
VeriMon: A Formally Verified Monitoring Tool

David Basin1 , Thibault Dardinier1 , Nico Hauser1, Lukas Heimes1,
Jonathan Julián Huerta y Munive2 , Nicolas Kaletsch1, Srđan Krstić1 ,

Emanuele Marsicano1, Martin Raszyk3 , Joshua Schneider1 ,
Dawit Legesse Tirore4 , Dmitriy Traytel2 , and Sheila Zingg1

1 Department of Computer Science, ETH Zürich, Zurich, Switzerland
2 Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

traytel@di.ku.dk
3 DFINITY Foundation, Zurich, Switzerland

4 Computer Science Department, IT University of Copenhagen, Copenhagen, Denmark

Abstract. A runtime monitor observes a running system and checks
whether the sequence of events the system generates satisfies a given spec-
ification. We describe the evolution of VeriMon: an expressive and efficient
monitor that has been formally verified using the Isabelle proof assistant.

1 Introduction

The goal of runtime verification (RV) is to gain confidence in the correctness of
a given execution of a running system. This is a lightweight alternative to full
formal verification which must consider all possible executions. In RV, monitors
are tools that take as input an execution represented as a sequence of events called
trace, analyze the trace with respect to a given specification, and output verdicts,
i.e., satisfactions or violations of the specification. Monitors support a wide range
of specification languages [8], including automaton-based, (temporal-)logic-based,
and (recursive-)rule-based formalisms.

A monitor’s specification language must be expressive to allow users to for-
mulate the desired properties in a concise, natural, and intuitive way. At the
same time and often in direct conflict with the expressiveness requirement, mon-
itors must be time- and memory-efficient. Expressive and efficient monitors use
complex, optimized algorithms, whose correctness is not obvious. Yet a monitor
must be trustworthy to be used as a verification tool.

VeriMon [1, 18, 20] is an expressive, efficient, and trustworthy monitor. Its
specification language is based on the expressive metric first-order temporal logic
(MFOTL) [2], but it additionally incorporates automata-based and rule-based
features. It uses efficient algorithms for evaluating the temporal operators Since
and Until, n-ary conjunctions (as multi-way joins), and aggregations such as sums
or averages. Finally, it is trustworthy as it has been formally verified using the Isa-
belle/HOL proof assistant [15]. Proof assistants are tools that mechanically check
the correctness of human-written mathematical proofs, e.g., of an algorithm’s cor-
rectness. They are built around a small, well-understood inference kernel through
which all reasoning must pass, which provides the highest level of trustworthiness.

Here, we describe VeriMon’s origins and evolution, outline some planned next
steps, and discuss the advantages of formally verifying monitors.

https://orcid.org/0000-0003-2952-939X
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0000-0003-3279-3685
https://orcid.org/0000-0001-8314-2589
https://orcid.org/0000-0003-3018-2557
https://orcid.org/0000-0001-8253-4513
https://orcid.org/0000-0002-1997-5161
https://orcid.org/0000-0001-7982-2768

2 Basin et al.

2 Evolution
VeriMon originated from a certain dissatisfaction with existing monitoring tools.
Specifically, we have been using the efficient MFOTL monitor MonPoly [2, 3]
for years. But every so often, we would discover and fix an implementation bug.
While annoying, this was not the most pressing issue. More importantly, Mon-
Poly became an impenetrable black box: extending its specification language or
improving its algorithms became extremely difficult for us as the implementation
included various undocumented and non-obvious performance optimizations and
the original implementors had moved on. (A typical fate of academic software!)

Eventually, we decided to start from scratch aiming at establishing the correct-
ness of a much simplified algorithm, which did not include performance optimiza-
tions and supported a restricted specification language. To this end, we formulated
in Isabelle the syntax and semantics of MFOTL, defined a core monitoring al-
gorithm as a functional program, and proved the algorithm sound (all produced
verdicts are correct according to the semantics) and complete (all verdicts that
hold under the semantics are eventually produced). To obtain an executable pro-
gram, we used Isabelle’s code generator [10] to extract 2 800 lines of OCaml code
from our formalization consisting of 3 000 lines of Isabelle definitions and proofs.
The extracted code included two main functions (and their dependencies): init
that initialized the monitor’s state for a given abstract syntax tree of an MFOTL
specification and step that updates the monitor’s state upon incoming events while
outputting verdicts. The first version of VeriMon [18] augmented this verified core
with MonPoly’s unverified specification and log parsers and modules for type-
checking, rewriting, and preprocessing specifications and for printing verdicts.

After this kick-start, the first target was to align VeriMon’s variant of MFOTL
with MonPoly’s, which included inequalities and aggregation operators. Having
formally established and thus understood the algorithmic invariants for other
non-temporal operators made these extensions straightforward [1, §2–3]. At that
point, we were in the position of extending VeriMon, one feature at a time, often
carried out mostly by undergraduate students. Today, VeriMon incorporates:
– Regular expression matching operators generalizing MFOTL’s temporal

operators and representing a form of automaton-based specifications [1, §4];
– A non-recursive let operator, invaluable for structuring policies [20, §3];
– A recursive let operator that requires all recursive occurrences to be guarded

by past temporal operators and can encode rule-based specifications [20, §4].

We are currently working on adding support for dual temporal operators (Release
and Trigger) [13]. All these extensions do not only introduce new operators, but
also extend the correctness proof to cover the new features.

The first version of VeriMon was extremely inefficient. We have spent consid-
erable time and energy on verifying performance optimizations. VeriMon became
the incubator for developing and proving correct algorithms for the evaluation of
Since and Until [1, §6] [16, §4.4] and aggregations over those that asymptotically
improved over MonPoly’s algorithms. We also used insights from databases and
incorporated a worst-case optimal multi-way join algorithm [1, §5]. Overall, Veri-
Mon still tends to be slower and use more memory than MonPoly, but it is easy

VeriMon: A Formally Verified Monitoring Tool 3

to construct examples in which the better algorithms reverse the picture. In the
meantime, some of these algorithms have also found their way into MonPoly.

We have also made progress on reducing the amount of VeriMon’s unverified
code by verifying a type inference algorithm and a specification rewriting module.

Since the first version, VeriMon’s publicly available code base5 grew signif-
icantly. The formalization now spans over 45 000 lines of Isabelle definitions and
proofs. The extracted code amounts to over 11 000 lines of OCaml. Thanks to the
transpiler js_of_ocaml [19], we can now run VeriMon in every web browser.6
This is not recommended for realistic applications (due to the suboptimal per-
formance and the increased trusted code base which then includes js_of_ocaml
and the browser’s JavaScript engine), but extremely useful for demonstrations.

3 Future Directions

We plan to improve VeriMon along the three discussed dimensions. For trustwor-
thiness, the missing ingredients are the specification and log parsers. Once verified,
they will allow us to run VeriMon without relying on MonPoly’s unverified code.

To further improve efficiency, we will use database-style indices to speed
up joins and other operations on tables, the main computations in VeriMon
aside from the temporal operator evaluation. Furthermore, we plan to lift the
recently developed algorithms for the regular expression matching operators in the
propositional metric temporal logic setting [16, §3] to VeriMon’s first-order setting.

In terms of expressiveness, we aim to generalize VeriMon’s time domain
from natural numbers to an arbitrary domain meeting minimal well-formedness
conditions. This will improve the flexibility of VeriMon’s metric intervals used to
express quantitative temporal constraints. We also intend to verify and incorpo-
rate algorithms for a Datalog-style recursive let operator. Finally, VeriMon, like
MonPoly, operates on finite tables and thus can only handle the monitorable frag-
ment of MFOTL [2, §4.2]. While other approaches, which can handle full MFOTL
by replacing tables with automatic structures or binary decision diagrams, exist [2,
11,12], we believe that working with finite tables is a major source of efficiency for
VeriMon. Thus, we plan to verify and integrate in VeriMon the recent approach of
rewriting arbitrary MFOTL specifications into the monitorable fragment [16, §4.3].

4 Discussion

The obvious benefit of working with a formally verified algorithm is the absence of
bugs. This benefit is no longer given when the verified code is combined with unver-
ified code. Indeed, we found and fixed several issues in the unverified glue code con-
necting VeriMon’s data structures to MonPoly’s in VeriMon’s early days. Yet, the
glue code is only a few hundred lines and it is much easier to localize the problem
there compared to the thousands of lines of code comprising the actual monitor.

A bigger danger for verified tools are misunderstandings in the semantics. For
example, VeriMon used to compute averages as a + b/2 because it reused the
5 https://bitbucket.org/jshs/monpoly/src/master/
6 https://traytel.bitbucket.io/verimon

https://bitbucket.org/jshs/monpoly/src/master/
https://traytel.bitbucket.io/verimon

4 Basin et al.

same faulty Isabelle definition in the semantics and the algorithm, which omitted
a pair of parentheses by mistake. To avoid such issues, the formalized semantics
of the specification language must be carefully inspected, including all auxiliary
definitions. Fortunately, and again in contrast to the actual monitoring algorithm,
VeriMon’s semantics comprises only a few hundred lines of Isabelle definitions.

A major asset for VeriMon’s usability is its tight integration with MonPoly.
Both tools are compiled into a single binary, which distinguishes the used algo-
rithm via a flag. This resulted in a standard workflow, in which users run MonPoly
and rerun using VeriMon in case MonPoly’s output looks suspicious. We have
also performed such a comparative execution on a larger scale on random inputs.
This differential testing revealed discrepancies [1, 18, 20] pointing to bugs and an
unusual (but specified) semantics in the unverified tools MonPoly and DejaVu [12].

We see extensibility as the main advantage of a formally verified monitor. The
verification of the first version of VeriMon has already identified several notions
and their properties central to the verification. Adding new features then reduced
to extending these notions while updating the proofs of their properties. Along
similar lines, we replaced inefficient algorithms by efficient ones using refinement,
which allowed us to reuse the proofs of the inefficient algorithms’ correctness.

Several of VeriMon’s features, such as the non-recursive let operator and the im-
proved algorithms for Since and Until, have been propagated back to MonPoly and
have guided the design of a new monitoring tool implemented in C++, CPPMon.7

We are happy to start seeing other work in the community that uses proof assis-
tants [4–6,17], deductive verifiers [9], or SMT solvers [7,14] to improve the trustwor-
thiness of monitors. We believe that formal verification is the only way towards a
landscape of tools that are reliable and maintainable: not just one-paper wonders.

Acknowledgments Research on VeriMon has been supported by the Swiss
National Science Foundation grant “Big Data Monitoring” (167162), the US Air
Force grant “Monitoring at Any Cost” (FA9550-17-1-0306), and a Novo Nordisk
Foundation Start Package grant (NNF20OC0063462). The authors are listed in
alphabetical order regardless of individual contributions or seniority.

References

1. Basin, D., Dardinier, T., Heimes, L., Krstić, S., Raszyk, M., Schneider, J., Traytel,
D.: A formally verified, optimized monitor for metric first-order dynamic logic. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS, vol. 12166, pp.
432–453. Springer (2020). https://doi.org/10.1007/978-3-030-51074-9_25

2. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

3. Basin, D., Klaedtke, F., Zălinescu, E.: The MonPoly monitoring tool. In: Reger, G.,
Havelund, K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp.
19–28. EasyChair (2017). https://doi.org/10.29007/89hs

4. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki,
T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 494–509. Springer (2012).
https://doi.org/10.1007/978-3-642-34281-3_34

7 https://github.com/matthieugras/cppmon

https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs
https://doi.org/10.29007/89hs
https://doi.org/10.1007/978-3-642-34281-3_34
https://doi.org/10.1007/978-3-642-34281-3_34
https://github.com/matthieugras/cppmon

VeriMon: A Formally Verified Monitoring Tool 5

5. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified
controller executables from verified cyber-physical system models. In: Foster, J.S.,
Grossman, D. (eds.) PLDI 2018. pp. 617–630. ACM (2018). https://doi.org/10.
1145/3192366.3192406

6. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric tempo-
ral logic with quantitative semantics. In: Deshmukh, J., Nickovic, D. (eds.) RV
2020. LNCS, vol. 12399, pp. 383–403. Springer (2020). https://doi.org/10.1007/
978-3-030-60508-7_21

7. Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In:
Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer (2021).
https://doi.org/10.1007/978-3-030-88494-9_4

8. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

9. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified Rust monitors for
Lola specifications. In: Deshmukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399,
pp. 431–450. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7_24

10. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer (2010). https://doi.org/10.1007/978-3-642-12251-4_9

11. Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with BDDs.
In: Stewart, D., Weissenbacher, G. (eds.) FMCAD 2017. pp. 116–123. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102249

12. Havelund, K., Peled, D., Ulus, D.: DejaVu: A monitoring tool for first-order temporal
logic. In: MT@CPSWeek 2018. pp. 12–13. IEEE (2018). https://doi.org/10.1109/
MT-CPS.2018.00013

13. Huerta y Munive, J.J.: Relaxing safety for metric first-order temporal logic via
dynamic free variables. In: Thao, D., Stolz, V. (eds.) RV 2022. LNCS, Springer
(2022), to appear

14. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E.,
Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer (2015).
https://doi.org/10.1007/978-3-319-23820-3_6

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002). https://doi.org/10.1007/
3-540-45949-9

16. Raszyk, M.: Efficient, Expressive, and Verified Temporal Query Evaluation. Ph.D.
thesis, ETH Zürich (2022). https://doi.org/10.3929/ethz-b-000553221

17. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf,
E., Nipkow, T.: Formalising and monitoring traffic rules for autonomous vehicles
in Isabelle/HOL. In: Polikarpova, N., Schneider, S.A. (eds.) iFM 2017. LNCS, vol.
10510, pp. 50–66. Springer (2017). https://doi.org/10.1007/978-3-319-66845-1_4

18. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric
first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol.
11757, pp. 310–328. Springer (2019). https://doi.org/10.1007/978-3-030-32079-9_18

19. Vouillon, J., Balat, V.: From bytecode to JavaScript: the js_of_ocaml compiler.
Softw. Pract. Exp. 44(8), 951–972 (2014). https://doi.org/10.1002/spe.2187

20. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order moni-
toring with recursive rules. In: Fisman, D., Roşu, G. (eds.) TACAS 2022. LNCS, vol.
13244, pp. 236–253. Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_13

https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-88494-9_4
https://doi.org/10.1007/978-3-030-88494-9_4
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.23919/FMCAD.2017.8102249
https://doi.org/10.23919/FMCAD.2017.8102249
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1002/spe.2187
https://doi.org/10.1002/spe.2187
https://doi.org/10.1007/978-3-030-99527-0_13
https://doi.org/10.1007/978-3-030-99527-0_13

	VeriMon: A Formally Verified Monitoring Tool

