €lnr~ss

Proof sketch: Z¢, ns n C {0}, since Fr ns t = 0 for all ¢ such that root r = n. It
remains to show 0 € Z¢, nst, i.e., to find a derivation tree with root n. In fact, using the
assumption that there are no unused nonterminals, we can build a “default derivation
tree” deftr n for each n as follows. We pick, for each n, a set S n € (T + N) fset such
that (n, S n) € P. Then we define deftr : N — dtree corecursively as deftr = unfold id S,
i.e., such that root (deftr n) = n and cont (deftr n) = (id & deftr) « S n. It is easy to
prove by KT-coinduction that deftr n is a derivation tree for each n.

Now assume n ¢ ns, and let ns’ = ns\ {n}. For the left-to-right direction, we prove
more than <, namely, actual inclusion between £, ns n and the righthand side. Assume
t is a well-formed regular derivation tree of root n. We need to find ss € (T + N) fset and
U : Inr~ ss — dtree such that, for all ' € Inr” ss, U ' is a well-formed regular derivation
tree of root n’ and Frns t = Inl"ss U U,ycine—ss Frns’ (U n'). Clearly ss should be the
right-hand side of the top production of . As for U, of course the immediate subtrees of ¢
provide intuitive candidates; however, these do not work, since our goal is to have Fr ns ¢
covered by (Inl” ss in conjunction with) Fr ns’ (U n'), while the immediate subtrees only
guarantee this property with respect to Fr ns (U n'), i.e., allowing paths to go through
n as well. A correct solution is again offered by a corecursive definition: We build the
tree ty from ¢ by substituting hereditarily each subtree with root n by ¢. Formally, we
take t9 = unfold r ¢, where r ¥ =root¢ and c ¥ = conttifrootY =nandc? =cont?
otherwise. It is easy to prove that #g, like ¢, is a regular derivation tree. Thus, we can
define U to give, for any r/, the corresponding immediate subtree of .

4 This is in effect the Smyth preorder extension [40] of the subword relation.

14

To prove the right-to-left direction, let ss € (T+N) fset and K € [,y cjnr— 55 L& 18" 7’
such that ts = Inl"ss U U,ycin-s Kw- Unfolding the definition of .Zf,, we obtain
U : Inr~ ss — dtree such that, for all ' € Inr~ ss, U n’ is a regular derivation tree of
root n’ such that K,; € Frns’ (U n'). Then the tree of immediate leafs Inl"ss and imme-
diate subtrees {U n’ | n’ € Inr™ ss}, namely, Node n ((id @ U) « ss), is the desired regular
derivation tree whose frontier is included fs. O

Theorem 6 provides an alternative, recursive definition of £, ns n. The defini-
tion terminates because the argument ns is finite and decreases strictly in the recursive
case—in fact, this shows that the height of the recursive call stack is bounded by the
number of nonterminals, which for our application translates to the number of simulta-
neously introduced codatatypes.

Here is how the above recursion operates on the ltree example. We have T = {«, 8},

N = {y}, and P = {pi1, p2}, where p; = (y,{Inl @, Inl 8}) and p> = (v, {Inl B, Inr y}).
Note that

e Inl"ss = {a,B} and Inr~ss = 0 for (n, s5) = p;
e Inl"ss = {B} and Inr~ss = {y} for (n, ss) = p>

The computation has one single recursive call, yielding

Lay=%c v}y
= {{a.p U0} U {{B} U Urepy K | K €TTweqy) Z& 0n'}
={a.p}U{{B UK,y | K, € 25, 07}
={{e.p}u{{pt U0}
={{a.8}.{B}}
={{8}}

For datatypes, the computation of ZGrfr is achieved analogously to Theorem 6, defining
ZH ns n as a generalization of £ n.

Theorem 7. The statement of Theorem 6 still holds if we substitute Zg for Z£, and
0 for {0}.

S Implementation in Isabelle

The package maintains nonemptiness information to be prepared for producing non-
emptiness proofs upon datatype definitions. The equations from Theorems 6 and 7
involve only executable operations over finite sets of numbers, sums, and products.
Since the descriptions of Theorems 1 and 2 are also executable, the implementation
task emerges clearly: Store a perfect set along each basic BNF and have each BNF
operation compute witnesses from those of its operands.

However, as it stands, /-witnesshood cannot be expressed in HOL because types are
always nonempty: How can we state that (o,) tree # 0 conditionally on @ # @ or 8 # 0,
in the context of @ and g being assumed nonempty in the first place? The solution is to

15

work not with operators @ F on HOL types directly but rather with their internalization
to sets, expressed as a polymorphic function Fin : @) set — -+ — a, set — (@ F) set
defined as Fin A = {x | Vi € [n]. Fset' x C A;}. I-witnesshood becomes (Vi € I. A; #
0) = Fin A #£0.

For each n-ary BNF F, the package stores a set of sets .# of numbers in [n] (the
perfect set) and, for each set I € .#, a polymorphic constant wy : (¢;);c; — @ F and an
equivalent formulation of /-witnesshood: Vi € I. Fset’ (w; (a;) er) # 0.

Due to the logic’s restricted expressiveness, we cannot prove the theorems presented
in this paper in their most general form for arbitrary functors and have the package in-
stantiate them for specific functors. Instead, the package proves the theorems dynami-
cally for the specific functors involved in the datatype definitions. Only the soundness
part of the theorems is needed. To paraphrase Krauss and Nipkow [26], completeness
belongs to the realm of metatheory and is not required to obtain actual nonemptiness
proofs—it does let you sleep better though, by ensuring that the employed criterion is
as precise as it can be.

A HOL definitional package bears the burden of computing terms and certifying the
computation, i.e., ensuring that certain terms are theorems. The combinatorial computa-
tion of witnessing sets of indices described in Theorems 6 and 7 would be expensive if
performed through Isabelle, that is, by executing the equations stated in these theorems
as term rewriting in the logic. Instead, we perform the computation outside the logic,
employing an ML datatype aimed at representing efficiently the finite and the regular
derivation trees dwelling the Isabelle type dtree from Section 3:

datatype wit_tree = Wit _Leaf of int
| Wit_Node of (int * int * int list) * wit_tree list

Here, Wit_Node ((i, j, is), ts) stores the root nonterminal i, a numeric identifier of the
used production j, and the continuation consisting of the terminals is and the further
non-terminal expanded trees ts. Moreover, Wit _Leaf i stores, for the case of regular
infinite trees, the nonterminal where a regularity loop occurs, i.e., such that it has a
previous occurrence on the path to the root.

From the ML trees, we produce witnesses represented as Isabelle constants of ap-
propriate types (the w;’s described above), by essentially mimicking the (co)recursive
definitions employed in the proofs of the soundness parts of Theorems 3 and 4 from
Section 4.2. Then, we certify the witnesses by producing the relevant Isabelle proof
goals and discharging them by mirroring the corresponding (co)inductive arguments
from the aforementioned proofs. In summary: The witnesses are computed outside the
logic, but they are verified by Isabelle’s kernel. After introducing any BNF, the redun-
dant witnesses are removed.

The development devoted to the production and certification of witnesses amounts
to about 1000 lines of Standard ML [12].

6 Related Work

Coinductive (or coalgebraic) datatypes have become popular in recent years in the study
of infinite behaviors and nonterminating computation. Whereas inductive datatypes are

16

well studied and widely available in most programming languages and proof assistants,
coinductive types are still not mainstream and pose great challenges to be integrated
into current systems.

Much research has appeared in the last years, in the context of theorem proving,
on how to add coinductive types or improve support of coinductive proofs, including
developments in Coq [8,31], Agda [4], and CIRC [29]. The work of this paper is in
line with this research. Our results are applicable to all proof assistants from the HOL
family, which together cover a large subset of the proof assistant community. We there-
fore aimed at an abstract presentation in terms of higher-order logic—only Section 5 is
specific to Isabelle/HOL.

Other definitional packages must also prove nonemptiness of newly defined types,
but typically the proofs are easy. For example, Homeier’s quotient package for HOL4
[22] exploits the observation that quotients of nonempty sets are nonempty, and Huff-
man’s (co)recursive domain package for Isabelle/HOLCF [24] can rely on a minimal
element L. For the traditional datatype packages introduced by Melham [30], and im-
plemented in Isabelle/HOL by Berghofer and Wenzel [7], proving nonemptiness is non-
trivial, but by reducing nested definitions to mutual definitions, they could employ a
standard reachability analysis [7, §4.1]. To our knowledge, the completeness of the
analysis has not been proved (or even formulated) for previous datatype packages.

Obviously, our overall approach to (co)datatypes is heavily inspired by category-
theory developments [6, 16,20, 21, 37]—this is discussed in detail in a previous pa-
per [14], which puts forward a program (continued here, as well as in [10, 11, 13]) for
integrating insight from category theory in proof assistants based on higher-order logic,
in order to achieve better structure and functionality. A similar program (of a somewhat
larger scale) is pursed in the context of homotopy type theory [2], targeting proof assis-
tants based on type theory, notably Coq and Agda. Our nonemptiness-witness mainte-
nance is similar to the preservation of enriched types along various constructions, e.g.,
initial algebras and final coalgebras of pointed functors are also pointed [23]; however,
existing analysis techniques are only concerned with soundness (not completeness) re-
sults.

7 Conclusion

We presented a complete solution to the nonemptiness problem for open-ended, mutual,
nested codatatypes. This problem arose in the context of Isabelle’s new (co)datatype
package and has broad practical motivation in terms of the popularity of HOL-based
provers. The problem and its solution also enjoy an elegant metatheory, which itself is
best expressed in terms of codatatypes. Our solution, like the rest of the definitional
package, is part of the latest edition of Isabelle.

Acknowledgment. Tobias Nipkow made this work possible. Andreas Lochbihler sug-
gested many improvements, notably concerning the format of concrete coinduction
principles. Brian Huffman suggested major conceptual simplifications to the package.
Florian Haftmann, Christian Urban, and Makarius Wenzel guided us in the jungle of
package writing. Stefan Milius and Lutz Schréder found an elegant proof to eliminate
one of the BNF cardinality assumptions. Andreas Abel and Martin Hofmann pointed

17

out relevant work. Mark Summerfield and several anonymous reviewers commented on
earlier versions of this paper.

Blanchette is supported by the Deutsche Forschungsgemeinschaft (DFG) project
Hardening the Hammer (grant Ni491/14-1). Popescu is supported by the project Se-
curity Type Systems and Deduction (grant Ni491/13-2) as part of the DFG program
Reliably Secure Software Systems (RS?, Priority Program 1496). Traytel is supported
by the DFG program Program and Model Analysis (PUMA, doctorate program 1480).
The authors are listed in alphabetical order, regardless of individual contributions or
seniority.

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

The HOL Zero Theorem prover (2014), http://proof-technologies.com/holzero
The Homotopy Type Theory homepage (2014), http://homotopytypetheory.org
Abel, A., Altenkirch, T.: A predicative strong normalisation proof for a lambda-calculus
with interleaving inductive types. In: Coquand, T., Dybjer, P., Nordstrém, B., Smith, J.M.
(eds.) TYPES "99. LNCS, vol. 1956, pp. 21-40. Springer (2000)

Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: POPL. pp. 27-38 (2013)

Arthan, R.D.: Some mathematical case studies in ProofPower—-HOL. In: Slind, K. (ed.)
TPHOLSs 2004 (Emerging Trends). pp. 1-16 (2004)

Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114(2),
299-315 (1993)

Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—Lessons learned in formal-logic
engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLS *99. LNCS, vol. 1690, pp. 19-36 (1999)

Bertot, Y.: Filters on coinductive streams, an application to Eratosthenes’ sieve. In: TLCA
’05. pp. 102-115 (2005)

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development—Coq’ Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science, Springer (2004)

Blanchette, J.C., Holzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly
modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014.
LNCS, vol. 8558, pp. 93—110. Springer (2014)

Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: A proof
assistant perspective. Submitted to ESOP. Draft available at
http://wuw.eis.mdx.ac.uk/staffpages/andreipopescu/pdf/fouco.pdf
Blanchette, J.C., Popescu, A., Traytel, D.: Supplementary material associated with this
paper. https://github.com/dtraytel/Witnessing-Codatatypes

Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness - A
coinductive pearl. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. vol. 8562,
pp. 46-60 (2014)

Blanchette, J.C., Traytel, D., Popescu, A.: Foundational, compositional (co)datatypes for
higher-order logic—Category theory applied to theorem proving. In: LICS 2012, pp.
596-605. IEEE (2012)

Bove, A., Dybjer, P.: Dependent types at work. In: LerNet ALFA Summer School. pp.
57-99 (2008)

Ghani, N., Johann, P., Fumex, C.: Generic fibrational induction. Logical Methods in
Computer Science 8(2) (2012)

18

http://proof-technologies.com/holzero
http://homotopytypetheory.org
http://www.eis.mdx.ac.uk/staffpages/andreipopescu/pdf/fouco.pdf
https://github.com/dtraytel/Witnessing-Codatatypes

[17]

[18]

[19]
[20]
(21]
(22]

(23]
[24]

[25]
[26]

[27]

(28]

[29]

(30]

[31]

[32]
(33]
[34]
(35]
[36]
(37]
(38]
[39]

[40]

Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press (1993)

Gvero, T., Kuncak, V., Piskac, R.: Interactive synthesis of code snippets. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 418—423. Springer
(2011)

Harrison, J.: HOL Light: A tutorial introduction. In: FMCAD *96. LNCS, vol. 1166, pp.
265-269. Springer (1996)

Hasegawa, R.: Two applications of analytic functors. Theor. Comput. Sci. 272(1-2),
113-175 (2002)

Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf.
Comput. 145(2), 107-152 (1998)

Homeier, P.V.: A design structure for higher order quotients. In: Hurd, J., Melham, T.F.
(eds.) TPHOLSs 2005. LNCS, vol. 3603, pp. 130-146. Springer (2005)

Howard, B.T.: Inductive, coinductive, and pointed types. In: ICFP. pp. 102-109 (1996)
Huffman, B.: A purely definitional universal domain. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 260-275. Springer (2009)
The Isabelle theorem prover (2014), http://isabelle.in.tum.de/

Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation algebra.
J. Autom. Reasoning 49(1), 95-106 (2012)

Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and
co-pointed endofunctors, monads and comonads. Electr. Notes Theor. Comput. Sci. 33,
230-260 (2000)

Lochbihler, A.: Java and the Java memory model—A unified, machine-checked
formalisation. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 497-517. Springer
(2012)

Lucanu, D., Goriac, E.L., Caltais, G., Rogu, G.: CIRC: A behavioral verification tool based
on circular coinduction. In: CALCO’09. pp. 433—-442 (2009)

Melham, T.F.: Automating recursive type definitions in higher order logic. In: Birtwistle,
G., Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verification and Automated
Theorem Proving, pp. 341-386. Springer (1989)

Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar
induction—Walking through infinite trees with mixed induction and coinduction. In:
Yang, H. (ed.) APLAS *11. LNCS, vol. 7078, pp. 353-368. Springer (2011)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

Paulson, L.C.: A formulation of the simple theory of types (for Isabelle). In: Conference
on Computer Logic. pp. 246274 (1988)

Paulson, L.C.: A fixedpoint approach to (co)inductive and (co)datatype definitions. In:
Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction—Essays in
Honour of Robin Milner, pp. 187-212. MIT Press (2000)

Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

Rutten, J.J.M.M.: Relators and metric bisimulations. Electr. Notes Theor. Comput. Sci. 11,
252-258 (1998)

Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theor. Comput. Sci. 249,
3-80 (2000)

Schropp, A., Popescu, A.: Nonfree datatypes in Isabelle/HOL: Animating a many-sorted
metatheory. In: CPP 2013. pp. 114-130 (2013)

Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muiioz, C., Tahar,
S. (eds.) TPHOLSs 2008. LNCS, vol. 5170, pp. 28-32. Springer (2008)

Smyth, M.B.: Power domains. J. Comput. Syst. Sci. 16(1), 23-36 (1978)

19

APPENDIX

Here we give more details concerning the concepts discussed in the paper, including
proofs.

A Structural (Co)induction

Using the atomic infrastructure described in Section 2.2, the induction principle can be
expressed abstractly for the mutual initial algebra IF of functors F as follows for sets @
and predicates ¢; : @ IF; — bool:

NiziVx € (@ @lF)F;. (N\i_ Vb e Fset;?”kx. ok b) = ¢ (ctor; x)
’]1-:1\71765 IF;. ;b

For lists, this instantiates to

Vx € unit +a x a list. (Vb € Fset’x. ¢ b) = ¢ (ctor x)

Vbealist. ¢ b

which, by taking Nil = ctor (Inl ()) and Cons a b = ctor (Inr (a, b)), can be recast into
the familiar rule

eNil Vaea.Vbealist. o b= ¢ (Consab)
Vbealist. o b

Moving to coinduction, we need a further well-known assumption: that our functors
preserve weak pullbacks, or, equivalently, that they induce relators [36]. For a functor
@, F, we lift its action Fmap : (@ — B1) — --- — (ay — Bn) — @ F — B F on functions
to an action Frel : (a; — 1 — bool) — - -+ — (@, — B, — bool) — (@ F — B F — bool),
the relator, defined as follows:

Frelgxy < 3z. Fmapfstz=x A Fmapsndz=y A
" V(a,b)cFset' z. gjab

With these preparations, structural coinduction can also be expressed abstractly, for the
mutual final coalgebra JF of functors F:

"_\Vabe (@ aJF)F;. §;ab= Frel;(=)"6 (dtor;a) (dtor; b)

—1Vab.0jab=a=>b

for sets @, and binary predicates 6; € @ JF; — @ JF; — bool. The rule is parameter-
ized by predicates 6; : @ JF; — @ JF; — bool required by the antecedent to form an
F-bisimulation. The principle effectively states that the equality forms the largest F-
bisimulation [37].

20

B More Details on the Customization Process: From Abstract to
Concrete

Customizing Coiteration. The abstract coiteration principle described in Section 2.1
relies on a coiterator unfold : (8 — S pre_dtree) — 8 — dtree such that dtor o unfold s =
map_pre_dtree (unfold s) o s. Writing s as (r,c) forr: B — Nand c: 8 — (T +«) fset
and recasting the equation in pointful form yields dtor (unfold (r, ¢) b) =map_pre_dtree
(unfold s) (rb, ¢ b) This can be further improved by unfolding the definition of
map_pre_dtree, expressing dtor as (root, cont), and splitting the result into a pair of
equations: root (unfold (r,¢) b) = r b and cont (unfold (r,c) b) = (id @ unfold {r,c)) «
¢ b. The coiteration rule of Section 2.1 emerges by replacing unfold with the cur-
ried unfold” : (8 = N) — (8 — (T +p) fset) — B — dtree defined as unfold' r ¢ =
unfold (r, c).

Custoimizing Coinduction. The abstract coinduction principle of Appendix A is cus-
tomized into the following concrete coinduction for dtree:

Vtitr. 8t tp = roott; =roott A
fset_rel (sum_rel (=)) (cont #;) (cont t;)

Otitr =t =0t

where the predicate fset_rel (sum_rel (=) 6) is an instance of the abstract Frel: it gives
the componentwise extension of 6 to (T + dtree) fset. Unfolding the characteristic the-
orems for fset_rel and sum_rel yields the antecedent

Vit th. Ot tp = roott; =roott, A
Inl” (cont 7;) = Inl™ (cont 1) A
Ve €Inr~ (cont 11). 365 € Inr~ (cont 1) 611 15 A
vty €lnr~ (cont 1p). 3 €Inr~ (cont 11). 61, 1)

where Inl™ (cont #) is the set of #’s successor leaves and Inr~ (cont) is the set of its
immediate subtrees. Informally:

If two trees are in relation 6, then they have the same root and the same suc-
cessor leaves and for each immediate subtree of one, there exists an immediate
subtree of the other in relation 8 with it.

C More on the Coinductive Tree Case Study

Next we define the notions of interior and frontier of a tree. Itr : dtree — N set is defined
inductively as follows:

roott € ltrt
Inrty EconttAn€ltrty = neltrt

Fr: dtree — N set is defined inductively as follows:

21

Inltecontt = reFrt
Inrty €conttANteFrty = t€Frt

The parameterized versions of interior and frontier (as required in Section 4.3),
Itr : N set — dtree — N set and Fr: N set — dtree — N set, are defined inductively
modifying the above clauses textually:

e ‘ltr’ is replaced by ‘Itr ns’ and ‘Fr’ is replaced by ‘Fr ns’;
o the hypothesis root ¢ € ns is added.

The notion of a finite tree, ftree : dtree — bool, is also defined inductively:

Inrecontt=0 = ftreet
(V1 € Inr™¢. ftree ;) = ftreet

D Inductive Trees
The datatype definition
datatype fdtree = FNode (froot: N) (fcont : (T + dtree) fset)

(introducing finite trees) produces the operations FNode, froot, and fcont having con-
structor and selector properties corresponding precisely to the ones of Node, root and
cont from the codatatype dtree in Section 3. The difference concerns induction and
recursion.

Iteration. The general principle described in Section 2.1 employs in this unary case
a iterator fold of (polymorphic) type (B pre_ fdtree — 8) — fdtree — B, for which it
yields

Vs : B pre_fdtree — . (fold s) o ctor = s o map_pre_fdtree (fold s)
that is,
Vs : B pre_fdtree — B. Vk. fold s (ctor k) = s (map_pre_fdtree (fold s) k)

The fdtree-defining BNF coincides with the dtree-defining BNF: B pre_fdtree = N x
(T +pB) fset and map_pre_fdtree f =id ® (image (id & f)).

As in the codatatype case, the above characterization needs some customization.
Using the FNode instead of ctor and unfolding the definition of map_pre fdtree, we
obtain

Vs :Nx (T+p) fset — B. Vn as.
fold s (FNode n as) = s (map_pre_fdtree (fold s) (n, as))

By unfolding the definition of map_pre_fdtree, we obtain

Vs:Nx (T+p) fset — B. Vnas.
fold s (FNode n as) = s (n, (id @ fold s) « as)

22

Finally, replacing fold with its more convenient curried version fold" : (N — (T +p) fset —
B) — fdtree — 3 defined as fold’ s = fold (A(n, as). s n as), we obtain the following cus-
tomized iteration principle, where we write fold instead of fold': For all sets 3, functions
s:N — (T+p) fset — g and elements n € N and as € (T + fdtree) fset, it holds that
fold s (FNode nas) = sn ((id ®fold s) « as).

Induction. The induction principle from Section A yields for ¢ : @ fdtree — bool

Vk € a pre_fdtree. (Vr€Fsetk. ¢ t) = ¢ (ctor k)

Vt € a fdtree. ¢ ¢t
i.e., using the curried variation FNode of dtor,

Vn as. (Vt € Fset (n, as). ¢ t) = ¢ (FNode n as)

Vi€ afdtree. ot

Unfolding the definition of Fset, namely, Fset (n,as) = Inr~ as, we obtain the end-
product customized induction for finite trees:

Vnas. (Vt€lInr”as. ¢ t) = ¢ (FNode n as)

Vi€ a fdtree. ¢ t

E Proofs

For more details on some of the proofs, we refer the reader to our Isabelle formalization
[12], which employs essentially the same notations as this text.

Proof of Lemma 1: H n is regular by construction: if a subtree of it has root n/, then
it is equal to H . The frontier inclusion Fr (H n) C Fr 1y follows by routine fixpoint
induction on the definition of Fr (since at each node n’ € Itr (H n) we only have the
immediate leaves of pick ', which is a subtree of Fr fp). Finally, assume that £ is well-
formed. Then the fact that H n is well-formed follows by routine fixpoint coinduction
on the definition of wf (since, again, at each n’ € Itr (H n) we have the production of
pick n'). O

In some of the following proofs we exploit an embedding of datatypes as finite co-
datatypes. Using this embedding, we can transfer the recursive definition and structural
induction principles from IF to finite elements of JF, and in particular from fdtree to
finite trees in dtree.

The regular cut of a tree works well with respect to the codatatype metatheory,
but for datatypes it has the disadvantage that it may produce infinite trees out of finite
ones (cf. Fig. 3, left and middle). We need a slightly different concept for datatypes:
the finite regular cut. Let ¢y be a finite derivation tree. We choose the function fpick :
Itr t9 — Subtr #y similarly to pick from Section 3, but making sure that in addition the
choice of the subtrees fpick 7 is minimal, in that fpick 7 does not have 7 in the interior of
a proper subtree (and hence does not have any proper subtree of root n)—such a choice
is possible thanks to the finiteness of #y. We define the finite regular cut of 7y, rfcut #o,
just like rcut #y but using fpick instead of pick. Now we can prove:

23

Lemma 2. Assume 1y is a finite derivation tree. Then:

(1) The statement of Lemma 1 holds if we replace rcut by rfcut.
(2) rfcut 1g is finite.

Proof: (1) Similar to the proof of Lemma 1. (2) By routine induction on #. a

More detailed proof of Theorem 4: Let jo € [n]. We first show that ZE (jiy) is sound.
Let 7y be a well-formed finite regular derivation tree with root jy. We need to prove that
Fj, is Fr to-witnessed. For this, we fix @,, such that Vi € Fr #. @; # 0, and aim to show
that & IFJO #£0.

For each j € Itr 7, let t; be the corresponding subtree of #. (It is well-defined, since
1y is regular.) Note that 7y = ¢;,. For each K such that (j,cp(K)) € P, since K € % and
¥ is sound for F;, we obtain a K-witness for F;, i.e., a function wjk : (i)rex — @F;.

We verify the following fact by induction on the finite derivation tree #: If 3j €
Itr tg. t = t;, then @ IF; # 0. The induction step goes as follows: Assume ¢ = ¢; has the
form Node j as, and let J be the set of all roots of the immediate subtrees of ¢, namely,
root « (Inr~ (cont #)). By the induction hypothesis, @ IFy # 0 (say, b; € @ IF) for all
j € J. Then wik (ai)icini-; (by) yes € @ IFj, making @ IF; nonempty. In particular,
a JFj, #0.

We now show that £ (jjo) is complete. Let I C [m] such that IF, is I-witnessed.
We need to find I € féf(jo) such that I C I.

Let @, be defined as a; = unit if i € I and = 0 otherwise. We verify, by structural
IF-induction on b, that for all jE€n andbealF j» there exists a finite well-formed
derivation tree ¢ such that root # = j and Fr¢ C I. For the inductive step, assume ctor; x €
@ IF;, where x € (@, @ IF)F ;. By the induction hypotheses, we obtain the finite well-
formed derivation trees 7, such that root 1; = jand Fr¢; C I forall j € [n]. Let J = {j €
[n] |@IF; # 0}. Then F; is (IUJ)-witnessed, hence by the F;-completeness of .%; we
obtain K € % such that K C IU{m+ j | j/ € J}. We take ¢ to have j as root, I N K
abs leaves and (¢;) 7, as immediate subtrees; namely, = Node j ((Inl « I) U (Inr« {t; |
j €ap).

Let y be a tree as above corresponding to jo (since @ IF ;, # 0). Then, by Lemma 2,
t; = rcut 1y is a well-formed finite derivation tree such that Fr ¢; C Fr oy C I. Thus,
taking I, = Fr t;, we obtain I chrf(jo) andI; C 1. a

In what follows, n/ ranges over lists of nonterminals and ‘> denotes list concatena-
tion. If n is a nonterminal, n also denotes the n-singleton list. The predicate path nl 7,
stating that n/ is a path in ¢ (starting from the root), is defined inductively as follows:

ni ny ni
7 N 7 N |
ny n3 ny n3 ny
7 N I N I I
n o o N A
|
ng
|
A

Fig. 3. A finite derivation tree (left), a regular cut of it (middle), and a finite regular cut of it (right)

24

path (root 7) ¢
Inr¢ € contt A pathnlt = path ((rootr)-nl) ¢

Lemma 3. Let ¢ be a finite regular derivation tree. Then ¢ has no paths that contain
repetitions.

Proof: Assume, by absurdity, that a path n/ in ¢ contains repetitions, i.e., has the
form nly -n-nly -n, and let #; and 7, be the subtrees corresponding to the paths nl; -n and
nl, respectively. Then 7, is a proper subtree of #1; on the other hand, by the regularity of
t, we have 1| = tp, which is impossible since #; and 7, are finite. O

Proof of Theorem 7: According to Lemma 3 and the properties of regular cuts,
we have that (1) Z& ns' n = £ ns' n, where L& ns' n is the language defined just
like .,%Grf ns' n, but replacing “regular” with “having no paths that contain repetitions.”
Moreover, it is easy to see that (2) the desired facts hold if we replace .ZGrfr ns' n with

.,prrf ns’ n and = with equality. From (1) and (2) the result follows. a

F Registration of a New BNF in Isabelle

The type constructor a bag of bags (multisets) is registered through the following com-
mand:

bnf ’a bag
map: map_bag :: (’a => ’b) => ’a bag => ’b bag
sets: set_of :: ’a bag => ’a set
bd: natleq :: (nat * nat) set

wits: {#} :: ’a bag
rel: bag_rel :: (’a => ’b => bool) => ’a bag => ’b bag => bool

The command provides the necessary infrastructure that makes a bag a BNF, consisting
of various previously introduced constants (whose definitions are not shown here):

e the functorial action, map_bag;

o the “Fset” operation discussed in Section 2.2, set_of;

e a cardinal bound, here, that of natural numbers, natLeq (cardinals are represented
as minimal well-order relations);

e a witness term, here, the empty bag {#};

e a customized relator, as discussed in Section B, rel bag.

Then, the user is asked to prove a few facts, including the nonemptiness witness prop-
erty set_of {#} = {}. Upon discharging these goals, the @ bag BNF is registered.

25

	Witnessing (Co)datatypes
	1 Introduction
	2 The Category Theory behind the Package
	2.1 Functors and Functor Operations
	2.2 Bounded Natural Functors

	3 Coinductive Derivation Trees
	4 Computing Nonemptiness Witnesses
	4.1 Examples
	4.2 A General Solution
	4.3 Computational Aspects

	5 Implementation in Isabelle
	6 Related Work
	7 Conclusion
	A Structural (Co)induction
	B More Details on the Customization Process: From Abstract to Concrete
	C More on the Coinductive Tree Case Study
	D Inductive Trees
	E Proofs
	F Registration of a New BNF in Isabelle

