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Abstract10

The relational calculus (RC) is a concise, declarative query language. However, existing RC query11

evaluation approaches are inefficient and often deviate from established algorithms based on finite12

tables used in database management systems. We devise a new translation of an arbitrary RC query13

into two safe-range queries, for which the finiteness of the query’s evaluation result is guaranteed.14

Assuming an infinite domain, the two queries have the following meaning: The first is closed and15

characterizes the original query’s relative safety, i.e., whether given a fixed database, the original16

query evaluates to a finite relation. The second safe-range query is equivalent to the original query, if17

the latter is relatively safe. We compose our translation with other, more standard ones to ultimately18

obtain two SQL queries. This allows us to use standard database management systems to evaluate19

arbitrary RC queries. We show that our translation improves the time complexity over existing20

approaches, which we also empirically confirm in both realistic and synthetic experiments.21
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1 Introduction26

Codd’s theorem states that all domain-independent queries of the relational calculus (RC)27

can be expressed in relational algebra (RA) [10]. A popular interpretation of this result is that28

RA suffices to express all interesting queries. This interpretation justifies why SQL evolved as29

the practical database query language with the RA as its mathematical foundation. SQL is30

declarative and abstracts over the actual RA expression used to evaluate a query. Yet, SQL’s31

syntax inherits RA’s deliberate syntactic limitations, such as union-compatibility, which32

ensure domain independence. RC does not have such syntactic limitations, which arguably33

makes it a more attractive declarative query language than both RA and SQL. The main34

problem of RC is that it is not immediately clear how to evaluate even domain-independent35

queries, much less how to handle the domain-dependent (i.e., not domain-independent) ones.36

As a running example, consider a shop in which brands (unary finite relation B of brands)37

sell products (binary finite relation P relating brands and products) and products are reviewed38

by users with a score (ternary finite relation S relating products, users, and scores). We39

consider a brand suspicious if there is a user and a score such that all the brand’s products40

were reviewed by that user with that score. An RC query computing suspicious brands is41

Qsusp B B(b) ∧ ∃u, s. ∀p. P(b, p) −→ S(p, u, s).42

This query is domain-independent and follows closely our informal description. It is not,43
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11:2 Practical Relational Calculus Query Evaluation

however, clear how to evaluate it because its second conjunct is domain-dependent as it is44

satisfied for every brand that does not occur in P. Finding suspicious brands using RA or45

SQL is a challenge, which only the best students from an undergraduate database course46

will accomplish. We give away an RA answer next (where − is the set difference operator47

and . is the anti-join, also known as the generalized difference operator [1]):48

πbrand((πuser,score(S)× B)− πbrand,user,score((πuser,score(S)× P) . S)) ∪ (B− πbrand(P)).49

The highlighted expressions πuser,score(S) are called generators. They ensure that the left50

operands of the anti-join and set difference operators include or have the same columns (i.e.,51

are union-compatible) as the corresponding right operands. (Following Codd [10], one could52

in principle also use the active domain to obtain canonical, but far less efficient, generators.)53

Van Gelder and Topor [13, 14] present a translation from a decidable class of domain-54

independent RC queries, called evaluable, to RA expressions. Their translation of the evaluable55

Qsusp query would yield different generators, replacing both highlighted parts by πuser(S)×56

πscore(S). That one can avoid this Cartesian product as shown above is subtle: Replacing57

only the first highlighted generator with the product results in an inequivalent RA expression.58

Once we have identified suspicious brands, we may want to obtain the users whose scoring59

made the brands suspicious. In RC, omitting u’s quantifier from Qsusp achieves just that:60

Qsusp
user B B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s).61

In contrast, RA cannot express the same property as it is domain-dependent (hence also not62

evaluable and thus out of scope for Van Gelder and Topor’s translation): Qsusp
user is satisfied63

for every user if a brand has no products, i.e., it does not occur in P. Yet, Qsusp
user is satisfied64

for finitely many users on every database instance where P contains at least one row for every65

brand from the relation B, in other words Qsusp
user is relatively safe on such database instances.66

How does one evaluate queries that are not evaluable or even domain-dependent? The67

main approaches from the literature (Section 2) are either to use variants of the active domain68

semantics [2, 5, 15] or to abandon finite relations entirely and evaluate queries using finite69

representations of infinite (but well-behaved) relations such as systems of constraints [26] or70

automatic structures [6]. These approaches favor expressiveness over efficiency. Unlike query71

translations, they cannot benefit from decades of practical database research and engineering.72

In this work, we translate arbitrary RC queries to RA expressions under the assumption73

of an infinite domain. To deal with queries that are domain-dependent, our translation74

produces two RA expressions, instead of a single equivalent one. The first RA expression75

characterizes the original RC query’s relative safety, the decidable question of whether the76

query evaluates to a finite relation for a given database, which can be the case even for77

a domain-dependent query, e.g., Qsusp
user . If the original query is relatively safe on a given78

database, i.e., produces some finite result, then the second RA expression evaluates to the79

same finite result. Taken together, the two RA expressions solve the query capturability80

problem [3]: they allow us to enumerate the original RC query’s finite evaluation result, or81

to learn that it would be infinite using RA operations on the unmodified database.82

Our translation of an RC query to two RA expressions proceeds in several steps via safe-83

range queries and the relational algebra normal form (Section 3). We focus on the first step of84

translating an RC query to two safe-range RC queries (Section 4), which fundamentally differs85

from Van Gelder and Topor’s approach and produces better generators like πuser,score(S).86

Our generators strictly improve the time complexity of query evaluation (Section 4.4).87

After the more standard transformations to relational algebra normal form and from there88

to RA expressions, we translate the resulting RA expressions into SQL using the radb tool [30].89

Along the way to SQL, we leverage various ideas from the literature to optimize the overall90
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result (Section 6). For example, we generalize Claußen et al. [9]’s approach to avoid evaluating91

Cartesian products like πuser,score(S)×P in the above translation by using count aggregations.92

The overall translation allows us to use standard database management systems to evaluate93

RC queries. We implement our translation and use PostgreSQL to evaluate the translated94

queries. Using a real Amazon review dataset [23] and our synthetic benchmark that generates95

hard database instances for random RC queries (Section 5), we evaluate our translation’s96

performance. The evaluation shows that our approach outperforms Van Gelder and Topor’s97

translation (which also uses PostgreSQL for evaluation) and other approaches (Section 6).98

In summary, the following are our three main contributions:99

We devise a translation of an arbitrary RC query into a pair of RA expressions as100

described above. The time complexity of evaluating our translation’s results improves101

upon Van Gelder and Topor’s approach [14].102

We implement our translation and extend it to produce SQL queries. The resulting tool103

RC2SQL makes RC a viable input language for standard database management systems.104

We evaluate our tool on synthetic and real data and confirm that our translation’s105

improved asymptotic time complexity carries over into practice.106

To challenge RC2SQL (and its competitors) in our evaluation, we devise the Data Golf107

benchmark that generates hard database instances for randomly generated RC queries.108

2 Related Work109

We recall Trakhtenbrot’s theorem and the fundamental notions of capturability and data110

complexity. Given an RC query over a finite domain, Trakhtenbrot [27] showed that it is111

undecidable whether there exists a (finite) structure satisfying the query. In contrast, the112

question of whether a fixed structure satisfies the given RC query is decidable [2].113

Kifer [16] calls a query class capturable if there is an algorithm that, given a query in114

the class and a database instance, enumerates the query’s evaluation result, i.e., all tuples115

satisfying the query. Avron and Hirshfeld [3] observe that Kifer’s notion is restricted because116

it requires every query in a capturable class to be domain independent. Hence, they propose117

an alternative definition that we also use: A query class is capturable if there is an algorithm118

that, given a query in the class, a (finite or infinite) domain, and a database instance,119

determines whether the query’s evaluation result on the database instance over the domain120

is finite and enumerates the result in this case. Our work solves Avron and Hirshfeld’s121

capturability problem additionally assuming an infinite domain.122

Data complexity [29] is the complexity of recognizing if a tuple satisfies a fixed query over123

a database, as a function of the database size. Our capturability algorithm provides an upper124

bound on the data complexity for RC queries over an infinite domain that have a finite evalu-125

ation result (but it cannot decide if a tuple belongs to a query’s result if the result is infinite).126

Next, we group related approaches to evaluating RC queries into three categories.127

Structure reduction. The classical approach to handling arbitrary RC queries is to128

evaluate them under a finite structure [18]. The core question here is whether the evaluation129

produces the same result as defined by the natural semantics, which typically considers infinite130

domains. Codd’s theorem [10] affirmatively answers this question for domain-independent131

queries, restricting the structure to the active domain. Ailamazyan et al. [2] show that RC is a132

capturable query class by extending the active domain with a few additional elements, whose133

number depends only on the query, and evaluating the query over this finite domain. Natural–134

active collapse results [5] generalize Ailamazyan et al.’s [2] result to extensions of RC (e.g.,135

with order relations) by combining the structure reduction with a translation-based approach.136

Hull and Su [15] study several semantics of RC that guarantee the finiteness of the query’s137

ICDT 2022



11:4 Practical Relational Calculus Query Evaluation

evaluation result. In particular, the “output-restricted unlimited interpretation” only restricts138

the query’s evaluation result to tuples that only contain elements in the active domain, but139

the quantified variables still range over the (finite or infinite) underlying domain. Our work140

is inspired by all these theoretical landmarks, in particular Hull and Su’s work (Section 4.1).141

Yet we avoid using (extended) active domains, which make query evaluation impractical.142

Query translation. Another strategy is to translate a given query into one that can143

be evaluated efficiently, for example as a sequence of RA operations. Van Gelder and Topor144

pioneered this approach [13,14] for RC. A core component of their translation is the choice of145

generators, which replace the active domain restrictions from structure reduction approaches146

and thereby improve the time complexity. Extensions to scalar and complex function symbols147

have also been studied [12,19]. All these approaches focus on syntactic classes of RC, for which148

domain-independence is given, e.g., the evaluable queries of Van Gelder and Topor [14, Defin-149

ition 5.2]. Our approach is inspired by Van Gelder and Topor’s but generalizes it to handle150

arbitrary RC queries at the cost of assuming an infinite domain. Also, we further improve151

the time complexity of Van Gelder and Topor’s approach by choosing better generators.152

Evaluation with infinite relations. Constraint databases [26] obviate the need for us-153

ing finite tables when evaluating RC queries. This yields significant expressiveness gains over154

RC. Yet the efficiency of the quantifier elimination procedures employed cannot compare with155

the simple evaluation of a projection operation in RA. Similarly, automatic structures [6] can156

represent the results of arbitrary RC queries finitely, but struggle with large quantities of data.157

We demonstrate this in our evaluation where we compare our translation to several modern158

incarnations of the above approaches, all based on binary decision diagrams [4, 7, 17,20,21].159

3 Preliminaries160

We introduce the RC syntax and semantics and define relevant classes of RC queries.161

3.1 Relational Calculus162

A signature σ is a triple (C,R, ι), where C and R are disjoint finite sets of constant and163

predicate symbols, and the function ι : R → N maps each predicate symbol r ∈ R to its164

arity ι(r). Let σ = (C,R, ι) be a signature and V a countably infinite set of variables disjoint165

from C ∪ R. The following grammar defines the syntax of RC queries:166

Q ::= ⊥ | > | x ≈ t | r(t1, . . . , tι(r)) | ¬Q | Q ∨Q | Q ∧Q | ∃x.Q.167

Here, r ∈ R is a predicate symbol, t, t1, . . . , tι(r) ∈ V∪C are terms, and x ∈ V is a variable. We168

write ∃~v.Q for ∃v1. . . .∃vk. Q and ∀~v.Q for ¬∃~v.¬Q, where ~v is a variable sequence v1, . . . , vk.169

If k = 0, then both ∃~v.Q and ∀~v.Q denote just Q. Quantifiers have lower precedence than170

conjunctions and disjunctions, e.g., ∃x.Q1 ∧Q2 means ∃x. (Q1 ∧Q2). We use ≈ to denote171

the equality of terms in RC to distinguish it from =, which denotes syntactic object identity.172

We also write Q1 −→ Q2 for ¬Q1 ∨ Q2. However, defining Q1 ∨ Q2 as a shorthand for173

¬(¬Q1 ∧ ¬Q2) would complicate later definitions, e.g., the safe-range queries (Section 3.2).174

We define the subquery partial order v on queries inductively on the structure of RC175

queries, e.g., Q1 is a subquery of the query Q1∧¬∃y.Q2. One can also view v as the (reflexive176

and transitive) subterm relation on the datatype of RC queries. We denote by sub(Q) the177

set of subqueries of a query Q and by fv(Q) the set of free variables in Q. Furthermore, we178

denote by ~fv(Q) the sequence of free variables in Q based on some fixed ordering of variables.179

We lift this notation to sets of queries in the standard way. A query Q with no free variables,180

i.e., fv(Q) = ∅, is called closed. Queries of the form r(t1, . . . , tι(r)) and x ≈ c are called atomic181

predicates. We define the predicate ap(·) characterizing atomic predicates, i.e., ap(Q) is true182
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(S, α) 6|= ⊥; (S, α) |= >; (S, α) |= (x ≈ t) iff α(x) = α(t);
(S, α) |= r(t1, . . . , tι(r)) iff (α(t1), . . . , α(tι(r))) ∈ rS ; (S, α) |= (¬Q) iff (S, α) 6|= Q;
(S, α) |= (Q1 ∨Q2) iff (S, α) |= Q1 or (S, α) |= Q2; (S, α) |= (∃x.Q) iff (S, α[x 7→ d]) |= Q,

(S, α) |= (Q1 ∧Q2) iff (S, α) |= Q1 and (S, α) |= Q2; for some d ∈ D.

Figure 1 The semantics of RC.

iff Q is an atomic predicate. Queries of the form ∃~v. r(t1, . . . , tι(r)) and ∃~v. x ≈ c are called183

quantified predicates. We denote by ∃̃x.Q the query obtained by existentially quantifying184

a variable x from a query Q if x is free in Q, i.e., ∃̃x.Q B ∃x.Q if x ∈ fv(Q) and ∃̃x.Q B Q185

otherwise. We lift this notation to sets of queries in the standard way. We use ∃̃x.Q (instead of186

∃x.Q) when constructing a query to avoid introducing bound variables that never occur in Q.187

A structure S over a signature (C,R, ι) consists of a non-empty domain D and interpret-188

ations cS ∈ D and rS ⊆ Dι(r), for each c ∈ C and r ∈ R. We assume that all the relations189

rS are finite. Note that this assumption does not yield a finite structure (as defined in finite190

model theory [18]) since the domain D can still be infinite. A (variable) assignment is a map-191

ping α : V → D. We additionally define α on constant symbols c ∈ C as α(c) = cS . We write192

α[x 7→ d] for the assignment that maps x to d ∈ D and is otherwise identical to α. We lift this193

notation to sequences ~x and ~d of pairwise distinct variables and arbitrary domain elements of194

the same length. The semantics of RC queries for a structure S and an assignment α is defined195

in Figure 1. We write α |= Q for (S, α) |= Q if the structure S is fixed in the given context.196

For a fixed S, only the assignments to Q’s free variables influence α |= Q, i.e., α |= Q is197

equivalent to α′ |= Q, for every variable assignment α′ that agrees with α on fv(Q). For closed198

queries Q, we write |= Q and say that Q holds, since closed queries either hold for all variable199

assignments or for none of them. We call a finite sequence ~d of domain elements d1, . . . dk ∈ D200

a tuple. Given a query Q and a structure S, we denote the set of satisfying tuples for Q by201

JQKS = {~d ∈ D|~fv(Q)| | there exists an assignmentα such that (S, α[~fv(Q) 7→ ~d]) |= Q}.202

We omit S from JQKS if S is fixed. We call the values from JQK assigned to x ∈ fv(Q) column x.203

The active domain adomS(Q) of a query Q and a structure S is a subset of the domain204

D containing the interpretations cS of all constant symbols that occur in Q and the values205

in the relations rS interpreting all predicate symbols that occur in Q. Since C and R are206

finite and all rS are finite relations of a finite arity ι(r), the active domain adomS(Q) is also207

a finite set. We omit S from adomS(Q) if S is fixed in the given context.208

Queries Q1 and Q2 over the same signature are equivalent, written Q1 ≡ Q2, if (S, α) |=209

Q1 ⇐⇒ (S, α) |= Q2, for every S and α. Queries Q1 and Q2 over the same signature are210

inf-equivalent, written Q1
∞≡ Q2, if (S, α) |= Q1 ⇐⇒ (S, α) |= Q2, for every S with an infinite211

domain D and every α. Clearly, equivalent queries are also inf-equivalent.212

A query Q is domain-independent if JQKS1 = JQKS2 holds for every two structures S1 and213

S2 that agree on the interpretations of constants (cS1 = cS2) and predicates (rS1 = rS2), while214

their domains D1 and D2 may differ. Agreement on the interpretations implies adomS1(Q) =215

adomS2(Q) ⊆ D1∩D2. It is undecidable whether an RC query is domain-independent [24,28].216

We denote by Q[x 7→ y] the query obtained from the query Q after replacing each free217

occurrence of the variable x by the variable y (possibly renaming bound variables to avoid218

capture) and performing constant propagation, i.e., simplifications like (x ≈ x) ≡ >, Q∧⊥ ≡219

⊥, Q ∨ ⊥ ≡ Q, etc. We lift this notation to sets of queries in the standard way. Finally, we220

denote by Q[x/⊥] the query obtained from Q after replacing every atomic predicate or equality221

containing a free variable x by ⊥ (except for x ≈ x) and performing constant propagation.222

The function flat⊕(Q), where ⊕ ∈ {∨,∧}, computes a set of queries by “flattening” the223

operator ⊕: flat⊕(Q) B flat⊕(Q1)∪flat⊕(Q2) if Q = Q1⊕Q2 and flat⊕(Q) B {Q} otherwise.224

ICDT 2022
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gen(x,⊥, ∅);
gen(x,Q, {Q}) if ap(Q) andx ∈ fv(Q);
gen(x,¬¬Q,G) if gen(x,Q,G);
gen(x,¬(Q1 ∨Q2),G)
if gen(x, (¬Q1) ∧ (¬Q2),G);

gen(x,¬(Q1 ∧Q2),G)
if gen(x, (¬Q1) ∨ (¬Q2),G);

gen(x,Q1 ∨Q2,G1 ∪ G2)
if gen(x,Q1,G1) and gen(x,Q2,G2);

gen(x,Q1 ∧Q2,G)
if gen(x,Q1,G) or gen(x,Q2,G);

gen(x,Q ∧ x ≈ y,G[y 7→ x])
if gen(y,Q,G);

gen(x,Q ∧ y ≈ x,G[y 7→ x])
if gen(y,Q,G);

gen(x,∃y.Qy, ∃̃y.G)
if x 6= y and gen(x,Qy,G).

Figure 2 The generated relation.

cov(x, x ≈ x, ∅);
cov(x,Q, ∅) if x /∈ fv(Q);
cov(x, x ≈ y, {x ≈ y}) if x 6= y;
cov(x, y ≈ x, {x ≈ y}) if x 6= y;
cov(x,Q, {Q}) if ap(Q) andx ∈ fv(Q);
cov(x,¬Q,G) if cov(x,Q,G);
cov(x,Q1 ∨Q2,G1 ∪ G2) if cov(x,Q1,G1) and cov(x,Q2,G2);
cov(x,Q1 ∨Q2,G) if cov(x,Q1,G) andQ1[x/⊥] = >;
cov(x,Q1 ∨Q2,G) if cov(x,Q2,G) andQ2[x/⊥] = >;
cov(x,Q1 ∧Q2,G1 ∪ G2) if cov(x,Q1,G1) and cov(x,Q2,G2);
cov(x,Q1 ∧Q2,G) if cov(x,Q1,G) andQ1[x/⊥] = ⊥;
cov(x,Q1 ∧Q2,G) if cov(x,Q2,G) andQ2[x/⊥] = ⊥;
cov(x,∃y.Qy, ∃̃y.G)

if x 6= y and cov(x,Qy,G) and (x ≈ y) /∈ G;
cov(x,∃y.Qy, ∃̃y.G \ {x ≈ y} ∪ Gy[y 7→ x])

if x 6= y and cov(x,Qy,G) and gen(y,Qy,Gy).

Figure 3 The covered relation.

3.2 Safe-Range Queries225

The class of safe-range queries [1] is a decidable subset of domain-independent RC queries.226

Its definition is based on the notion of range-restricted variables of a query. A variable is227

called range-restricted if “its possible values all lie within the active domain of the query” [1].228

Intuitively, atomic predicates restrict the possible values of a variable that occurs in them as229

a term. An equality x ≈ y can extend the set of range-restricted variables in a conjunction230

Q∧x ≈ y: If x or y is range-restricted in Q, then both x and y are range-restricted in Q∧x ≈ y.231

We formalize range-restricted variables using the generated relation gen(x,Q,G), defined232

in Figure 2. Specifically, gen(x,Q,G) holds if x is a range-restricted variable in Q and every233

satisfying assignment for Q satisfies some quantified predicate, referred to as generator, from234

G. Note that, unlike in a similar definition by Van Gelder and Topor [14, Figure 5] that defines235

the rule gen(x, ∃y.Qy,G) if x 6= y and gen(x,Qy,G), we modify the rule’s conclusion to existen-236

tially quantify the bound variable y from all queries in G where y occurs: gen(x, ∃y.Qy, ∃̃y.G).237

Hence, gen(x,Q,G) implies fv(G) ⊆ fv(Q). We now formalize these relationships.238

I Lemma 1. Let Q be a query, x ∈ fv(Q), and G be a set of quantified predicates such that239

gen(x,Q,G). Then (i) for every Qqp ∈ G, we have x ∈ fv(Qqp) and fv(Qqp) ⊆ fv(Q), (ii) for240

every α such that α |= Q, there exists Qqp ∈ G such that α |= Qqp, and (iii) Q[x/⊥] = ⊥.241

I Definition 2. We define gen(x,Q) to hold iff there exists a set G such that gen(x,Q,G). Let242

nongens(Q) B {x ∈ fv(Q) | gen(x,Q) does not hold} be the set of free variables in a query Q243

that are not range-restricted. A query Q has range-restricted free variables if every free variable244

of Q is range-restricted, i.e., nongens(Q) = ∅. A query Q has range-restricted bound variables245

if the bound variable y in every subquery ∃y.Qy of Q is range-restricted, i.e., gen(y,Qy) holds.246

A query is safe-range if it has range-restricted free and range-restricted bound variables.247

Relational algebra normal form (RANF) is a class of safe-range queries that can be easily248

mapped to RA and evaluated using the RA operations for projection, column duplication,249

selection, set union, binary join, and anti-join. Following a standard textbook [1, Section 5.4],250

we define the predicate ranf(·) characterizing RANF queries and the translation sr2ranf(·)251

of a safe-range query into an equivalent RANF query.252
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3.3 Query Cost253

To assess the time complexity of evaluating a RANF query Q, we define the cost of Q over254

a structure S, denoted costS(Q), to be the sum of intermediate result sizes over all RANF255

subqueries of Q. Formally, costS(Q) B
∑
Q′vQ, ranf(Q′)

∣∣∣JQ′KS ∣∣∣ · |fv(Q′)|. This corresponds to256

evaluating Q following its RANF structure using the RA operations. The complexity of these257

operations is linear in the combined input and output size (ignoring logarithmic factors due258

to set operations). The output size (the number of tuples times the number of variables) is259

counted in
∣∣∣JQ′KS ∣∣∣ · |fv(Q′)| and the input size is counted as the output size for the input sub-260

queries. Repeated subqueries are only considered once, which does not affect the asymptotics261

of query cost. In practice, the evaluation results for common subqueries can be reused.262

4 Query Translation263

Our approach to evaluating an arbitrary RC query Q over a fixed structure S with an infinite264

domain D proceeds by translating Q into a pair of safe-range queries (Qfin, Qinf ) such that265

(fv) fv(Qfin) = fv(Q) unless Qfin is syntactically equal to ⊥; fv(Qinf ) = ∅;266

(eval) JQK is an infinite set if Qinf holds; otherwise JQK = JQfinK is a finite set.267

Since the queries Qfin and Qinf are safe-range, they are domain-independent and thus JQfinK is268

a finite set of tuples. In particular, JQK is a finite set of tuples if Qinf does not hold. Our trans-269

lation generalizes Hull and Su’s case distinction that restricts bound variables [15] to restrict270

all variables. Moreover, we use Van Gelder and Topor’s idea to replace the active domain by271

a smaller set (generator) specific to each variable [14] while further improving the generators.272

4.1 Restricting One Variable273

Let x be a free variable in a query Q̃ with range-restricted bound variables. This assumption274

on Q̃ will be established by translating an arbitrary query Q bottom-up (Section 4.2). In this275

section, we develop a translation of Q̃ into an equivalent query Q̃′ that satisfies the following:276

Q̃′ has range-restricted bound variables;277

Q̃′ is a disjunction and x is range-restricted in all but the last disjunct.278

The disjunct in which x is not range-restricted has a special form that is central to our279

translation: it is the conjunction of a query in which x does not occur and a query that is280

satisfied by infinitely many values of x. From the case distinction “for the corresponding281

variable: in or out of adom, and equality or inequality to other ‘previous’ variables if out282

of adom” [15], we translate Q̃ into the following equivalent query:283

Q̃ ≡ (Q̃ ∧ x ∈ adom(Q̃)) ∨
∨
y∈fv(Q̃)\{x}(Q̃[x 7→ y] ∧ x ≈ y) ∨

(Q̃[x/⊥] ∧ ¬(x ∈ adom(Q̃) ∨
∨
y∈fv(Q̃)\{x}x ≈ y)).284

Here, x ∈ adom(Q̃) stands for an RC query with a single free variable x that is satisfied by285

an assignment α if and only if α(x) ∈ adomS(Q̃). The translation distinguishes the following286

three cases for a fixed assignment α:287

if α(x) ∈ adomS(Q̃) holds, then we do not alter the query Q̃;288

if x ≈ y holds for some free variable y ∈ fv(Q̃) \ {x}, then x can be replaced by y in Q̃;289

otherwise, Q̃ is equivalent to Q̃[x/⊥], i.e., all atomic predicates with a free occurrence of x290

can be replaced by ⊥ (because α(x) /∈ adomS(Q̃)), all equalities x ≈ y and y ≈ x for y ∈291

fv(Q̃)\{x} can be replaced by⊥ (because α(x) 6= α(y)), and all equalities x ≈ z for a bound292

variable z can be replaced by ⊥ (because α(x) /∈ adomS(Q̃) and z is range-restricted in its293

subquery ∃z.Qz, by assumption, i.e., gen(z,Qz) holds and thus, for all α′, we have α′ |=294

∃z.Qz if and only if there exists d ∈ adomS(Qz) ⊆ adomS(Q̃) such that α′[z 7→ d] |= Qz).295
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Note that ∃~fv(Q)\{x}. Q is the query in which all free variables of Q except x are existentially296

quantified. Given a set of quantified predicates G, we write ∃~α.G for
∨
Qqp∈G∃~α.Qqp. To avoid297

enumerating the entire active domain adomS(Q) of the query Q and a structure S, Van Gelder298

and Topor [14] replace the condition x ∈ adom(Q) in their translation by ∃~fv(G) \ {x}.G,299

where generator set G is a subset of atomic predicates. Because their translation [14] must300

yield an equivalent query (for every finite or infinite domain), G must satisfy, for all α,301

α |= ¬∃~fv(G) \ {x}.G =⇒ (α |= Q⇐⇒ α |= Q[x/⊥]) (vgt1) and
α |= Q[x/⊥] =⇒ α |= ∀x.Q (vgt2).

302

Note that (vgt2) does not hold for the query Q B ¬B(x) and thus a generator set G of atomic303

predicates satisfying (vgt2) only exists for a proper subset of all RC queries. In contrast, we304

only require that G satisfies (vgt1) in our translation. To this end, we define a covered relation305

cov(x,Q,G) (in contrast to Van Gelder and Topor’s constrained relation con [14, Figure 5])306

such that, for every variable x and query Q̃ with range-restricted bound variables, there exists307

at least one set G such that cov(x, Q̃,G) and (vgt1) holds. Figure 3 shows the definition308

of this relation. Unlike the generator set G in gen(x,Q,G), the cover set G in cov(x,Q,G)309

may also contain equalities between two variables. Hence, we define a function qps(G) that310

collects all generators, i.e., quantified predicates and a function eqs(x,G) that collects all311

variables y distinct from x occurring in equalities of the form x ≈ y. We use qps∨(G) to312

denote the query
∨
Qqp∈qps(G)Qqp. We state the soundness and completeness of the relation313

cov(x,Q,G) in the next lemma, which follows by induction on the derivation of cov(x, Q̃,G).314

I Lemma 3. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃). Then there315

exists a set G of quantified predicates and equalities such that cov(x, Q̃,G) holds and, for any316

such G and all α,317

α |= ¬(qps∨(G) ∨
∨
y∈eqs(x,G)x ≈ y) =⇒ (α |= Q̃⇐⇒ α |= Q̃[x/⊥]).318

Finally, to preserve the dependencies between the variable x and the remaining free variables319

of Q occurring in the quantified predicates from qps(G), we do not project qps(G) on the320

single variable x, i.e., we restrict x by qps∨(G) instead of ∃~fv(Q)\{x}. qps(G). From Lemma 3,321

we derive our optimized translation characterized by the following lemma.322

I Lemma 4. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃), and G be such323

that cov(x, Q̃,G) holds. Then x ∈ fv(Qqp) and fv(Qqp) ⊆ fv(Q̃), for every Qqp ∈ qps(G), and324

Q̃ ≡ (Q̃ ∧ qps∨(G)) ∨
∨
y∈eqs(x,G)(Q̃[x 7→ y] ∧ x ≈ y) ∨

(Q̃[x/⊥] ∧ ¬(qps∨(G) ∨
∨
y∈eqs(x,G)x ≈ y)). (�)325

Note that x is not guaranteed to be range-restricted in (�)’s last disjunct. However, it326

occurs only in the negation of a disjunction of quantified predicates with a free occurrence of327

x and equalities of the form x ≈ c or x ≈ y. We will show how to handle such occurrences in328

Sections 4.2 and 4.3. Moreover, the negation of the disjunction can be omitted if (vgt2) holds.329

4.2 Restricting Bound Variables330

Let x be a free variable in a query Q̃ with range-restricted bound variables. Suppose that the331

variable x is not range-restricted, i.e., gen(x, Q̃) does not hold. To translate ∃x. Q̃ into an inf-332

equivalent query with range-restricted bound variables (∃x. Q̃ does not have range-restricted333

bound variables precisely because x is not range-restricted in Q̃), we first apply (�) to Q̃334

and distribute the existential quantifier binding x over disjunction. Next we observe that335

∃x. (Q̃[x 7→ y] ∧ x ≈ y) ≡ Q̃[x 7→ y] ∧ ∃x. (x ≈ y) ≡ Q̃[x 7→ y],336
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input: An RC query Q.
output: A query Q̃ with

range-restricted bound
variables such that Q ∞≡ Q̃.

1 function fixbound(Q, x) =
{Qfix ∈ Q | x ∈ nongens(Qfix)};

2 function rb(Q) =
3 switch Q do
4 case ¬Q′ do return ¬rb(Q′);
5 case Q′1 ∨Q′2 do return

rb(Q′1) ∨ rb(Q′2);
6 case Q′1 ∧Q′2 do return

rb(Q′1) ∧ rb(Q′2);
7 case ∃x.Qx do
8 Q B flat∨(rb(Qx));
9 while fixbound(Q, x) 6= ∅ do

10 Qfix ← fixbound(Q, x);
11 G ← {G | cov(x,Qfix ,G)};
12 Q B (Q \ {Qfix}) ∪

{Qfix ∧ qps∨(G)} ∪⋃
y∈eqs(x,G){Qfix [x 7→ y]} ∪
{Qfix [x/⊥]};

13 return
∨
Q̃∈Q∃̃x. Q̃;

14 otherwise do return Q;

Figure 4 Restricting bound variables.

input: An RC query Q.
output: Safe-range query pair (Qfin, Qinf )

for which (fv) and (eval) hold.

1 function fixfree(Qfin) =
{(Qfix , Q

=) ∈ Qfin | nongens(Qfix) 6= ∅};
2 function inf(Qfin, Q) = {(Q6∞, Q=) ∈
Qfin | disjointvars(Q6∞, Q=) 6= ∅ ∨
fv(Q6∞ ∧Q=) 6= fv(Q)};

3 function split(Q) =
4 Qfin B {(rb(Q),>)};Qinf B ∅;
5 while fixfree(Qfin) 6= ∅ do
6 (Qfix , Q

=)← fixfree(Qfin);
7 x← nongens(Qfix);
8 G ← {G | cov(x,Qfix ,G)};
9 Qfin B (Qfin \ {(Qfix , Q

=)}) ∪
{(Qfix ∧ qps∨(G), Q=)} ∪⋃
y∈eqs(x,G){(Qfix [x 7→ y], Q= ∧x ≈ y)};

10 Qinf B Qinf ∪ {Qfix [x/⊥]};
11 while inf(Qfin, Q) 6= ∅ do
12 (Q6∞, Q=)← inf(Qfin, Q);
13 Qfin B Qfin \ {(Q6∞, Q=)};
14 Qinf B Qinf ∪ {Q6∞ ∧Q=};
15 return (

∨
(Q6∞,Q=)∈Qfin

(Q6∞ ∧Q=),
rb(
∨
Q∞∈Qinf

∃~fv(Q∞). Q∞));

Figure 5 Restricting free variables.

where the first equivalence follows because x does not occur free in Q̃[x 7→ y] and the second337

equivalence follows from the straightforward validity of ∃x. (x ≈ y). Moreover, we observe that338

∃x. (Q̃[x/⊥] ∧ ¬(qps∨(G) ∨
∨
y∈eqs(x,G)x ≈ y)) ∞≡ Q̃[x/⊥]339

because x is not free in Q̃[x/⊥] and there exists a value d for x in the infinite domain D such340

that x 6= y holds for all finitely many y ∈ eqs(x,G) and d is not among the finitely many values341

interpreting the quantified predicates in qps(G). Altogether, we obtain the following lemma.342

I Lemma 5. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃), and G be a343

set of quantified predicates and equalities such that cov(x, Q̃,G) holds. Then344

∃x. Q̃ ∞≡ (∃x. Q̃ ∧ qps∨(G)) ∨
∨
y∈eqs(x,G)(Q̃[x 7→ y]) ∨ Q̃[x/⊥]. (�∃)345

Our approach for restricting all bound variables recursively applies Lemma 5. Because346

the set G such that cov(x,Q,G) holds is not necessarily unique, we introduce the following347

(general) notation. We denote the non-deterministic choice of an object X from a non-empty348

set X as X ← X . We define the recursive function rb(Q) in Figure 4, where rb stands for349

range-restrict bound (variables). The function converts an arbitrary RC query Q into an350

inf-equivalent query with range-restricted bound variables. We proceed by describing the351

case ∃x.Qx. First, rb(Qx) is recursively applied on Line 8 to establish the precondition of352

Lemma 5 that the translated query has range-restricted bound variables. Because existential353

quantification distributes over disjunction, we flatten disjunction in rb(Qx) and process354
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the individual disjuncts independently. We apply (�∃) to every disjunct Qfix in which the355

variable x is not already range-restricted. For every Q′fix added to Q after applying (�∃) to356

Qfix the variable x is either range-restricted or does not occur in Q′fix , i.e., x /∈ nongens(Q′fix).357

This entails the termination of the loop on Lines 9–12.358

I Example 6. Consider the query Qsusp
user B B(b)∧∃s. ∀p. P(b, p) −→ S(p, u, s) from Section 1.359

Restricting its bound variables yields the query360

rb(Qsusp
user) = B(b) ∧ ((∃s. (¬∃p.P(b, p) ∧ ¬S(p, u, s)) ∧ (∃p.S(p, u, s))) ∨ (¬∃p.P(b, p))).361

The bound variable p is already range-restricted in Qsusp
user and thus only s must be restric-362

ted. Applying (�) to restrict s in ¬∃p.P(b, p) ∧ ¬S(p, u, s), then existentially quantifying363

s, and distributing the existential over disjunction yields the first disjunct in rb(Qsusp
user)364

above and ∃s. (¬∃p.P(b, p)) ∧ ¬(∃p.S(p, u, s)) as the second disjunct. Because there exists365

some value in the infinite domain D that does not belong to the finite interpretation of366

the atomic predicate S(p, u, s), the query ∃s.¬(∃p.S(p, u, s)) is a tautology over D. Hence,367

∃s. (¬∃p.P(b, p))∧¬(∃p. S(p, u, s)) is inf-equivalent to ¬∃p.P(b, p), i.e., the second disjunct in368

rb(Qsusp
user). This reasoning justifies applying (�∃) to restrict s in ∃s.¬∃p.P(b, p)∧¬S(p, u, s).369

4.3 Restricting Free Variables370

Given an arbitrary query Q, we translate the inf-equivalent query rb(Q) with range-restricted371

bound variables into a pair of safe-range queries (Qfin, Qinf ) such that our translation’s main372

properties fv and eval hold. Our translation is based on the following lemma.373

I Lemma 7. Let a structure S with an infinite domain D be fixed. Let x be a free variable374

in a query Q̃ with range-restricted bound variables and let cov(x, Q̃,G) for a set of quantified375

predicates and equalities G. If Q̃[x/⊥] is not satisfied by any tuple, then376

q
Q̃

y
=

r
(Q̃ ∧ qps∨(G)) ∨

∨
y∈eqs(x,G)(Q̃[x 7→ y] ∧ x ≈ y)

z
. (�)377

If Q̃[x/⊥] is satisfied by some tuple, then
q
Q̃

y
is an infinite set.378

Proof. If Q̃[x/⊥] is not satisfied by any tuple, then (�) follows from (�). If Q̃[x/⊥] is379

satisfied by some tuple, then the last disjunct in (�) applied to Q̃ is satisfied by infinitely380

many tuples obtained by assigning x some value from the infinite domain D such that x 6= y381

holds for all finitely many y ∈ eqs(x,G) and x does not appear among the finitely many382

values interpreting the quantified predicates from qps(G). J383

We remark that
q
Q̃

y
might be an infinite set of tuples even if Q̃[x/⊥] is never satisfied,384

for some x. This is because Q̃[y/⊥] might be satisfied by some tuple, for some y, in which385

case Lemma 7 (for y) implies that
q
Q̃

y
is an infinite set of tuples. Still, (�) can be applied386

to Q̃ for x resulting in an equivalent query that is also satisfied by an infinite set of tuples.387

Our approach is implemented by the function split(Q) defined in Figure 5. In the fol-388

lowing, we describe this function and informally justify its correctness, formalized by the389

input/output specification. In split(Q), we represent the queries Qfin and Qinf using a set390

Qfin of query pairs and a set Qinf of queries such that391

Qfin B
∨

(Q 6∞,Q=)∈Qfin
(Q6∞ ∧Q=), Qinf B

∨
Q∞∈Qinf

∃~fv(Q∞). Q∞,392
393

and, for every (Q6∞, Q=) ∈ Qfin, Q= is a conjunction of equalities. As long as there exists394

some (Qfix , Q
=) ∈ Qfin such that nongens(Qfix) 6= ∅, we apply (�) to Qfix and add the query395

Qfix [x/⊥] to Qinf . We remark that if we applied (�) to the entire disjunct Qfix∧Q=, the loop396

on Lines 5–10 might not terminate. Note that, for every (Q′fix , Q
′=) added to Qfin after apply-397

ing (�) to Qfix , nongens(Q′fix) is a proper subset of nongens(Qfix). This entails the termina-398
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tion of the loop on Lines 5–10. Finally, if JQfixK is an infinite set of tuples, then JQfix ∧Q=K399

is an infinite set of tuples, too. This is because the equalities in Q= merely duplicate columns400

of the query Qfix . Hence, it indeed suffices to apply (�) to Qfix instead of Qfix ∧Q=.401

After the loop on Lines 5–10 in Figure 5 terminates, for every (Q6∞, Q=) ∈ Qfin , Q6∞ is a402

safe-range query and Q= is a conjunction of equalities such that fv(Q6∞ ∧Q=) = fv(Q). How-403

ever, the query Q6∞∧Q= need not be safe-range, e.g., if Q6∞ B B(x) and Q= B (x ≈ y∧u ≈ v).404

Given a set of equalities Q=, let classes(Q=) be the set of equivalence classes of free variables405

fv(Q=) with respect to Q=. For instance, classes({x ≈ y, y ≈ z, u ≈ v}) = {{x, y, z}, {u, v}}.406

Let disjointvars(Q6∞, Q=) B
⋃
V ∈classes(flat∧(Q=)),V ∩fv(Q6∞)=∅ V be the set of all variables in equi-407

valence classes from classes(flat∧(Q=)) that are disjoint from Q6∞’s free variables. Then, Q6∞∧408

Q= is safe-range if and only if disjointvars(Q6∞, Q=) = ∅ (recall the definition of safe-range).409

Now if disjointvars(Q6∞, Q=) 6= ∅ and Q6∞∧Q= is satisfied by some tuple, then JQ6∞ ∧Q=K410

is an infinite set of tuples because all equivalence classes of variables in disjointvars(Q6∞, Q=) 6=411

∅ can be assigned arbitrary values from the infinite domain D. In our example with412

Q6∞ B B(x) and Q= B (x ≈ y ∧ u ≈ v), we have disjointvars(Q6∞, Q=) = {u, v} 6= ∅.413

Moreover, if fv(Q6∞ ∧Q=) 6= fv(Q) and Q6∞ ∧Q= is satisfied by some tuple, then this tuple414

can be extended to infinitely many tuples over fv(Q) by choosing arbitrary values from the415

infinite domain D for the variables in the non-empty set fv(Q) \ fv(Q6∞ ∧Q=). Hence, for416

every (Q6∞, Q=) ∈ Qfin with disjointvars(Q6∞, Q=) 6= ∅ or fv(Q6∞ ∧Q=) 6= fv(Q), we remove417

(Q6∞, Q=) from Qfin and add Q6∞ ∧Q= to Qinf . Note that we only remove pairs from Qfin,418

hence, the loop on Lines 11–14 terminates. Afterwards, the query Qfin is safe-range. However,419

the query Qinf need not be safe-range. Indeed, every query Q∞ ∈ Qinf has range-restricted420

bound variables, but not all the free variables of Q∞ need be range-restricted and thus421

the query ∃~fv(Q∞). Q∞ need not be safe-range. But the query Qinf is closed and thus the422

inf-equivalent query rb(Qinf ) with range-restricted bound variables is safe-range.423

I Lemma 8. Let Q be an RC query and split(Q) = (Qfin, Qinf ). Then the queries Qfin and424

Qinf are safe-range; fv(Qfin) = fv(Q) unless Qfin is syntactically equal to ⊥; and fv(Qinf ) = ∅.425

I Lemma 9. Let a structure S with an infinite domain D be fixed. Let Q be an RC query426

and split(Q) = (Qfin, Qinf ). If |= Qinf , then JQK is an infinite set. Otherwise, JQK = JQfinK427

is a finite set.428

By Lemma 8, Qfin is a safe-range (and thus also domain-independent) query. Hence, for a429

fixed structure S, the tuples in JQfinK only contain elements in the active domain adom(Qfin),430

i.e., JQfinK = JQfinK∩adom(Qfin)|fv(Qfin)|. Our translation does not introduce new constants in431

Qfin and thus adom(Qfin) ⊆ adom(Q). Hence, by Lemma 9, if 6|= Qinf , then JQfinK is equal to432

the “output-restricted unlimited interpretation” [15] of Q, i.e., JQfinK = JQK∩ adom(Q)|fv(Q)|.433

In contrast, if |= Qinf , then JQfinK = JQK ∩ adom(Q)|fv(Q)| does not necessarily hold. For434

instance, for Q B ¬B(x), our translation yields split(Q) = (⊥,>). In this case, we have Qinf =435

> and thus |= Qinf because ¬B(x) is satisfied by infinitely many tuples over an infinite domain.436

However, if B(x) is never satisfied, then JQfinK = ∅ is not equal to JQK ∩ adom(Q)|fv(Q)|.437

I Example 10. Consider the query Q B B(x) ∨ P(x, y). The variable y is not range-438

restricted in Q and thus split(Q) restricts y by a conjunction of Q with P(x, y). However,439

if Q[y/⊥] = B(x) is satisfied by some tuple, then JQK contains infinitely many tuples. Hence,440

split(Q) = ((B(x) ∨ P(x, y)) ∧ P(x, y),∃x.B(x)). Because Qfin = (B(x) ∨ P(x, y)) ∧ P(x, y) is441

only used if 6|= Qinf , i.e., if B(x) is never satisfied, we could simplify Qfin to P(x, y). However,442

our translation does not implement such heuristic simplifications.443

I Example 11. Consider the query Q B B(x) ∧ u ≈ v. The variables u and v are not444

range-restricted in Q and thus split(Q) chooses one of these variables (e.g., u) and restricts445
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it by splitting Q into Q6∞ = B(x) and Q= = u ≈ v. Now, all variables are range-restricted446

in Q6∞, but the variables in Q6∞ and Q= are disjoint. Hence, JQK contains infinitely many447

tuples whenever Q6∞ is satisfied by some tuple. In contrast, JQK = ∅ if Q6∞ is never satisfied.448

Hence, we have split(Q) = (⊥,∃x.B(x)).449

I Example 12. Consider the query Qsusp
user B B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s) from Sec-450

tion 1. Restricting its bound variables yields the query rb(Qsusp
user) = B(b)∧((∃s. (¬∃p.P(b, p)∧451

¬S(p, u, s)) ∧ (∃p.S(p, u, s))) ∨ (¬∃p.P(b, p))) derived in Example 6. Splitting Qsusp
user yields452

split(Qsusp
user) = (rb(Qsusp

user) ∧ (∃s, p.S(p, u, s)),∃b.B(b) ∧ ¬∃p.P(b, p)).453

To understand split(Qsusp
user), we apply (�) to rb(Qsusp

user) for the free variable u:454

rb(Qsusp
user) ≡ (rb(Qsusp

user) ∧ (∃s, p.S(p, u, s))) ∨ (B(b) ∧ (¬∃p.P(b, p)) ∧ ¬∃s, p.S(p, u, s)).455

If the subquery B(b) ∧ (¬∃p.P(b, p)) from the second disjunct is satisfied for some b, then456

Qsusp
user is satisfied by infinitely many values for u from the infinite domain D that do not belong457

to the finite interpretation of S(p, u, s) and thus satisfy the subquery ¬∃s, p. S(p, u, s). Hence,458

JQsusp
userK

S = Jrb(Qsusp
user)KS is an infinite set of tuples whenever B(b)∧¬∃p.P(b, p) is satisfied for459

some b. In contrast, if B(b)∧¬∃p.P(b, p) is not satisfied for any b, then Qsusp
user is equivalent to460

rb(Qsusp
user) ∧ (∃s, p.S(p, u, s)) obtained also by applying (�) to Qsusp

user for the free variable u.461

I Definition 13. Let Q be an RC query and split(Q) = (Qfin, Qinf ). Let Q̂fin B sr2ranf(Qfin)462

and Q̂inf B sr2ranf(Qinf ) be the equivalent RANF queries. We define rw(Q) B (Q̂fin, Q̂inf ).463

4.4 Complexity Analysis464

In this section, we analyze the time complexity of capturing Q, i.e., checking if JQK is finite and465

enumerating JQK if it is finite. To bound the asymptotic time complexity of capturing a fixedQ,466

we ignore the (constant) time complexity of computing rw(Q) = (Q̂fin, Q̂inf ) and focus on the467

time complexity of evaluating the RANF queries Q̂fin and Q̂inf , i.e., the query cost of Q̂fin468

and Q̂inf . Without loss of generality, we assume that the input query Q has pairwise distinct469

(free and bound) variables to derive a set of quantified predicates from Q’s atomic predicates470

and formulate our time complexity bound. Nevertheless, the RANF queries Q̂fin and Q̂inf471

computed by our translation need not have pairwise distinct (free and bound) variables.472

Let av(Q) be the set of all (free and bound) variables in a query Q. We define the relation473

.Q on av(Q) such that x .Q y iff the scope of an occurrence of x ∈ av(Q) is contained in the474

scope of an occurrence of y ∈ av(Q). Formally, we define x .Q y iff y ∈ fv(Q) or ∃x.Qx v475

∃y.Qy v Q for some Qx and Qy. Note that .Q is a preorder on all variables and a partial476

order on the bound variables for every query with pairwise distinct (free and bound) variables.477

Let aps(Q) be the set of all atomic predicates in a query Q. We denote by qps(Q) the set478

of quantified predicates obtained from aps(Q) by performing the variable substitution x 7→ y,479

where x and y are related by equalities in Q and x .Q y, and existentially quantifying from480

a quantified predicate Qqp the innermost bound variable x in Q that is free in Qqp. Let481

eqs∗(Q) be the transitive closure of equalities occurring in Q. Formally, we define qps(Q) by:482

Qap ∈ qps(Q) if Qap ∈ aps(Q);483

Qqp[x 7→ y] ∈ qps(Q) if Qqp ∈ qps(Q), (x, y) ∈ eqs∗(Q), and x .Q y;484

∃x.Qqp ∈ qps(Q) if Qqp ∈ qps(Q), x ∈ fv(Qqp) \ fv(Q), and x .Q y for all y ∈ fv(Qqp).485

We bound the complexity of capturing Q by considering subsets Qqps of quantified486

predicates qps(Q) that are minimal in the sense that every quantified predicate in Qqps487

contains a unique free variable that is not free in any other quantified predicate in Qqps.488

Formally, we define minimal(Qqps) B ∀Qqp ∈ Qqps. fv(Qqps \ {Qqp}) 6= fv(Qqps). Every489
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minimal subset Qqps of quantified predicates qps(Q) contributes the product of the numbers of490

tuples satisfying each quantified predicate Qqp ∈ Qqps to the overall bound (that product is an491

upper bound on the number of tuples satisfying the join over all Qqp ∈ Qqps). Similarly to Ngo492

et al. [22], we use the notation Õ (·) to hide logarithmic factors incurred by set operations.493

I Theorem 14. Let Q be a fixed RC query with pairwise distinct (free and bound) variables.494

The time complexity of capturing Q, i.e., checking if JQK is finite and enumerating JQK if it495

is finite, is in Õ
(∑

Qqps⊆qps(Q),minimal(Qqps)
∏
Qqp∈Qqps

|JQqpK|
)
.496

We prove Theorem 14 in our extended report [25]. Examples 15 and 16 show that the time com-497

plexity from Theorem 14 cannot be achieved by the translation of Van Gelder and Topor [14]498

or over finite domains. Example 17 shows how equalities affect the bound in Theorem 14.499

I Example 15. Consider the query Q B B(b) ∧ ∃u, s.¬∃p.P(b, p) ∧ ¬S(p, u, s), equivalent500

to Qsusp from Section 1. Then aps(Q) = {B(b),P(b, p),S(p, u, s)} and qps(Q) = {B(b),501

P(b, p),∃p.P(b, p),S(p, u, s),∃p.S(p, u, s),∃s, p.S(p, u, s),∃u, s, p.S(p, u, s)}. The translated502

query Qvgt by Van Gelder and Topor [14] restricts the variables r and s by ∃s, p.S(p, u, s)503

and ∃u, p.S(p, u, s), respectively. For an interpretation of B by {(c′) | c′ ∈ {1, . . . , n}}, P by504

{(c′, c′) | c′ ∈ {1, . . . , n}}, and S by {(c, c′, c′) | c ∈ {1, . . . , n}, c′ ∈ {1, . . . ,m}}, n,m ∈ N,505

computing the join of P(b, p), ∃s, p.S(p, u, s), and ∃u, p.S(p, u, s), which is a Cartesian506

product, results in a time complexity in Ω(n ·m2) for Qvgt . In contrast, Theorem 14 yields507

an asymptotically better time complexity in Õ (n+m+ n ·m) for our translation:508

Õ (|JB(b)K|+ |JP(b, p)K|+ |JS(p, u, s)K|+ (|JB(b)K|+ |JP(b, p)K|) · |JS(p, u, s)K|) .509

I Example 16. The query ¬S(x, y, z) is satisfied by a finite set of tuples over a finite510

domain D (as is every other query over a finite domain). For an interpretation of S by511

{(c, c, c) | c ∈ D}, the equality |D| = |JS(x, y, z)K| holds and the number of satisfying tuples is512

|J¬S(x, y, z)K| = |D|3 − |JS(x, y, z)K| = |JS(x, y, z)K|3 − |JS(x, y, z)K| ∈ Ω(|JS(x, y, z)K|3),513

which exceeds the bound Õ (|JS(x, y, z)K|) of Theorem 14. Hence, our infinite domain as-514

sumption is crucial for achieving the better complexity bound.515

I Example 17. Consider the following query over the domain D = N of natural numbers:516

Q B ∀u. (u ≈ 0 ∨ u ≈ 1 ∨ u ≈ 2) −→
(∃v.B(v) ∧ (u ≈ 0 −→ x ≈ v) ∧ (u ≈ 1 −→ y ≈ v) ∧ (u ≈ 2 −→ z ≈ v)).517

Note that this query is equivalent to Q ≡ B(x) ∧ B(y) ∧ B(z) and thus it is satisfied by a518

finite set of tuples of size |JB(x)K| · |JB(y)K| · |JB(z)K| = |JB(x)K|3. The set of atomic predicates519

of Q is aps(Q) = {B(v)} and it must be closed under the equalities occurring in Q to yield520

a valid bound in Theorem 14. In this case, qps(Q) = {B(v),∃v.B(v),B(x),B(y),B(z)} and521

the bound in Theorem 14 is |JB(v)K| · |JB(x)K| · |JB(y)K| · |JB(z)K| = |JB(x)K|4. In particular,522

this bound is not tight, but it still reflects the complexity of evaluating the RANF queries523

produced by our translation as it does not derive the equivalence Q ≡ B(x) ∧ B(y) ∧ B(z).524

5 Data Golf Benchmark525

In this section, we devise the Data Golf benchmark for generating structures for given RC526

queries. We will use the benchmark in our empirical evaluation (Section 6). Given an527

RC query, we seek a structure that results in a nontrivial evaluation result for the overall528

query and for all its subqueries. Intuitively, the resulting structure makes query evaluation529

potentially more challenging compared to the case where some subquery results in a trivial530

(e.g., empty) evaluation result. More specifically, Data Golf has two objectives. The first531
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input: An RC query Q with pairwise distinct (free and bound) variables satisfying
con, cst, var, rep, a sequence of distinct variables ~v, fv(Q) ⊆ ~v, sets of
tuples T +

~v and T −~v over ~v such that
∣∣T +
~v [x]

∣∣ =
∣∣T +
~v

∣∣, ∣∣T −~v [x]
∣∣ =

∣∣T −~v ∣∣, and
T +
~v [x] ∩ T −~v [x] = ∅, for every x ∈ ~v, a parameter γ ∈ {0, 1}.

output: A structure S such that T +
~v [~fv(Q)] ⊆ JQK, T −~v [~fv(Q)] ∩ JQK = ∅, and |JQ′K|

and |J¬Q′K| contain at least min{
∣∣T +
~v

∣∣ , ∣∣T −~v ∣∣} tuples, for every Q′ v Q.

1 function dg(Q,~v, T +
~v , T

−
~v , γ) =

2 switch Q do
3 case r(t1, . . . , tι(r)) do return {rS 7→ T +

~v [t1, . . . , tι(r)]};
4 case x ≈ y do
5 if there exist d, d′ such that d 6= d′ and (d, d′) ∈ T +

~v [x, y], or
d = d′ and (d, d′) ∈ T −~v [x, y] then fail;

6 case ¬Q′ do return dg(Q′, ~v, T −~v , T
+
~v , γ);

7 case Q1 ∨Q2 or Q1 ∧Q2 do
8 (T 1

~v , T 2
~v )← {(T 1

~v , T 2
~v ) |

∣∣T 1
~v [x]

∣∣ =
∣∣T 2
~v [x]

∣∣ =
∣∣T 1
~v

∣∣ =
∣∣T 2
~v

∣∣ = min{
∣∣T +
~v

∣∣ , ∣∣T −~v ∣∣},
T 1
~v [x] ∩ T 2

~v [x] = ∅, (T 1
~v [x] ∪ T 2

~v [x]) ∩ (T +
~v [x] ∪ T −~v [x]) = ∅, for allx ∈ ~v};

9 if γ = 0 then
10 return dg(Q1, ~v, T +

~v ∪ T 1
~v , T

−
~v ∪ T 2

~v , γ) ∪ dg(Q2, ~v, T +
~v ∪ T 2

~v , T
−
~v ∪ T 1

~v , γ);
11 else
12 switch Q do
13 case Q1 ∨Q2 do
14 return dg(Q1, ~v, T +

~v ∪ T 1
~v , T

−
~v ∪ T 2

~v , γ) ∪ dg(Q2, ~v, T 1
~v ∪ T 2

~v , T
−
~v ∪ T

+
~v , γ);

15 case Q1 ∧Q2 do
16 return dg(Q1, ~v, T +

~v ∪ T
−
~v , T 1

~v ∪ T 2
~v , γ) ∪ dg(Q2, ~v, T +

~v ∪ T 2
~v , T

−
~v ∪ T 1

~v , γ);
17 case ∃y.Qy do
18 (T 1

~v·y, T 2
~v·y)← {(T 1

~v·y, T 2
~v·y) | T 1

~v·y[~v] = T +
~v , T 2

~v·y[~v] = T −~v ,∣∣∣T 1
~v·y[y]

∣∣∣ =
∣∣∣T 1
~v·y

∣∣∣ =
∣∣T +
~v

∣∣ , ∣∣∣T 2
~v·y[y]

∣∣∣ =
∣∣∣T 2
~v·y

∣∣∣ =
∣∣T −~v ∣∣ , T 1

~v·y[y] ∩ T 2
~v·y[y] = ∅};

19 return dg(Qy, ~v · y, T 1
~v·y, T 2

~v·y, γ);

Figure 6 Computing the Data Golf structure.

resembles the regex golf game’s objective [11] (hence the name) and aims to find a structure532

on which the result of a given query contains a given positive set of tuples and does not533

contain any tuples from another given negative set. The second objective is to ensure that534

all the query’s subqueries evaluate to a non-trivial result.535

Formally, given a query Q and two sets of tuples T + and T − over a fixed domain D,536

representing assignments of fv(Q), Data Golf produces a structure S (represented as a partial537

mapping from predicate symbols to their interpretations), such that T + ⊆ JQK, T −∩JQK = ∅,538

and |JQ′K| and |J¬Q′K| contain at least min{|T +| , |T −|} tuples, for every Q′ v Q. To be539

able to produce such a structure S, we make the following assumptions on Q:540

con the bound variable y in every subquery ∃y.Qy of Q satisfies con(y,Qy,G) [14, Figure 5]541

for some set G such that eqs(y,G) = ∅ and, for every Qqp ∈ G, {y} ( fv(Qqp) holds;542

this avoids subqueries like ∃y.¬P2(x, y) and ∃y. (P2(x, y) ∨ P1(y));543

cst Q contains no subquery of the form x ≈ c, which is satisfied by exactly one tuple;544

var Q contains no closed subqueries, e.g., P1(42), because a closed subquery is either545

satisfied by all possible tuples or no tuple at all; and546

rep Q contains no repeated predicate symbols; this avoids subqueries like P1(x) ∧ ¬P1(x).547



M. Raszyk, D. Basin, S. Krstić, and D. Traytel 11:15

Given a sequence of pairwise distinct variables ~v and a tuple ~d of the same length, we may548

interpret the tuple ~d as a tuple over ~v, denoted as ~d(~v). Given a sequence t1, . . . , tk ∈ ~v ∪ C549

of terms, we denote by ~d(~v)[t1, . . . , tk] the tuple obtained by evaluating the terms t1, . . . , tk550

over ~d(~v). Formally, we define ~d(~v)[t1, . . . , tk] B (d′i)ki=1, where d′i = ~dj if ti = ~vj and d′i = ti551

if ti ∈ C. We lift this notion to sets of tuples over ~v in the standard way.552

Data Golf is formalized by the function dg(Q,~v, T +
~v , T

−
~v , γ), defined in Figure 6, where553

~v is a sequence of distinct variables such that fv(Q) ⊆ ~v, T +
~v and T −~v are sets of tuples554

over ~v, and γ ∈ {0, 1} is a strategy. The function dg(Q,~v, T +
~v , T

−
~v , γ) can fail on an equality555

between two variables x ≈ y. In this case, the function dg(Q,~v, T +
~v , T

−
~v , γ) does not compute556

a Data Golf structure. We define the not-depth of a subquery x ≈ y in Q as the number of557

subqueries that have the form of a negation among the queries x ≈ y v · · · v Q, i.e., the558

number of negations on the path between the subquery x ≈ y and Q’s main connective. To559

prevent failure, we generate the sets T +
~v , T −~v to only contain tuples with equal values for all560

variables in equalities with even (odd, respectively) not-depth and pairwise distinct values561

for all variables in equalities with odd (even, respectively) not-depth. This is not always562

possible, e.g., for x ≈ y ∧ ¬x ≈ y, in which case no Data Golf structure can be computed.563

In the case of a conjunction or a disjunction, we add disjoint sets T 1
~v , T 2

~v of tuples over ~v564

to T +
~v , T −~v so that the intermediate results for the subqueries are neither equal nor disjoint.565

We implement two strategies (parameter γ) to choose these sets T 1
~v , T 2

~v .566

Finally, we justify why a Data Golf structure S computed by dg(Q,~v, T +
~v , T

−
~v , γ) satisfies567

T +
~v [~fv(Q)] ⊆ JQK and T −~v [~fv(Q)] ∩ JQK = ∅. We proceed by induction on the query Q.568

Because of rep, the Data Golf structures for the subqueries Q1, Q2 of a binary query Q1∨Q2569

or Q1 ∧Q2 can be combined using the union operator. The only case that does not follow570

immediately is that T −~v [~fv(Q)] ∩ JQK = ∅ for a query Q of the form ∃y.Qy. We prove this571

case by contradiction. Without loss of generality we assume that ~fv(Qy) = ~fv(Q) · y. Suppose572

that ~d ∈ T −~v [~fv(Q)] and ~d ∈ JQK. Because ~d ∈ T −~v [~fv(Q)], there exists some d such that573

~d · d ∈ T 2
~v·y[~fv(Qy)]. Because ~d ∈ JQK, there exists some d′ such that ~d · d′ ∈ JQyK. By the574

induction hypothesis, ~d · d /∈ JQyK and ~d · d′ /∈ T 2
~v·y[~fv(Qy)]. Because con(y,Qy,G) holds for575

some G satisfying con, the query Qy is equivalent to (Qy ∧ qps∨(G)) ∨Qy[y/⊥]. We have576

~d · d′ ∈ JQyK. If the tuple ~d · d′ satisfies Qy[y/⊥], then ~d · d ∈ JQyK (contradiction) because577

the variable y does not occur in the query Qy[y/⊥] and thus its assignment in ~d · d′ can be578

arbitrarily changed. Otherwise, the tuple ~d·d′ satisfies some quantified predicate Qqp ∈ qps(G)579

and (con) implies {y} ( fv(Qqp). Hence, the tuples ~d·d and ~d·d′ agree on the assignment of a580

variable x ∈ fv(Qqp)\{y}. Let T +
~v′ and T −~v′ be the sets in the recursive call of dg on the atomic581

predicate from Qqp. Because ~d · d ∈ T 2
~v·y[~fv(Qy)] and T 2

~v·y[~fv(Qy)] ⊆ T +
~v′ [~fv(Qy)]∪T −~v′ [~fv(Qy)],582

the tuple ~d · d is in T +
~v′ [~fv(Qy)] ∪ T −~v′ [~fv(Qy)]. Because ~d · d′ satisfies the quantified predicate583

Qqp, the tuple ~d · d′ is in T +
~v′ [~fv(Qy)]. Next we observe that the assignments of every variable584

(in particular, x) in the tuples from the sets T +
~v′ , T −~v′ are pairwise distinct (the conditions585

T +
~v′ [x]∩ T −~v′ [x] = ∅,

∣∣T +
~v′ [x]

∣∣ =
∣∣T +
~v′

∣∣, and ∣∣T −~v′ [x]
∣∣ =

∣∣T −~v′

∣∣). Because the tuples ~d · d and ~d · d′586

agree on the assignment of x, they must be equal, i.e., ~d · d = ~d · d′ (contradiction).587

The sets T +
~v , T −~v only grow in dg’s recursion and the properties con, cst, var, rep588

imply that Q has no closed subquery. Hence, T +
~v [~fv(Q)] ⊆ JQK and T −~v [~fv(Q)] ∩ JQK = ∅589

imply that |JQ′K| and |J¬Q′K| contain at least min{
∣∣T +
~v

∣∣ , ∣∣T −~v ∣∣} tuples, for every Q′ v Q.590

I Example 18. Consider the query Q B ¬∃y.P2(x, y) ∧ ¬P3(x, y, z). This query Q satisfies591

the assumptions con, cst, var, rep. In particular, con(y,P2(x, y) ∧ ¬P3(x, y, z),G) holds592

for G = {P2(x, y)} with {y} ( fv(P2(x, y)). We choose ~v = (x, z), T +
~v = {(0, 4), (2, 6)}, and593

T −~v = {(8, 12), (10, 14)}. The function dg(Q,~v, T +
~v , T

−
~v , γ) first flips T +

~v and T −~v (because Q’s594

main connective is negation) and then extends the tuples in the sets T −~v and T +
~v with a value595
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for the bound variable y: T 1
~v·y = {(8, 12, 16), (10, 14, 18)} and T 2

~v·y = {(0, 4, 20), (2, 6, 22)}.596

For conjunction (a binary operator), two additional sets of tuples are computed: T 1
~v·y =597

{(24, 28, 32), (26, 30, 34)} and T 2
~v·y = {(36, 40, 44), (38, 42, 46)}. Depending on the strategy598

(γ = 0 or γ = 1), one of the following structures is computed: S0 = {P2 7→ {(8, 16), (10, 18),599

(24, 32), (26, 34)},P3 7→ T +
xyz}, or S1 = {P2 7→ {(8, 16), (10, 18), (0, 20), (2, 22)},P3 7→ T +

xyz},600

where T +
xyz = {(0, 20, 4), (2, 22, 6), (24, 32, 28), (26, 34, 30)}.601

The query P1(x) ∧ Q is satisfied by the finite set of tuples T +
~v under the structure602

S1 ∪ {P1 7→ {(0), (2)}} obtained by extending S1 (γ = 1). In contrast, the same query603

P1(x) ∧Q is satisfied by an infinite set of tuples including T +
~v and disjoint from T −~v under604

the structure S0 ∪ {P1 7→ {(0), (2)}} obtained by extending S0 (γ = 0).605

6 Implementation and Empirical Evaluation606

We have implemented our translation RC2SQL consisting of roughly 1000 lines of OCaml607

code [25]. Although our translation satisfies the worst-case complexity bound (Theorem 14),608

we further improve its average-case complexity by implementing the following optimizations,609

described in more detail in our extended report [25, Section E].610

We use a sample structure of constant size, called a training database, to estimate the query611

cost when resolving the nondeterministic choices in our algorithms. A good training data-612

base should preserve the relative ordering of queries by their cost over the actual database613

as much as possible. Nevertheless, our translation satisfies the correctness and worst-case614

complexity claims (Section 4.3 and 4.4) for every choice of the training database. All our615

experiments used a Data Golf structure with |T +| = |T −| = 2 as the training database.616

We use the function optcnt optimizing RANF subqueries of the form ∃~y.Q+ ∧
∧k
i=1 ¬Q

−
i617

using the count aggregation operator. Inspired by Claußen et al. [9], we compare the618

number of assignments of ~y that satisfy Q+ and
∨k
i=1(Q+ ∧Q−i ), respectively.619

To compute an SQL query from a RANF query, we define the function ranf2sql(·). We first620

obtain an equivalent RA expression using the standard approach [1] but adjusting the case621

of closed queries [8]. To translate RA expressions into SQL, we reuse a publicly available622

RA interpreter radb [30]. We modify its implementation to improve the performance623

of the resulting SQL query. We map the anti-join operator Q̂1 . Q̂2 to a more efficient624

LEFT JOIN, if fv(Q̂2) ( fv(Q̂1), and we perform common subquery elimination.625

To validate our translation’s improved asymptotic time complexity, we compare it with626

the translation by Van Gelder and Topor [14] (VGT), an implementation of the algorithm627

by Ailamazyan et al. [2] that uses an extended active domain as the generators, and the628

DDD [20,21], LDD [7], and MonPolyREG [4] tools that support direct RC query evaluation using629

binary decision diagrams. We could not find a publicly available implementation of Van Gelder630

and Topor’s translation. Therefore, the tool VGT for evaluable RC queries is derived from our631

implementation by modifying the function rb(·) in Figure 4 to use the con relation [14, Figure 5]632

instead of cov(x,Q,G) (Figure 3) and to use the generator ∃~fv(Q) \ {x}. qps∨(G) instead of633

qps∨(G). Evaluable queries Q are always translated into (Qfin,⊥) by rw(·) because all of Q’s634

free variables are range-restricted. We also consider translation variants that omit the count635

aggregation optimization optcnt(·), marked with a minus (−).636

SQL queries computed by the translations are evaluated using the PostgreSQL database637

engine. We have also used the MySQL database engine but omit its timings from our eval-638

uation after discovering that it computed incorrect results for some queries. This issue was639

reported and subsequently confirmed by MySQL developers. We run our experiments on640

an Intel Core i5-4200U CPU computer with 8 GB RAM. The relations in PostgreSQL are641
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Experiment Small, Evaluable pseudorandom queries Q, |sub(Q)| = 14, n = 500:
RC2SQL 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.3
RC2SQL− 0.3 0.2 150.3 0.3 0.2 0.3 0.3 0.3 5.9 0.2
VGT 31.5 6.7 4.2 2.5 37.5 9.3 2.4 2.3 11.3 2.7
VGT− 33.7 4.8 119.9 6.3 11.2 21.9 31.4 11.3 12.3 21.9
DDD 9.1 2.5 RE 7.1 5.9 RE 5.1 RE 2.2 5.1
LDD 59.2 24.1 169.1 38.8 53.3 37.4 64.0 TO 16.0 61.6
MonPolyREG 64.2 31.4 143.0 57.6 67.8 54.4 72.4 174.6 33.6 71.3

Experiment Medium, Evaluable pseudorandom queries Q, |sub(Q)| = 14, n = 20000:
RC2SQL 2.6 1.4 3.9 2.1 1.5 2.8 3.3 1.6 1.2 2.6
RC2SQL− 2.0 1.0 TO 2.0 1.7 2.5 2.3 1.8 TO 1.8
VGT TO TO 7.8 3.9 TO TO 5.2 4.7 TO 4.8
VGT− TO TO TO TO TO TO TO TO TO TO

Experiment Large, Evaluable pseudorandom queries Q, |sub(Q)| = 14, tool = RC2SQL:
n = 40000 3.5 2.7 8.1 4.0 3.2 5.5 6.7 4.1 1.9 5.8
n = 80000 7.5 5.4 16.1 8.0 6.1 11.5 14.0 8.1 4.2 11.7
n = 120000 13.2 8.2 24.6 11.5 8.9 16.3 20.9 11.0 7.2 16.7

Experiment Infinite, Non-evaluable pseudorandom queries Q, |sub(Q)| = 7, n = 4000:
Infinite results (γ = 0) Finite results (γ = 1)

RC2SQL 0.8 0.8 0.8 0.8 0.8 1.0 1.1 0.9 2.4 1.1
RC2SQL− 0.5 0.5 0.4 0.5 0.5 0.6 0.7 0.6 TO 2.0
DDD 89.5 49.1 46.9 116.3 50.4 81.7 44.1 45.8 89.8 44.6
LDD TO TO TO TO TO TO TO TO TO TO
MonPolyREG TO TO TO TO TO TO TO TO TO TO

Figure 7 Experiments Small, Medium, Large, and Infinite. We use the following abbreviations:
TO = Timeout of 300s, RE = Runtime Error.

recreated before each invocation to prevent optimizations based on caching recent query642

evaluation results. We provide all our experiments in an easily reproducible artifact [25].643

In the Small, Medium, and Large experiments, we generate ten pseudorandom queries644

with a fixed size 14 and Data Golf structures S. The queries satisfy the Data Golf assumptions645

along with a few additional ones: the queries are not safe-range, have no repeated equalities,646

disjunction only appears at the top-level, every bound variable actually occurs in its scope, and647

only pairwise distinct variables appear as terms in predicates. The queries have 2 free variables648

and every subquery has at most 4 free variables. We control the size of the Data Golf structure649

S in our experiments using a parameter n = |T +| = |T −|. Because the sets T + and T − grow650

in the recursion on subqueries, relations in a Data Golf structure typically have more than n651

tuples. The values of the parameter n for Data Golf structures are summarized in Figure 7.652

The Infinite experiment consists of five pseudorandom queries Q that are not evalu-653

able and rw(Q) = (Qfin, Qinf ), where Qinf 6= ⊥. Specifically, the queries are of the form654

Q1 ∧ ∀x, y. Q2 −→ Q3, where Q1, Q2, and Q3 are either atomic predicates or equalities. For655

each query Q, we compare the performance of our tool to tools that directly evaluate Q on656

structures generated by the two Data Golf strategies (parameter γ), which trigger infinite657

or finite evaluation results on the considered queries. For infinite results, our tool outputs658

this fact (by evaluating Qinf ), whereas the other tools also output a finite representation659

of the infinite result. For finite results, all tools produce the same output.660

Figure 7 shows the empirical evaluation results for the experiments Small, Medium,661

Large, and Infinite. All entries are execution times in seconds, TO is a timeout, and RE is662

a runtime error. Each column shows evaluation times for a unique pseudorandom query. The663
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Query Qsusp Qsusp
user Qsusp

text Query Qsusp Qsusp
user Qsusp

text
Param. n 103 104 103 104 103 104 Dataset GC MI GC MI GC MI

RC2SQL 2.0 2.2 3.0 3.5 6.2 7.1 RC2SQL 2.9 16.2 4.2 21.4 8.9 91.3
RC2SQL− 61.7 TO 63.4 TO 484.9 TO RC2SQL− 273.9 TO 270.1 TO TO TO
VGT 3.9 2.9 − − 213.2 TO VGT 3.5 18.9 − − TO TO
VGT− 433.8 TO − − 495.4 TO VGT− TO TO − − TO TO
DDD 7.1 TO 6.3 TO 28.8 TO DDD 93.3 TO 90.1 TO 178.5 TO
LDD 36.3 TO 34.0 TO 213.9 TO LDD TO TO TO TO TO TO
MonPolyREG 49.9 TO 47.3 TO 181.2 TO MonPolyREG TO TO TO TO TO TO

Figure 8 Experiment with the queries Qsusp, Qsusp
user , and Qsusp

text . We use the following abbreviations:
GC = Gift Cards dataset, MI = Musical Instruments dataset, TO = Timeout of 600s.

lowest time for a query is typeset in bold. We do not report the translation time because it664

does not contribute to the time complexity for a fixed query. Still, RC2SQL’s translation time665

is at most 0.6 seconds on every query in our experiments. We also omit the rows for tools that666

time out or crash on all queries of an experiment, e.g., Ailamazyan et al. [2]. We conclude667

that our translation RC2SQL significantly outperforms all other tools on all queries and scales668

well to higher values of n, i.e., larger relations in the Data Golf structures, on all queries.669

We also evaluate the tools on the queries Qsusp and Qsusp
user from the introduction and on670

the more challenging query Qsusp
text B B(b) ∧ ∃u, s, t. ∀p. P(b, p) −→ S(p, u, s) ∨ T(p, u, t) with671

an additional relation T that relates user’s review text (variable t) to a product. The query672

Qsusp
text computes all brands for which there is a user, a score, and a review text such that all673

the brand’s products were reviewed by that user with that score or by that user with that674

text. We use both Data Golf structures (strategy γ = 1) and real-world structures obtained675

from the Amazon review dataset [23]. The real-world relations P, S, and T are obtained by676

projecting the respective tables from the Amazon review dataset for some chosen product677

categories (abbreviated GC and MI in Figure 8) and the relation B contains all brands from678

P that have at least three products. Because the tool by Ailamazyan et al., DDD, LDD, and679

MonPolyREG only support integer data, we injectively remap the string and floating-point680

values from the Amazon review dataset to integers.681

Figure 8 shows the empirical evaluation results: execution times on Data Golf structures682

(left) and execution times on structures derived from the real-world dataset for two specific683

product categories (right). We remark that VGT cannot handle the query Qsusp
user as it is not684

evaluable [14]. Our translation RC2SQL significantly outperforms all other tools (except VGT685

on Qsusp, but RC2SQL still outperforms VGT) on both Data Golf and real-world structures.686

VGT− translates Qsusp into a RANF query with a higher query cost than RC2SQL−. How-687

ever, the optimization optcnt(·) manages to rectify this inefficiency and thus VGT exhibits688

a comparable performance as RC2SQL. Specifically, the factor of 80× in query cost between689

VGT− and RC2SQL− improves to 1.1× in query cost between VGT and RC2SQL on a Data690

Golf structure with n = 20 [25]. Nevertheless, VGT does not finish evaluating the query691

Qsusp
text on GC and MI datasets within 10 minutes, unlike RC2SQL.692

7 Conclusion693

We presented a translation-based approach to evaluating arbitrary relational calculus queries694

over an infinite domain with improved time complexity over existing approaches. This695

contribution is an important milestone towards making the relational calculus a viable query696

language for practical databases. In future work, we plan to integrate into our base language697

features that database practitioners love, such as inequalities, bag semantics, or aggregations.698
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