
Formal Methods in Computer-Aided Design 2022

Differential Testing of Pushdown Reachability with
a Formally Verified Oracle

Anders Schlichtkrull Morten Konggaard Schou Jiří Srba
Department of Computer Science

Aalborg University
Aalborg, Denmark

{andsch,mksc,srba}@cs.aau.dk

Dmitriy Traytel
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

traytel@di.ku.dk

Abstract—Pushdown automata are an essential model of
recursive computation. In model checking and static analysis, nu-
merous problems can be reduced to reachability questions about
pushdown automata and several efficient libraries implement
automata-theoretic algorithms for answering these questions.
These libraries are often used as core components in other tools,
and therefore it is instrumental that the used algorithms and
their implementations are correct. We present a method that
significantly increases the trust in the answers provided by the
libraries for pushdown reachability by (i) formally verifying the
correctness of the used algorithms using the Isabelle/HOL proof
assistant, (ii) extracting executable programs from the formaliza-
tion, (iii) implementing a framework for the differential testing of
library implementations with the verified extracted algorithms as
oracles, and (iv) automatically minimizing counter-examples from
the differential testing based on the delta-debugging methodology.
We instantiate our method to the concrete case of PDAAAL,
a state-of-the-art library for pushdown reachability. Thereby,
we discover and resolve several nontrivial errors in PDAAAL.

I. INTRODUCTION

In 1964, Büchi [7] proved that the possibly infinite set of all
reachable pushdown configurations (from a given initial con-
figuration) can be effectively described by a regular language.
In fact, even for a given regular set of pushdown configura-
tions, its post∗ and pre∗ closures (representing all forward
and backward reachable configurations from a given set of
configurations) are also regular. Büchi’s automata-theoretic
approach gave rise to a rich theory of pushdown reachability
with numerous algorithms and applications to, e.g., interpro-
cedural control-flow analysis of recursive programs [9], [11],
model checking [4], [13], [45], [46], communication network
analysis [10], [21], [22] and others. A number of tools have
been developed to support the theory, including Moped [45],
[46], WALi [25], and PDAAAL [23] with applications ranging
from the static analysis of Java [46] and C/C++ code [26],
[43] to the analysis of MPLS communication protocols [22].

Even though the automata-theoretic approach for pushdown
reachability is based on relatively simple saturation proce-
dures, the proofs of correctness are nontrivial and the imple-
mentation of the algorithms in the different tools often includes
numerous performance optimizations as well as additional
improvements to the theory itself [23]. To be able to rely on

This research was supported by the Independent Research Fund Denmark
(DFF project QASNET) and by Novo Nordisk Fonden (NNF20OC0063462).

the output of model checking tools and other applications of
pushdown reachability, it is important that the theory is not
only sound but also correctly implemented. A positive reach-
ability answer is typically accompanied by a finite evidence
(trace) that can function as an efficiently checkable certificate.
A negative answer is, on the other hand, much harder to
check, and designing a finite evidence for non-reachability is
difficult, primarily because the number of reachable pushdown
configurations can be infinite. One approach is to establish
an invariant that (i) includes the initial configuration(s) of
the system, (ii) is maintained by the transition relation and
(iii) has an empty intersection with the set of undesirable
configurations. Such approaches have been studied [16], [17]
but are usually incomplete and require another complex tool
(that can be error-prone, too) to verify such invariants.

We instead use a proof assistant, Isabelle/HOL [37] (§II), to
formally verify the correctness of the pushdown reachability
algorithms post∗ (forward search), pre∗ (backward search),
and dual∗ (bi-directional search) (§III) that lie at the heart of
the automata-theoretic analysis of pushdown systems [4], [23],
[44]. From the formalization of pre∗, we extract an executable
program with strong correctness guarantees (§IV). For a given
input, the extracted program’s output can be compared with
the output of other, unverified but optimized tools solving the
same problem (§V). This approach is known as differential
testing [14], [18], [34] with a twist that the testing oracle
has been formally verified and thus is extremely trustworthy.
When testing reveals a disagreement between a verified
and an unverified algorithm, we know who is to blame. To
help localize errors in unverified algorithms, we minimize
the tests causing disagreement using the delta-debugging
technique [51]. Our main contributions are as follows.

– The formalization of post∗, pre∗ and dual∗ algorithms in
Isabelle/HOL and verification of their correctness based
on the proofs provided by Schwoon [44] for post∗ and
pre∗, and following Jensen et al. [23] for dual∗.

– The refinement to and the extraction of an executable
program of the formalized pre∗ algorithm that serves as
the verified oracle for differential testing.

– The automatic minimization of the input automata in
cases where an unverified tool disagrees with the oracle.

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-9212-6150
https://orcid.org/0000-0002-5970-4294
https://orcid.org/0000-0001-5551-6547
mailto:andsch@cs.aau.dk
mailto:mksc@cs.aau.dk
mailto:srba@cs.aau.dk
https://orcid.org/0000-0001-7982-2768
mailto:traytel@di.ku.dk
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

– The application of our method to a modern state-of-
the-art library for pushdown reachability, PDAAAL [23],
and the identification, localization (using the minimized
counter-examples), and correction of three, previously
unknown, implementation errors (§VI). The corrected
implementation passes all differential tests successfully.

Our Isabelle formalization as well as the case study are
publicly available [40].

a) Related work: Differential testing with a verified
oracle has been used in the context of runtime verification and
automatic theorem proving. The runtime monitor VeriMon [2],
[41] served as the verified oracle used to detect errors in unver-
ified monitors. Compared to our approach, VeriMon’s differen-
tial testing case study is from a different application domain,
does not include exhaustive test generation for small input
sizes (which is difficult in runtime monitoring) and does not
minimize the tests automatically. To assess its performance but
also to evaluate the benchmark’s correctness, the verified first-
order prover RPx [39] was evaluated on a standard benchmark
for first-order logic problems. RPx’s answers have in all cases
coincided with the expected ones recorded in the benchmark.

The verified C compiler CompCert [32] and several verified
distributed systems [20], [33], [48] have been themselves put
onto the testbed [15], [50]. A few errors in these tools’ unveri-
fied parts or in scenarios violating the verification assumptions
were found, but none in the verified components themselves.

Many works extract efficient executable code from formal-
izations, but do not use it as an oracle in testing. Examples
include verified model checkers for LTL [12] and timed
automata [49] and verified algorithms for finite automata [3],
[6], [24], [31] and context-free grammars [35], [38].

The only formalization of pushdown automata we are
aware of is part of Lammich et al.’s work on dynamic
pushdown networks (DPN) [30]. Lammich describes the
Isabelle formalization of an executable pre∗ algorithm for
DPNs stemming from this work in an unpublished technical
report [29]. DPNs generalize pushdown automata, but their
post∗ is not regular [5] and so we cannot extend this work for
our purposes. Moreover, Lammich’s formalization does not
support ε-transitions in the underlying automata, an essential
component needed for our formalization of post∗ and dual∗.

b) Background definitions: Let P be a finite set of con-
trol locations and Γ a finite stack alphabet. A pushdown system
(PDS) is a tuple (P,Γ,∆), where ∆ ⊆ (P × Γ) × (P × Γ∗)
is a finite set of rules, written (p, γ) ↪→ (q, w) whenever
((p, γ), (q, w)) ∈ ∆. Without loss of generality, we assume
|w| ≤ 2, so that w = ε represents a pop operation that removes
the topmost stack symbol, |w| = 1 is a swap that replaces the
topmost symbol with another one, and |w| = 2 is a push that
incorporates a swap followed by adding a new symbol on top.

A configuration of a pushdown system is a pair (p, w) of the
current control location p ∈ P and the current stack content
w ∈ Γ∗ where we assume that the top of the stack is on the left.
The set of all configurations is denoted by C. A PDS can take a
computation step (p, γw′)⇒ (q, ww′) between configurations
whenever (p, γ) ↪→ (q, w) and w′ ∈ Γ∗. For a given C ⊆ C,

we define post∗(C) = {c′ ∈ C | c ⇒∗ c′ for some c ∈ C}
and pre∗(C) = {c ∈ C | c⇒∗ c′ for some c′ ∈ C}.

The reachability problem for PDSs is to decide whether
c ⇒∗ c′ for configurations c and c′, and it is equivalent
to asking whether c′ ∈ post∗({c}) or equivalently whether
c ∈ pre∗({c′}). Büchi [7] showed that for any regular set
C ⊆ C, the sets post∗(C) and pre∗(C) are also regular.

To represent regular sets of pushdown configurations, we
use P-automata [44], which are nondeterministic finite au-
tomata with multiple initial states for each of the control
locations from the set P . Formally, let N be a finite set of
noninitial states and F ⊆ P∪N a finite set of final states. A P-
automaton is a tuple A = (P ∪N,→, P, F) with the transition
relation → ⊆ (P ∪N)×Γ× (P ∪N) so that P ∪N is the set
of its states and the pushdown alphabet Γ is the input alpha-
bet of the automaton. The language L(A) of P -automaton
A contains the pushdown configurations accepted by A: a
configuration (p, w) ∈ P×Γ∗ is accepted if and only if there is
a path from p to q for some q ∈ F in the P -automaton (defined
via the transition relation→) labelled with w. The reachability
problem for P -automata is as follows: given a PDS (P,Γ,∆)
and P -automata A1 and A2, does there exist c ∈ L(A1) and
c′ ∈ L(A2) such that c⇒∗ c′ using the rules ∆?

II. ISABELLE/HOL
Isabelle/HOL [37] is a proof assistant based on classical

higher-order logic (HOL), a simply typed lambda calculus with
Hilbert choice, axiom of infinity, and rank-1 polymorphism.
We present our formalization using HOL’s syntax, which
mixes functional programming and mathematical notation.

Types are built from type variables ′a, ′b, . . . and type
constructors like pairs _×_ and functions _⇒ _ (both written
infix) and sets _ set (written postfix). Type constructors can
also be nullary, e.g., the Boolean type bool . Type variables
can be restricted by type classes: ′a :: finite is a type
variable ′a that can only be instantiated with finite types (i.e.,
types with finitely many inhabitants). New type constructors
are introduced as abbreviations for complex type expressions
and as inductive datatypes using commands type_synonym
and datatype respectively, e.g., the types of transitions
type_synonym (′state, ′label) transition = ′state × ′label ×
′state and finite lists datatype ′a list = [] | ′a # (′a list).

Terms are built from variables x, y, . . ., constants c, d, . . .,
lambda abstractions λx. t and applications written as juxta-
position f x. Isabelle includes many constants and syntax for
them, e.g., infix operators ∧, ∨, −→,←→, ∈, ∪, ∩, unbounded
and bounded quantifiers ∃x. P x and ∀y ∈ A. Q y, and set
comprehensions {x. P x}. Non-recursive functions are de-
fined and given readable syntax using the definition command:

definition image (infix ‘) where
f ‘ A = {y. ∃x ∈ A. y = f x}

Type annotations like image :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set
can be omitted as they are inferred. Recursive definitions are
supported using the fun command:

fun append (infix @) where
[] @ ys = ys | (x # xs) @ ys = x # (xs @ ys)

locale LTS = fixes trans_rel :: (′state, ′label) transition set
begin

definition step_relp (infix ⇒) where
c⇒ c′ ←→ (∃l. (c, l, c′) ∈ trans_rel)

definition step_starp (infix ⇒∗) where
c⇒∗ c′ ←→ step_relp∗∗ c c′

definition pre_star C = {c′. ∃c ∈ C. c′ ⇒∗ c}
definition post_star C = {c′. ∃c ∈ C. c⇒∗ c′}
definition srcs = {p. ∄q γ. (q, γ, p) ∈ trans_rel}
definition sinks = {p. ∄q γ. (p, γ, q) ∈ trans_rel}
inductive_set trans_star where
(p, [], p) ∈ trans_star
| (p, γ, q′) ∈ trans_rel −→ (q′, w, q) ∈ trans_star −→
(p, γ#w, q) ∈ trans_star

end
Fig. 1: The locale for labeled transition systems

Internally, fun performs an automatic termination proof. More
complex recursion schemes may require a manual proof.

Another way to define a function is as Prolog-style mono-
tone rules. The inductive command allows such definitions as
least fixed points. Take, e.g., the reflexive transitive closure:

inductive rtranclp (_∗∗) where
R∗∗ x x | R x y −→ R∗∗ y z −→ R∗∗ x z

Theorems and lemmas are terms of type bool that have
been proved to be equivalent to True. All proofs pass through
Isabelle’s kernel, which relies only on a few well-understood
reasoning rules such as modus ponens. We refer to a text-
book [36] for a practical introduction to proving in Isabelle.

Structures and assumptions common to many theorems can
be organized via locales [1]—Isabelle’s module mechanism
for fixing parameters and stating and assuming their
properties. In the context of a locale, the parameters are
available as constants and the assumptions as facts. Locales
can be interpreted, which involves instantiating the parameters
and proving the assumptions. As the result, one obtains the
(instantiated) theorems proved in the context of the locale.

Consider our locale for labeled transition systems (LTSs) in
Fig. 1. It fixes the parameter trans_rel, and its context consists
of the definitions between the begin and end keywords.
All definitions should be self-explanatory except perhaps
trans_star: the set of triples (p, w, q) for which the LTS can
move from p to q by consuming word w. This relation is de-
fined inductively, first for the empty sequence and then extend-
ing it by one more symbol—here we use in conjunction two
assumptions on the symbol γ and sequence w. (Following an
Isabelle convention, we formalize it equivalently as two impli-
cations.) In the formalization, the locale has more definitions
than shown here and a number of lemmas. Outside LTS’s con-
text, we can access its definitions, e.g., pre_star is available un-
der the name LTS.pre_star and can be applied to any transition
relation A and a set of states C as follows: LTS.pre_star A C.

datatype ′label op = pop | swap ′label | push ′label ′label

type_synonym (′ctr_loc, ′label) rule =
(′ctr_loc × ′label)× (′ctr_loc × ′label op)

type_synonym (′ctr_loc, ′label) conf = ′ctr_loc× ′label list

locale PDS = fixes ∆ :: (′ctr_loc, ′label :: finite) rule set
begin

fun lbl where
lbl pop = [] | lbl (swap γ) = [γ] | lbl (push γ γ′) = [γ, γ′]

definition is_rule (infix ↪→) where
(p, γ) ↪→ (p′, w)←→ ((p, γ), (p′, w)) ∈ ∆

inductive_set step where
(p, γ) ↪→ (p′, w) −→
((p, γ # w′), (), (p′, lbl w @ w′) ∈ step

interpretation LTS step .

end

datatype (′ctr_loc, ′noninit) state =
Init ′ctr_loc | Noninit ′noninit

locale PDS_with_finals = PDS ∆
for ∆ :: (′ctr_loc :: enum, ′label :: finite) rule set +
fixes F_inits :: ′ctr_loc set and F_noninits :: ′noninit set

begin
definition finals = Init ‘ F_inits ∪ Noninit ‘ F_noninits
definition inits = {q. ∃p. q = Init p}
definition accepts A (p, w) =
(∃q ∈ finals. (Init p, w, q) ∈ LTS.trans_star A)

definition lang A = {c. accepts A c}
end

Fig. 2: The types and locales for pushdown systems

III. PUSHDOWN REACHABILITY

We formalize pushdown systems (PDSs) and saturation
algorithms for calculating pre∗ and post∗ following
Schwoon [44] and dual∗ following Jensen et al. [23].

Fig. 2 shows our modeling of PDSs. We use type
variables to represent control locations (′ctr_loc) and
stack labels (′label). We introduce types for operations
(′label op), rules ((′ctr_loc, ′label) rule) and configurations
((′ctr_loc, ′label) conf). A PDS is given by the locale PDS,
which fixes a set of rules ∆. Each PDS gives rise to an unla-
beled transition relation, which we model by an LTS step with
label ()—the only element of type unit . The definition is a
non-recursive inductive definition. We use the interpretation
command to interpret LTS with step. This means that pre_star
refers to LTS.pre_star step in PDS. Likewise, trans_star refers
to LTS.trans_star step and similarly for other LTS definitions.
The type (′ctr_loc, ′noninit) state represents P -automata
states, where ′noninit is the type variable for noninitial states.
The locale PDS_with_finals extends PDS with a set of final
initial states F_inits and final noninitial states F_noninits. For
the rest of this section, we work within the PDS_with_finals
locale. In this locale, a P -automaton is a set of transitions.

P0

P1

P2

Q1 Q2

γ2

γ0 γ0

γ1
Pi = Init pi for i ∈ {0, 1, 2}
Qi = Noninit qi for i ∈ {1, 2}

definition ∆ = {((p2, γ2), (p0, pop)),
((p1, γ1), (p2, push γ2 γ0))}

definition A = {(P0, γ0, Q1), (Q1, γ0, Q2)}

Fig. 3: Adding two transitions (dashed arrows) to a
P -automaton. Initially (solid arrows) the P -automata encodes
only configuration (p0, [γ0, γ0]). After saturation, the configu-
rations (p1, [γ1, γ0]) and (p2, [γ2, γ0, γ0]) are also encoded.

A. Nondeterministic pre∗ Saturation

Schwoon [44] presents the pre∗ saturation which is a
nondeterministic algorithm that given a P -automaton A
returns a P -automaton whose language is pre_star (lang A).
The algorithm proceeds by iteratively adding transitions to
A. In each step, the algorithm nondeterministically chooses
a transition to add that satisfies a number of criteria. The
P -automaton is saturated when no more transitions can be
added. We formalize a step of the algorithm by the relation:

inductive pre_star_rule where
(Init p, γ, q) /∈ A −→ (p, γ) ↪→ (p′, w) −→
(Init p′, lbl w, q) ∈ LTS.trans_star A −→
pre_star_rule A (A ∪ {(Init p, γ, q)})

The pre_star_rule relation relates two P -automata if the
latter can be obtained from the former via one step of the
algorithm. The criteria of the algorithm are expressed as the
premises of the implication shown in pre_star_rule’s definition.
The last two premises are taken directly from Schwoon’s
definition of the algorithm and the first one ensures that the
transition we add into the new P -automaton is a new one. A
single P -automaton can be related to different P -automata via
pre_star_rule, which captures nondeterministic choice.

Consider the PDS defined by ∆ in Fig. 3, and let the
P -automaton A consist of the two solid transitions in the
figure. Let A′ be A∪{(P2, γ2, P0)}. Notice that (P2, γ2, P0) /∈
A and (p2, γ2) ↪→ (p0, pop) and (P0, lbl pop, P0) ∈
LTS.trans_star A. From pre_star_rule’s definition then follows
that pre_star_rule A A′. Let A′′ be A′ ∪ {(P1, γ1, Q1}). From
pre_star_rule’s definition it follows that pre_star_rule A′ A′′.

We formalize what it means for a P -automaton A to be
saturated w.r.t a rule r, and for A′ to be a saturation of A:

definition saturated r A = (∄A′. r A A′)
definition saturation r A A′ = (r∗∗ A A′ ∧ saturated r A′)

In our example, A′′ is saturated and thus formally we have
saturated pre_star_rule A′′ and saturation pre_star_rule A A′′.

We next prove the pre∗ saturation algorithm correct. Here,
we focus on the proof’s most interesting aspects, especially
those where we had to deviate from Schwoon’s pen-and-paper
proof, and refer to our formalization for full details [40].

The correctness theorem states that if a transition system
A′ is a saturation of a transition system A then the language

of A′ is indeed the pre∗ closure of the language of A. Like
Schwoon, we assume that the initial states are sources:

theorem pre_star_rules_correct:
assumes inits ⊆ LTS.srcs A
and saturation pre_star_rule A A′

shows lang A′ = pre_star (lang A)

Schwoon’s Lemma 3.1 is used to prove the ⊇ direction of the
theorem’s conclusion. He proves it by considering an arbitrary
predecessor configuration (p′, w) of a configuration (p, v) in
A’s language. The proof proceeds by induction on the number
of ⇒ transitions from (p′, w) to (p, v). We do not keep track
of this number, but we instead prove the lemma by induction
on the transitive and reflexive closure of⇒. The formalization
of the proof is written in Isabelle’s structured proof language
Isar (not shown) and follows Schwoon’s arguments.
Schwoon’s Lemma 3.2 is used to prove the ⊆ direction of
pre_star_rules_correct’s conclusion. We showcase Lemma 3.2
in Schwoon’s formulation, but adapted to our notation:

Lemma 3.2 If saturation pre_star_rule A A′ and
(p, w, q) ∈ LTS.trans_star A′ then:

(a) (p, w)⇒∗ (p′, w′) for a configuration (p′, w′) such that
(p′, w′, q) ∈ A;

(b) moreover, if q is an initial state, then w′ = [].
In his proof, Schwoon claims to prove (a) by an induction and
then that (b) will follow immediately from a simple argument.
However, reading his proof we notice that he uses (b) in the
proof of (a). We resolve this by noticing that we can strengthen
(b) to hold for any stack w and not just the one w′ claimed
to exist in (a). Our formulation of (b) looks as follows:

lemma word_into_init_empty:
assumes (p, w, Init q) ∈ LTS.trans_star A
and inits ⊆ LTS.srcs A
shows w = [] ∧ p = Init q

We prove (a) using the strengthened version of (b). Like
Schwoon, we prove (a) by a nested induction. His outer
induction is on the number of times the algorithm added
transitions to the P -automaton. We instead prove the lemma by
induction on the transitive reflexive closure of pre_star_rule.
The inner induction is more challenging to formalize. Here,
Schwoon considers a specific transition t which he defines
as the ith transition added to P -automaton A. In the same
context he considers a word w and two states, Init p and
q, such that (Init p, w, q) ∈ LTS.trans_star A′. He then
defines j as the number of times t is used in (Init p, w, q) ∈
LTS.trans_star A′. We may argue that this number is not well-
defined, because there can be several paths from Init p to q
consuming w, and on these paths t may not occur the same
number of times. It turns out we can choose among these paths
completely freely—any one of them will work, and so we just
choose one arbitrarily. Formalizing this required us to define a
variant of trans_star that keeps track of the intermediate states.

B. Nondeterministic post∗ Saturation

We call states with no incoming or outgoing transitions
isolated. The post∗ saturation algorithm requires the addition

of new noninitial states that are isolated in the automaton
on which the algorithm is run. Under certain conditions the
algorithm adds transitions into and out of these. Each such new
state corresponds to a control location and a label. We extend
the datatype of states with a new constructor Isolated for these:

datatype (′ctr_loc, ′noninit , ′label) state =
Init ′ctr_loc | Noninit ′noninit | Isolated ′ctr_loc ′label

Moreover, we define isols = {q. ∃p. q = Isolated p}.
Steps in the post∗ saturation are formalized as follows:
inductive post_star_rules where
(p, γ) ↪→ (p′, pop) −→ (Init p′, ε, q) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Init p′, ε, q)})

| (p, γ) ↪→ (p′, swap γ′) −→ (Init p′,Some γ′, q) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Init p′,Some γ′, q)})

| (p, γ) ↪→ (p′, push γ′ γ′′) −→
(Init p′,Some γ′, Isolated p′ γ′) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ (Init p′,Some γ′, Isolated p′ γ′))

| (p, γ) ↪→ (p′, push γ′γ′′) −→
(Isolated p′ γ′,Some γ′′, q) /∈ A −→
(Init p′,Some γ′, Isolated p′ γ′) ∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Isolated p′ γ′,Some γ′′, q)})

The relation has one rule for pop, one for swap, and two
for push. It uses LTS_ε.trans_star_ε, which is similar to
LTS.trans_star but allows ε-transitions that do not consume
stack symbols. The transition (Init p′, ε, q) is an ε-transition
and (Init p′,Some γ′, q) is a γ′-labeled non-ε-transition. The
function lang_ε returns the language of a P -automaton with
ε-transitions. We prove post∗ saturation correct:

theorem post_star_rules_correct:
assumes saturation post_star_rules A A′

and inits ⊆ LTS.srcs A and isols ⊆ LTS.isolated A
shows lang_ε A′ = post_star (lang_ε A)

Schwoon’s definition of the post∗ rule has only one rule
for push (in contrast to our two rules). In his rule, Schwoon
first adds a transition (Init p′,Some γ′, Isolated p′ γ′) and
then adds a transition (Isolated p′ γ′,Some γ′′, q). Consider
his rule here presented in his formulation but our notation:

If (p, γ) ↪→ (p′, push γ′ γ′′) and
(Init p, γ, q) ∈ LTS_ε.trans_star_ε A,
first add (Init p′,Some γ′, Isolated p′ γ′);
then add (Isolated p′ γ′,Some γ′′, q).

We were at first surprised that he specified this first/then order,
but his correctness proof actually relies on it. Specifically, the
order is used in his proof of Lemma 3.4, which is the key to
prove the ⊇ direction of post_star_rules_correct. We present
Lemma 3.4 in Schwoon’s formulation but our notation:

Lemma 3.4 If saturation post_star_rules A A′ and
(Init p, w, q) ∈ LTS_ε.trans_star_ε A′ then:

(a) if q /∈ isols, then (p′, w′)⇒∗ (p, w) for a configuration
(p′, w′) such that (Init p′, w′, q) ∈ LTS_ε.trans_star_εA;

(b) if q = Isolated p′ γ′, then (p′, γ′)⇒∗ (p, w).
Schwoon’s proof is a nested induction. The outer induction

is on the number of transitions post∗ has added. The induction
step proceeds by an inner induction on the number of times the
most recently added transition t was used in (Init p, w, q′) ∈
LTS_ε.trans_star_ε A′. (We resolve the ambiguity of that
number’s meaning in a similar way as for pre∗.) The proof
then proceeds by a case distinction on which of the post∗ sat-
uration rules added t. Consider the case where t was added by
the “first” part of the rule for push. In this case, t has the form
(Init p′,Some γ′, Isolated p′ γ′). Schwoon states that “Then
since Isolated p′ γ′ has no transitions leading into it initially, it
cannot have played part in an application rule before this step,
and t is the first transition leading to it. Also, there are no tran-
sitions leading away from t so far.” Had Schwoon not forced
the algorithm to first add the transition into Isolated p′ γ′ and
then add the one out of it, then he could not have claimed
that there are no transition leading away from t. We capture
this idea in the following two lemmas, stating that if t is not
present, then Isolated p′ γ′ must be a source and a sink:

lemma post_star_rules_Isolated_source_invariant:
assumes post_star_rules∗∗ A A′

and isols ⊆ LTS.isolated A
and (Init p′,Some γ′, Isolated p′ γ′) /∈ A′

shows Isolated p′ γ′ ∈ LTS.srcs A′

lemma post_star_rules_Isolated_sink_invariant:
assumes post_star_rules∗∗ A A′

and isols ⊆ LTS.isolated A
and (Init p′,Some γ′, Isolated p′ γ′) /∈ A′

shows Isolated p′ γ′ ∈ LTS.sinks A′

Formalizing Schwoon’s push rule as a single rule in
post_star_rules does not capture the order in which the two
transition are added to the set. This is why we split the rule
in two—one adding the transition into the new noninitial
state and another adding the transition out of the new non-
initial state. This does not yet impose the needed first/then
order. However, we can impose the order by letting the
latter rule be only applicable if the transition added by the
former is indeed already in the automaton. This is possible
because the transition added into state Isolated p′ γ′ is
(Init p′,Some γ′, Isolated p′ γ′), and thus we can refer to
the states comprising this transition in any context where
Isolated p′ γ′ is available, in particular, the second push rule.
Note that our post∗ saturation algorithm is slightly more gen-
eral than Schwoon’s as we do not require the transition out of
the new noninitial state to be added immediately after the tran-
sition into it, rather we allow this to happen at any time after.

C. Combined dual∗ Saturation

We now consider the recent bi-directional search approach,
called dual∗ [23]. With dual∗ we can check if the configu-
rations of one P -automaton A2 are reachable from another
P -automaton A1 by alternating between saturating A2 towards
its pre∗ closure and A1 towards its post∗ closure, while
simultaneously (on-the-fly) keeping track of their intersection

fun (in LTS) reach where
reach p [] = {p}
| reach p (γ#w) = (

⋃︁
q′ ∈ (

⋃︁
(p′, γ′, q′) ∈ step.

if p′ = p ∧ γ′ = γ then {q′} else {}). reach q′ w)

definition (in PDS) pre_star1 A = (
⋃︁
((p, γ), (p′, w)) ∈ ∆.⋃︁

q ∈ LTS.reach A (Init p′) (lbl w). {(Init p, γ, q)})
definition (in PDS) pre_star_exec = the ◦ while_option

(λs. s ∪ pre_star1 s ̸= s) (λs. s ∪ pre_star1 s)

Fig. 4: Executable pre∗

automaton. As soon as the intersection automaton becomes
nonempty, we know that there is a state in A2 that is reachable
from A1. This is the case even if the pre∗ and post∗ automata
are not saturated. Our correctness theorem is formalized here:

theorem dual_star_correct_early_termination:
assumes inits ⊆ LTS.srcs A1 and inits ⊆ LTS.srcs A2

and isols ⊆ LTS.isolated A1 ∩ LTS.isolated A2

and post_star_rules∗∗ A1 A
′
1 and pre_star_rule∗∗ A2 A

′
2

and lang_ε_inters (inters_ε A′
1 (LTS_ε_of A′

2)) ̸= {}
shows ∃c1 ∈ lang_ε A1. ∃c2 ∈ lang A2. c1 ⇒∗ c2

The function LTS_ε_of trivially converts a P -automaton
to a P -automaton with ε-transitions. The function inters_ε
calculates the intersection P -automaton with ε-transitions
of two P -automata with ε-transitions using a product
construction. The function lang_ε_inters gives the language
of an intersection automaton. Since the ⊆ directions of
pre_star_rule_correct and post_star_rules_correct do not rely
on A′ being saturated we prove them assuming only respec-
tively pre_star_rule∗∗ A2 A′

2 and post_star_rules∗∗ A1 A′
1

instead of saturation pre_star_rule A2 A′
2 and

saturation post_star_rules A1 A′
1. We use these more

general lemmas to prove dual_star_correct_early_termination.

IV. EXECUTABLE PUSHDOWN REACHABILITY

To get an executable algorithm for pre∗, we resolve the non-
determinism by defining a functional program pre_star_exec,
presented in Fig. 4 (where we indicate the corresponding
locale for each definition), with this characteristic property:

theorem pre_star_exec_language_correct:
assumes inits ⊆ LTS.srcs A
shows lang (pre_star_exec A) = pre_star (lang A)

The function reach is trans_star’s executable counterpart: for
a state p and a word w, reach p w computes the set of states
reachable from p via w using step (fixed in the LTS locale). In
other words, we have q ∈ reach p w iff (p, w, q) ∈ trans_star.

The definition of pre_star_exec uses while_option, the func-
tional while loop counterpart. Given a test predicate b, a loop
body c and a loop state s, the expression while_option b c s
computes the optional state Some (c (· · · (c (c s)))) not
satisfying b with the minimal number of applications of c, or
None if no such state exists. Our specific loop keeps adding the
results of a single step pre_star1 to the P -automaton compris-
ing the loop state. We prove that our loop never returns None,

definition nonempty A P Q =
(∃p ∈ P. ∃q ∈ Q. ∃w. (p, w, q) ∈ trans_star A)

definition inters A B =
{((p1, p2), w, (q1, q2)). (p1, w, q1) ∈ A ∧ (p2, w, q2) ∈ B}

definition nonempty_inter ∆ A1 F1 F ni
1 A2 F2 F ni

2 =
nonempty (inters A1 (pre_star_exec ∆ A2))
((λx. (x, x)) ‘ inits) (finals F1 F ni

1 × finals F2 F ni
2)

definition check ∆ A1 F1 F ni
1 A2 F2 F ni

2 =
(if ¬inits ⊆ LTS.srcs A2 then None
else Some (nonempty_inter ∆ A1 F1 F ni

1 A2 F2 F ni
2)

Fig. 5: Reachability check for P -automata

i.e., it always terminates. We thus use the, defined partially as
the (Some x) = x, in pre_star_exec to extract the resulting
P -automaton. The step pre_star1 computes the set of all transi-
tions that can be added by a single application of pre_star_rule.

Fig. 4’s definitions are executable: Isabelle can inter-
pret them as functional programs and extract Standard ML,
Haskell, OCaml, or Scala code [19], but it is usually not possi-
ble to extract code for inductive predicates (such as trans_star
or the transitive closure in saturation) or definitions involving
quantifiers ranging over an infinite domain (as in saturated).
The definition of pre_star_exec has an obvious inefficiency. In
every iteration, pre_star1 is evaluated twice: once as a part of
the loop body and once as a part of the test. Instead we use
the following improved equation, which replaces while_option
with explicit recursion, for code extraction.

lemma pre_star_exec_code[code]:
pre_star_exec s = (let s′ = pre_star1 s in
if s′ ⊆ s then s else pre_star_exec (s ∪ s′))

With the executable algorithm for pre∗, we decide the
reachability problem for P -automata using the check function
shown in Fig. 5. It inputs a PDS ∆ along with two P -automata
represented by their transition relations (A1 and A2), their
final initial states (F1 and F2) and their final noninitial states
(F ni

1 and F ni
2). The computation proceeds by intersecting

(inters) the initial P -automaton with the pre∗ saturation of
the final P -automaton and checking the result’s nonemptiness
(nonempty). Fig. 5 refers to functions pre_star_exec, inits,
finals, and trans_star which we introduced earlier in the
context of different locales, outside of the respective locale.
Therefore, these functions take additional parameters that
correspond to the fixed parameters of the respective locale if
they are used by the function (e.g., we write pre_star_exec ∆
instead of pre_star_exec for an implicitly fixed ∆).

The definition of nonempty is not executable because of the
quantification over words w. We implement, but omit here, the
straightforward executable algorithm that starts with the set of
initial states P and iteratively adds transitions from A until it
reaches Q or saturates without reaching Q, in which case the
language is empty since no state in Q is reachable from P .

Overall, check returns an optional Boolean value, where
None signifies a well-formedness violation on the final

P -automaton: a non-source initial state in A2. If check returns
Some b, then b is the answer to the reachability problem for
P -automata. We formalize this characterization of check by
the following two theorems (phrased outside of locales).

theorem check_None:
check ∆ A1 F1 F ni

1 A2 F2 F ni
2 = None←→

¬inits ⊆ LTS.srcs A2

theorem check_Some:
check ∆ A1 F1 F ni

1 A2 F2 F ni
2 = Some b←→

(inits ⊆ LTS.srcs A2 ∧ (b←→
(∃p w p′ w′. step_starp ∆ (p, w) (p′, w′) ∧
(p, w) ∈ langA1 F1 F

ni
1 ∧ (p′, w′) ∈ langA2 F2 F

ni
2)))

V. DIFFERENTIAL TESTING

Differential testing [14], [18], [34] is a technique for finding
implementation errors by executing different algorithms solv-
ing the same problem on a set of test cases and comparing the
outputs. Differential testing has been effective for finding er-
rors in a wide range of domains, from network certificate vali-
dation [47] to JVM implementations [8]. Yet, even different al-
gorithms do not necessarily fail independently, e.g., when built
from the same specification [27] or when sharing potentially
faulty components, e.g., input parsers or preprocessing. To re-
duce the danger of missing such errors, we suggest to incorpo-
rate a formally verified implementation in differential testing.
Moreover, in case of a discrepancy the verified oracle reliably
tells us which of the unverified implementations is wrong.

A. Differential Testing of Pushdown Reachability

Our executable formalization of pushdown reachability
allows us to perform differential testing on unverified tools
for the same problem. A test case for pushdown reachability
consists of a PDS with rules ∆ and two P -automata A1 and
A2 representing the initial and final configurations of interest.
The answer to the test case is whether there exist c ∈ L(A1)
and c′ ∈ L(A2) such that c⇒∗ c′ using the rules ∆.

To execute the formalization on a given test case, we
generate an Isabelle theory file, which first defines the control
locations, labels, and automata states as finite subsets of the
natural numbers (their sizes depending on the specific test
case), and then includes for the pushdown rules ∆ and the two
P -automata, each represented by its transitions Ai along with
the accepting (initial and noninitial) states Fi and Fni

i for i ∈
{1, 2}. Fig. 3 shows a specific example of ∆ and A definitions.

We generate a lemma that uses our check function, where
the expected result Some True or Some False is inserted
depending on the answer produced by an unverified tool under
test (invoked before generating the theory on the same inputs):

lemma check ∆ A1 F1 F
ni
1 A2 F2 F

ni
2 = Some True by eval

The eval proof method extracts Standard ML code for check
and other constants in the lemma and executes the lemma
statement as an expression. It succeeds iff the lemma evaluates
to True. We call a test case a counter-example, if the proof
method fails. One could also run the extracted code outside

Input: Reachability tools tool and oracle, PDS (P,Γ,∆),
P -automata Ai=(P ∪Ni,→i, P, Fi) for i ∈ {1, 2}.

Output: Minimal counter-example (failing testcase)
1: c← ∆∪({1}×(→1∪F1))∪({2}×(→2∪F2))

▷ Convert to a set of features
2: return DD(c, 2) ▷ returned set of features can be

converted to PDS and P -automata as on lines 10-11

3: function DD(c, n) ▷ c is a test case, n is granularity
4: let c1 ⊎ · · · ⊎ cn = c, all ci as evenly sized as possible
5: if ∃i. BAD(ci) return DD(ci, 2)
6: else if ∃i. BAD(c\ci) return DD(c\ci, max(n−1, 2))
7: else if n < |c| return DD(c, min(2n, |c|))
8: else return c

9: function BAD(c) ▷ c is a test case
10: let ∆′ = c ∩∆ ▷ extract PDS rules and P -automata
11: for i ∈ {1, 2} let A′

i = (P ∪ Ni,→′
i, P, F

′
i) where

→′
i = {t ∈ →i | (i, t) ∈ c} and F ′

i = {q ∈ Fi | (i, q) ∈ c}

12: with both tools check if A′
1 reaches A′

2 via (P,Γ,∆′)
13: return false if tool and oracle agree, else true

Algorithm 1: Specialization of delta-debugging [51] to PDS.

Isabelle, but our setup allows us to generate the inputs to check
on the formalization level instead of that of the extracted code.

To efficiently check a large number of test cases, we batch
multiple definitions and lemmas into one theory file, thus
reducing the overhead of starting Isabelle. We run Isabelle
from the command line and check the output log for any failing
eval proofs, which correspond to failing test cases.

B. Automatic Counter-Example Minimization

If differential testing finds a failing test case, we use delta-
debugging [51] to automatically reduce it to a minimal failing
test case to help the subsequent debugging process. We use
the minimizing delta debugging algorithm [51] that sees a test
case as a set of features, and works by systematically testing
different subsets until a minimal failing test case is found.

We use delta debugging on any discovered counter-example
and fix the set of features to contain: (i) each pushdown rule,
(ii) each transition in either of the P -automata, and (iii) each
final state in a P -automaton (as opposed to it not being final).

States and labels are identified by unique names, and the
initial P -automata states are exactly the states mentioned in
any pushdown rule in the feature set. We specialize the general
delta debugging algorithm to pushdown systems as shown in
Algorithm 1. The algorithm first creates the set of features and
calls the recursive function DD with this set of features and the
granularity 2. The function then splits the set of features into a
number of equally sized subsets (according to the granularity)
and checks if any of these subsets or their complements
still fail. If yes, then the function tries to recursively reduce
the set of features further, otherwise it will increase the
granularity and try again. The function BAD converts the set

∆={

(p0,D)↪→(p0,swap A),

(p0,E)↪→(p0,push B E),

(p0,D)↪→

(p0,push DD),

(p0,D)↪→(p0,pop),

(p0,D)↪→(p1,swap A),

(p0,A)↪→(p1,push CA),

(p0,E)↪→(p2,push A E),

(p0,B)↪→(p2,push DB),

(p0,C)↪→(p2,swapD),

(p0,E)↪→(p2,swap E),

(p0,E)↪→(p3,push B E),

(p0,C)↪→(p3,swap E),

(p1,B)↪→(p0,swap C),

(p1,D)↪→(p0,swap C),

(p1,C)↪→(p0,swap B),

(p1,C)↪→(p0,swap E),

(p1,B)↪→(p1,swap C),

(p1,E)↪→(p1,swap C),

(p1,A)↪→(p2,swap A),

(p1,D)↪→(p2,swapD),

(p1,C)↪→(p2,swap E),

(p1,C)↪→(p3,swapD),

(p1,D)↪→(p3,pop),

(p2,B)↪→(p0,push AB),

(p2,A)↪→(p0,push CA),

(p2,C)↪→(p0,push C C),

(p2,D)↪→

(p0,push BD),

(p2,C)↪→(p1,push C C),

(p2,A)↪→(p1,push BA),

(p2,A)↪→(p2,push AA),

(p2,C)↪→(p2,swap A),

(p2,E)↪→(p2,swap A),

(p2,A)↪→(p2,push BA),

(p2,B)↪→(p2,swap E),

(p2,E)↪→(p3,push A E),

(p2,B)↪→(p3,push CB),

(p3,D)↪→

(p0,push BD),

(p3,C)↪→(p0,push E C),

(p3,C)↪→(p0,swap E),

(p3,C)↪→(p1,push A C),

(p3,B)↪→(p1,pop),

(p3,E)↪→(p2,swap C),

(p3,B)↪→(p2,push DB),

(p3,E)↪→(p3,swap A),

(p3,A)↪→(p3,push CA),

(p3,E)↪→(p3,swapD),

(p3,C)↪→(p3,pop)}

A1 = {(Init p0,B,Noninit q1), (Init p0,D,Noninit q0), ∆ = {(p0, D) ↪→ (p0, pop)}
(Init p2,B,Noninit q0), (Init p3,A,Noninit q2),
(Noninit q0,D,Noninit q1), (Noninit q2,C,Noninit q0)} A1 = {(Init p0,D,Noninit q0), (Noninit q0,D,Noninit q1)}

F1 = {} Fni
1 = {q1} F1 = {} Fni

1 = {q1}

A2 = {(Init p2, A, Noninit q0)), (Init p2, B, Noninit q0)} A2 = {}
F2 = {p0, p2} Fni

2 = {} F2 = {p0} Fni
2 = {}

Fig. 6: Original and minimized (bottom right) counter-example

of features into a reduced pushdown system and two reduced
P -automata and checks if the given tool implementation is
still inconsistent with the oracle. We note that minimal failing
counter-examples are only locally minimal and not necessarily
unique. Yet, minimization is effective and necessary. Fig. 6
shows a real bug example we discovered by random
differential testing in the PDAAAL library for pushdown
reachability [23] and its minimization by Algorithm 1.

VI. CASE STUDY: ANALYSIS OF PDAAAL

We apply differential testing with automatic counter-
example minimization to PDAAAL [42], a recent C++ imple-
mentation of pushdown reachability checking, which appears
to be the currently most efficient library for pushdown reacha-
bility [23]. PDAAAL implements post∗, pre∗ and dual∗ [23].

These three different algorithms can be used in classical
differential testing without a verified oracle, but given the large
amount of shared code this is bound to miss some errors. And
without a verified oracle, manual effort is needed to determine
which implementation is faulty in case of discrepancies. This
motivates using our verified reachability check via pre∗, and
we compare the output of each unverified algorithm to the out-
put of our trustworthy oracle on a large number of test cases.

A. Methodology of Test Case Generation

We structure our test case generation in three phases.
In phase one, we use real-world tests generated from

the domain of network verification, which PDAAAL was
originally built for as a backend [22]. We generate pushdown
reachability problems from realistic network verification
use-cases on (up to) 100 random reachability queries on
each of the 260 different networks derived from the Internet
Topology Zoo [28] giving a total of 25 512 test cases.

In phase two, we randomly generate valid pushdown sys-
tems and P -automata. We generate 15 000 cases of varying
sizes with 4 control locations, 5 labels, up to 200 pushdown
rules, and up to 13 automata transitions. Our generator writes
all ingredients (pushdown system and P -automata) to a JSON

file, which is then translated to the Isabelle definitions and
correctness lemmas that incorporate the unverified answers.

Finally, in phase three, we exhaustively enumerate the set
of all test cases up to a certain (small) size. For the pushdown
systems |P | = |Γ| = 2 and |∆| ≤ 2, and for P -automata
|N1| = 2, |N2| = 1 and |→| ≤ 2. We remove symmetric
cases, where swapping state names or labels gives an identical
case. In total, this yields close to 27 million combinations of
pushdown systems and P -automata. For the exhaustive tests,
we output both JSON files and Isabelle definitions directly
from the test case generator. A bash script stitches together the
Isabelle definitions into a single theory file with a batch of test
cases to benefit from Isabelle’s parallel processing of proofs.

B. Results
The real-world test cases showed no discrepancies between

the verified oracle and PDAAAL. This indicates that PDAAAL
has already been thoroughly tested on this type of problem
instances. Isabelle ran out of memory in 30 of the 25 512 test
cases. The average CPU time (on AMD EPYC 7642 proces-
sors at 1.5 GHz) per test case was 35 seconds for Isabelle,
while PDAAAL used less than 0.02 seconds on most cases.

Phase two, however, resulted in 1 334 discrepancies. By
applying our counter-example minimization, we noted that all
these cases had a common trait: the P -automaton A2 accepted
the empty word. This helped us find the first implementation
error in the implementation of the on-the-fly automata inter-
section when using post∗. The post∗ algorithm can introduce
ε-transitions, which were not handled correctly by the inter-
section implementation. In most cases, this does not matter, as
for any ε-transition followed by a normal transition the post∗

algorithm adds a direct transition at some later point. However,
in the case of an empty stack being accepted by A2, this does
not happen, which causes the unverified algorithm to return
the wrong answer False. We resolved the error and re-ran the
generated tests. After that only one discrepancy remained.

This second error was found in the implementation of pre∗.
The minimized counter-example helped us find the source

10: function ADDTRANSITION(qi
γ−→i q

′
i) ▷ with i ∈ {1, 2}

11: add qi
γ−→i q

′
i to Ai

12: for all q3−i, q
′
3−i ∈ Q3−i s.t. (q1, q2) ∈ R and q3−i

γ−→3−i q
′
3−i do

13: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

14: ADDSTATE(q′1, q′2)

(a) Snippet of (correct) intersection pseudocode by Jensen et al. [23]

(b) PDAAAL’s C++ code showing the resolution of the second error

Fig. 7: Discovered second implementation error and its correct pseudocode

of the implementation error: the set of automata transitions
was updated only after calling the function that performs
the nonemptiness check of the intersection automaton, but it
should have been updated before that call. We argue that this
error is subtle, as it only causes a single failure out of 15 000
randomly generated test cases. Fig. 7a shows the correct
pseudocode by Jensen et al. [23]. Fig. 7b shows PDAAAL’s
corresponding C++ code and the change resolving the error,
where the line that needed to be moved corresponds to the
pseudocode’s Line 11.

For both errors, the affected test cases resulted in a correct
answer for at least one of the other search strategies in
PDAAAL. This is not the case for the last error, which
is found in code shared by all three methods, and where
PDAAAL’s algorithms disagree only with Isabelle. This error
is caused by a mismatch between the assumptions of the
parser that builds the pushdown system and the data structure
that stores the pushdown rules. The parser assumes that it can
incrementally add rules to the data structure without knowing
all labels in advance, but the data structure assumes to know
all labels from the start to implement a memory optimization
that replaces a rule that applies to all labels by a wildcard.

For the first two test phases, the program that generated
Isabelle definitions also depended on this parser, so the bug
was not discovered until the third phase, which has a different
setup. After the three bugs were fixed, all test cases pass.

VII. CONCLUSION

We presented a methodology that increases the reliability of
tools and libraries for pushdown reachability analysis. To this

end, we formalized and proved in Isabelle/HOL the correctness
of the essential saturation algorithms used in such tools.
We extracted an executable program from our formalization
and used it as a trustworthy oracle for differential testing.
Putting the modern pushdown analysis library PDAAAL on the
testbed, we discovered a number of implementation errors in
its code, even though the library performed flawlessly in its ap-
plication domain. Using our automatic counter-example min-
imization based on delta-debugging, we were able to identify
the sources of these errors and suggested fixes to PDAAAL’s
implementation that now passes all the differential tests.

This process significantly increased PDAAAL’s reliability
and shows that with a moderate effort, the combination of
proof assistants with code generation, differential testing,
and delta-debugging is highly fruitful. The execution of all
tests in the three phases took 303 CPU days. We executed
the tests on a compute cluster with 1 536 CPU cores.
The formalization work took about two person-months for
experienced formalizers, creating about 4 400 nonempty lines
of Isabelle definition and proofs. An additional half person-
month of work was needed to implement the differential
testing and counter-example minimization, set up the tests,
and localize and resolve the discovered errors. This one-time
effort will also benefit the future development of PDAAAL.

Too often, the race for better performance can lead to subtle
implementation errors. Our methodology shows how formally
verified algorithms that were not tuned for performance can be
used to improve the quality of tuned but unverified algorithms.

REFERENCES

[1] Ballarin, C.: Locales: A module system for mathematical theories. J.
Autom. Reason. 52(2), 123–153 (2014). https://doi.org/10.1007/s10817-
013-9284-7

[2] Basin, D.A., Dardinier, T., Heimes, L., Krstic, S., Raszyk, M., Schneider,
J., Traytel, D.: A formally verified, optimized monitor for metric
first-order dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) IJCAR 2020. LNCS, vol. 12166, pp. 432–453. Springer (2020).
https://doi.org/10.1007/978-3-030-51074-9_25

[3] Berghofer, S., Reiter, M.: Formalizing the logic-automaton connec-
tion. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 147–163. Springer (2009).
https://doi.org/10.1007/978-3-642-03359-9_12

[4] Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown
automata: Application to model-checking. In: Mazurkiewicz, A.W.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150.
Springer (1997). https://doi.org/10.1007/3-540-63141-0_10

[5] Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of
dynamic networks of pushdown systems. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer (2005).
https://doi.org/10.1007/11539452_36

[6] Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods
Comput. Sci. 8(1) (2012). https://doi.org/10.2168/LMCS-8(1:16)2012

[7] Büchi, J.R.: Regular canonical systems. Archiv für mathema-
tische Logik und Grundlagenforschung 6(3-4), 91–111 (1964).
https://doi.org/https://doi.org/10.1007/BF01969548

[8] Chen, Y., Su, T., Su, Z.: Deep differential testing of JVM implementa-
tions. In: Atlee, J.M., Bultan, T., Whittle, J. (eds.) ICSE 2019. pp. 1257–
1268. IEEE / ACM (2019). https://doi.org/10.1109/ICSE.2019.00127

[9] Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental al-
gorithms for inter-procedural analysis of safety properties. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461.
Springer (2005). https://doi.org/10.1007/11513988_45

[10] van Duijn, I., Jensen, P., Jensen, J., Krøgh, T., Madsen, J., Schmid, S.,
Srba, J., Thorgersen, M.: Automata-theoretic approach to verification of
MPLS networks under link failures. IEEE/ACM Transactions on Net-
working pp. 1–16 (2021). https://doi.org/10.1109/TNET.2021.3126572

[11] Esparza, J., Knoop, J.: An automata-theoretic approach to interproce-
dural data-flow analysis. In: Thomas, W. (ed.) FoSSaCS 1999. LNCS,
vol. 1578, pp. 14–30. Springer (1999). https://doi.org/10.1007/3-540-
49019-1_2

[12] Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus,
J.: A fully verified executable LTL model checker. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_31

[13] Esparza, J., Schwoon, S.: A bdd-based model checker for recursive
programs. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 324–336. Springer (2001). https://doi.org/10.1007/3-540-
44585-4_30

[14] Evans, R.B., Savoia, A.: Differential testing: a new approach to change
detection. In: Crnkovic, I., Bertolino, A. (eds.) ESEC-FSE 2007. pp.
549–552. ACM (2007). https://doi.org/10.1145/1287624.1287707

[15] Fonseca, P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical
study on the correctness of formally verified distributed systems. In:
Alonso, G., Bianchini, R., Vukolic, M. (eds.) EuroSys 2017. pp. 328–
343. ACM (2017). https://doi.org/10.1145/3064176.3064183

[16] Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A ro-
bust framework for learning invariants. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_5

[17] Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invari-
ants using decision trees and implication counterexamples. In: Bodík,
R., Majumdar, R. (eds.) POPL 2016. pp. 499–512. ACM (2016).
https://doi.org/10.1145/2837614.2837664

[18] Groce, A., Holzmann, G.J., Joshi, R.: Randomized differential testing
as a prelude to formal verification. In: ICSE 2007. pp. 621–631. IEEE
Computer Society (2007). https://doi.org/10.1109/ICSE.2007.68

[19] Haftmann, F., Nipkow, T.: Code generation via higher-order
rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.)
FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer (2010).
https://doi.org/10.1007/978-3-642-12251-4_9

[20] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts,
M.L., Setty, S.T.V., Zill, B.: Ironfleet: proving safety and liveness of

practical distributed systems. Commun. ACM 60(7), 83–92 (2017).
https://doi.org/10.1145/3068608

[21] Jensen, J.S., Krøgh, T.B., Madsen, J.S., Schmid, S., Srba, J., Thorg-
ersen, M.T.: P-Rex: fast verification of MPLS networks with mul-
tiple link failures. In: Dimitropoulos, X.A., Dainotti, A., Vanbever,
L., Benson, T. (eds.) CoNEXT 2018. pp. 217–227. ACM (2018).
https://doi.org/10.1145/3281411.3281432

[22] Jensen, P.G., Kristiansen, D., Schmid, S., Schou, M.K., Schrenk, B.C.,
Srba, J.: AalWiNes: a fast and quantitative what-if analysis tool for
MPLS networks. In: Han, D., Feldmann, A. (eds.) CoNEXT 2020. pp.
474–481. ACM (2020). https://doi.org/10.1145/3386367.3431308

[23] Jensen, P.G., Schmid, S., Schou, M.K., Srba, J., Vanerio, J., van Duijn,
I.: Faster pushdown reachability analysis with applications in network
verification. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol.
12971, pp. 170–186. Springer (2021). https://doi.org/10.1007/978-3-030-
88885-5_12

[24] Jiang, D., Li, W.: The verification of conversion algorithms between
finite automata. Sci. China Inf. Sci. 61(2), 028101:1–028101:3 (2018).
https://doi.org/10.1007/s11432-017-9155-x

[25] Kidd, N., Lal, A., Reps, T.: Wali: The weighted automaton library
(2007), https://research.cs.wisc.edu/wpis/wpds/wali/

[26] Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional recur-
rence analysis revisited. In: Cohen, A., Vechev, M.T. (eds.) PLDI 2017.
pp. 248–262. ACM (2017). https://doi.org/10.1145/3062341.3062373

[27] Knight, J.C., Leveson, N.G.: An experimental evaluation of
the assumption of independence in multiversion program-
ming. IEEE Trans. Software Eng. 12(1), 96–109 (1986).
https://doi.org/10.1109/TSE.1986.6312924

[28] Knight, S., Nguyen, H., Falkner, N., Bowden, R., Roughan, M.: The
internet topology Zoo. IEEE Journal on Selected Areas in Comm. 29(9),
1765 –1775 (2011)

[29] Lammich, P.: Formalization of dynamic pushdown networks in
Isabelle/HOL (2009), https://www21.in.tum.de/~lammich/isabelle/
dpn-document.pdf

[30] Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic
pushdown networks with tree-regular constraints. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 525–539. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4_39

[31] Lammich, P., Tuerk, T.: Applying data refinement for monadic
programs to Hopcroft’s algorithm. In: Beringer, L., Felty, A.P.
(eds.) ITP 2012. LNCS, vol. 7406, pp. 166–182. Springer (2012).
https://doi.org/10.1007/978-3-642-32347-8_12

[32] Leroy, X.: Formal verification of a realistic compiler. Commun. ACM
52(7), 107–115 (2009). https://doi.org/10.1145/1538788.1538814

[33] Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified
causally consistent distributed key-value stores. In: Bodík, R.,
Majumdar, R. (eds.) POPL 2016. pp. 357–370. ACM (2016).
https://doi.org/10.1145/2837614.2837622

[34] McKeeman, W.M.: Differential testing for software. Digit. Tech.
J. 10(1), 100–107 (1998), http://www.hpl.hp.com/hpjournal/dtj/
vol10num1/vol10num1art9.pdf

[35] Minamide, Y.: Verified decision procedures on context-free grammars.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732,
pp. 173–188. Springer (2007). https://doi.org/10.1007/978-3-540-74591-
4_14

[36] Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL.
Springer (2014). https://doi.org/10.1007/978-3-319-10542-0

[37] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof As-
sistant for Higher-Order Logic, LNCS, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9

[38] Ramos, M.V.M., Almeida, J.C.B., Moreira, N., de Queiroz, R.J.G.B.:
Formalization of the pumping lemma for context-free languages. J.
Formaliz. Reason. 9(2), 53–68 (2016). https://doi.org/10.6092/issn.1972-
5787/5595

[39] Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based
on ordered resolution. In: Mahboubi, A., Myreen, M.O. (eds.) CPP 2019.
pp. 152–165. ACM (2019). https://doi.org/10.1145/3293880.3294100

[40] Schlichtkrull, A., Schou, M.K., Srba, J., Traytel, D.: Repeatability pack-
age for "Differential testing of pushdown reachability with a formally
verified oracle" (2022). https://doi.org/10.5281/zenodo.6952978

[41] Schneider, J., Basin, D.A., Krstic, S., Traytel, D.: A formally verified
monitor for metric first-order temporal logic. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 310–328. Springer (2019).
https://doi.org/10.1007/978-3-030-32079-9_18

https://research.cs.wisc.edu/wpis/wpds/wali/
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[42] Schou, M.K., Jensen, P.G., Kristiansen, D., Schrenk, B.C.: PDAAAL.
GitHub (2021), https://github.com/DEIS-Tools/PDAAAL

[43] Schubert, P.D., Hermann, B., Bodden, E.: PhASAR: An inter-procedural
static analysis framework for C/C++. In: Vojnar, T., Zhang, L. (eds.)
TACAS 2019. LNCS, vol. 11428, pp. 393–410. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1_22

[44] Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Techni-
cal University Munich, Germany (2002), https://d-nb.info/96638976X/
34

[45] Schwoon, S.: Moped. In: http://www2.informatik.uni-stuttgart.de/fmi/
szs/tools/moped/ (2002)

[46] Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java
bytecode checker based on Moped. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 541–545. Springer (2005).
https://doi.org/10.1007/978-3-540-31980-1_35

[47] Tian, C., Chen, C., Duan, Z., Zhao, L.: Differential testing of cer-
tificate validation in SSL/TLS implementations: An RFC-guided ap-

proach. ACM Trans. Softw. Eng. Methodol. 28(4), 24:1–24:37 (2019).
https://doi.org/10.1145/3355048

[48] Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X.,
Ernst, M.D., Anderson, T.E.: Verdi: a framework for implement-
ing and formally verifying distributed systems. In: Grove, D.,
Blackburn, S.M. (eds.) PLDI 2015. pp. 357–368. ACM (2015).
https://doi.org/10.1145/2737924.2737958

[49] Wimmer, S.: Munta: A verified model checker for timed automata. In:
André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750,
pp. 236–243. Springer (2019). https://doi.org/10.1007/978-3-030-29662-
9_14

[50] Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in C compilers. In: Hall, M.W., Padua, D.A. (eds.) PLDI 2011. pp.
283–294. ACM (2011). https://doi.org/10.1145/1993498.1993532

[51] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-
inducing input. IEEE Trans. Software Eng. 28(2), 183–200 (2002).
https://doi.org/10.1109/32.988498

https://github.com/DEIS-Tools/PDAAAL
https://d-nb.info/96638976X/34
https://d-nb.info/96638976X/34
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

	Introduction
	Isabelle/HOL
	Pushdown Reachability
	Nondeterministic pre* Saturation
	Nondeterministic post* Saturation
	Combined dual* Saturation

	Executable Pushdown Reachability
	Differential Testing
	Differential Testing of Pushdown Reachability
	Automatic Counter-Example Minimization

	Case Study: Analysis of PDAAAL
	Methodology of Test Case Generation
	Results

	Conclusion
	References

