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Abstract8

Authenticated data structures are a technique for outsourcing data storage and maintenance to an9

untrusted server. The server is required to produce an efficiently checkable and cryptographically10

secure proof that it carried out precisely the requested computation. Recently, Miller et al. [10]11

demonstrated how to support a wide range of such data structures by integrating an authentication12

construct as a first class citizen in a functional programming language. In this paper, we put this13

work to the test of formalization in the Isabelle proof assistant. With Isabelle’s help, we uncover14

and repair several mistakes and modify the small-step semantics to perform call-by-value evaluation15

rather than requiring terms to be in administrative normal form.16
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1 Introduction22

Consider a client that requests data from a server and trusts the server to answer its request23

truthfully, making financial or security-critical decisions based on the response. In this24

common scenario, a malicious actor can profit from causing the server to give incorrect answers25

to a client’s query. Authenticated data structures (ADS) prevent this attack by effectively26

removing the need for the client to trust the server. To do so, they require the server to27

accompany all responses to queries with an efficiently verifiable proof that its answer is honest.28

Merkle trees [9] are the prototypical example of ADS. They are binary trees that store29

data in their leaves. Every leaf node is augmented with a hash of the corresponding data and30

every inner node is augmented with a hash of its child nodes’ hashes. An example Merkle31

tree is shown in Figure 1. The server stores this entire tree, whereas the client only stores32

the top hash H0. The client can then query the server for any of the stored data. The server,33

upon being queried, traverses the tree to find the requested data and returns it along with34

the hashes needed to reconstruct the root hash. The client can then recompute the root hash35

to verify that it matches its stored root hash. In our example, querying the server for D236

would result in it returning D2 as well as the hashes HD1 and H2. The client can then verify37

that the result of hash (hash (HD1 ‖ hash D2) ‖ H2) matches its stored root hash.38

Early work on ADS [5,9, 16] has focused on designing particular data structures for this39

purpose. More recently, Miller et al. [10] have put forward a more general view on the matter.40

In their paper, titled Authenticated Data Structures, Generically (ADSG), they introduce λ•41

(pronounced lambda auth), a purely functional language, which supports generic, user-specified42

ADS. The programs of λ• run in two modes. The server, which hosts the data, computes43

certain hash values and sends them to the client. The client verifies that the passed hash values44

are the expected ones. ADSG establishes correctness (verification succeeds if both parties45

© Matthias Brun and Dmitriy Traytel;
licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbrun@student.ethz.ch
https://orcid.org/0000-0001-7982-2768
mailto:traytel@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ITP.2019.10
https://isa-afp.org/entries/LambdaAuth.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Generic Authenticated Data Structures, Formally

H0 = hash (H1 ‖ H2)

H1 = hash (HD1 ‖ HD2) H2 = hash (HD3 ‖ HD4)

HD1 = hash D1 HD2 = hash D2 HD3 = hash D3 HD4 = hash D4D1 D2 D3 D4

Figure 1 An example Merkle tree

correctly follow the protocol) and security (tricking the client requires discovering a hash46

collision) for all well-typed λ• programs. Given that ADS are intended to be used in security-47

critical applications, it is crucial that these correctness and security properties do in fact hold.48

We formalized λ• in Isabelle/HOL and proved the claims stated in ADSG. During the49

formalization process, we identified several problems, many of which we rectified with relative50

ease. Nevertheless, a serious problem prevents us from reaching a fully satisfactory statement51

and proof of the conventional formulation of λ•’s type soundness.52

In addition to finding and correcting mistakes, we also make a modification to the language53

semantics. “To keep the semantics simple,” ADSG works with expressions in administrative54

normal form (ANF) [6]. ANF only supports recursive evaluation in arguments of let expres-55

sions and thus requires all other constructs to be applied to values (rather than unevaluated56

expressions). While this does not make the language any less powerful, the restrictive syntax57

makes λ• somewhat cumbersome to use, e.g., instead of writing t u for expressions t and u58

one has to write let f = t in let x = u in f x. To hide this verbosity from the user, arbitrary59

expressions are typically translated into ANF in a separate step. However, such a translation60

would need to correctly handle λ•’s authentication construct. Instead, we extended the61

semantics to permit recursive argument evaluation for most expressions. We have performed62

this modification only after finishing the formalization of λ• and proving all the theorems for63

the ANF semantics. Isabelle allowed us to quickly discover all the ramifications of our changes.64

Thus, correcting the proofs that were affected by the modification was a matter of a few hours.65

In the following, we present only the modified semantics that supports recursive evaluation.66

On the technical side, we used Nominal Isabelle [8,17] (Section 2) to model the syntax and67

semantics of λ• (Section 3), which involves several variable binding constructs. Of particular68

interest is our abstract modeling of a hash function that is compatible with Nominal and can69

be used in binding-aware definitions (Subsection 3.1). The small-step semantics of λ• is split70

into three transition relations that correspond to the client’s, the server’s, and an idealized71

view of the computation, respectively. Following ADSG, we relate programs evaluated under72

these three views using an inductive predicate (Section 4) and prove that if one of the related73

programs takes a step, the others can follow, unless a hash collision occurred (Section 5).74

Related Work ADSG [10] is our object of study. While our paper aspires to be self-contained75

with respect to the scope of the formalization, we refer to ADSG for the illuminating usages76

of the λ• language to implement Merkle trees, blockchains, and authenticated red-black trees.77

The literature on formal studies of authenticated data structures is sparse, and in all cases78

focused on specific instances. Examples include the automatic verification of Merkle trees79

using weak monadic second-order logic on trees [12] and the formalization of blockchains [15]80

and cryptographic ledgers [20] (based on Merkle trees) in the Coq proof assistant. The two81

latter works both assume injective hash functions, which we avoid (Subsection 3.1).82

A key feature of our formalization is the use of Nominal Isabelle [8,17,19], Isabelle’s imple-83

mentation of Nominal logic [7] on top of higher-order logic, to model a syntax involving binding84

of variables. More precisely, we use Nominal2 [8,17], the most recent implementation of Nom-85
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inal Isabelle, which has previously been employed successfully in formalizations of Gödel’s86

incompleteness theorems [13], lazy programming language semantics [3], and rewriting [11].87

A frequently used alternative to the Nominal approach of modeling bound variables are88

de Bruijn indices, i.e., nameless pointers to binding constructors. We chose Nominal because89

it allows us to work more abstractly, without the need to manipulate pointers. We refer to90

Urban and Berghofer [18] for a comparison of the two approaches and to Blanchette et al. [2]91

for an extensive overview of the issue of binding variables in proof assistants and beyond.92

2 Nominal Isabelle93

The treatment of bound variables in pen and paper proofs is often informal, with renaming94

of clashing variables being implicitly assumed for most definitions. ADSG is no exception in95

this regard. In a formalization, a more rigorous approach is necessary. Nominal Logic [7] is a96

powerful such approach that is well-supported in Isabelle with the Nominal framework [8,17].97

We sketch the most important features of Nominal and refer to Huffman and Urban [8] for a98

more extensive introduction.99

Nominal allows us to closely follow the informal presentation of ADSG in the formalization100

by enforcing the Barendregt convention [1, p. 26]:101

If M1, . . . ,Mn occur in a certain mathematical context (e.g. definition, proof), then102

in these terms all bound variables are chosen to be different from the free variables.103

A central notion for achieving this flexibility is that of an object’s support supp, which104

corresponds to the set of atoms (i.e., variable names) that occur free in it. An atom a outside105

of the support of x is fresh in x, written a ] x ≡ a 6∈ supp x. We will use two kinds of atoms:106

type variables tvar and term variables var , which are embedded into the type of atoms using107

the overloaded function atom. We will often see statements of the kind atom a ] x in the108

premises of our definitions, making explicit the requirement that some (type) variable name109

a does not clash with any of the ones in x. These additional freshness assumptions are110

typically the only required modifications to an informal lemma’s statement.111

Nominal Isabelle provides commands for defining binding-aware datatypes, recursive func-112

tions, and inductive predicates, along with a proof method for performing binding-aware struc-113

tural induction. The syntax of λ• (types ty and terms term), shown in Figure 2, is defined via114

the nominal_datatype command, which requires us to explicitly specify which names are115

bound in which constructors. For λ•’s terms these are Lam, Rec, and Let, which model lambda116

abstractions (i.e., λx. t is written as Lam x t), recursive functions, and let expressions, respec-117

tively, as well as Mu for recursive types. To define functions on a Nominal datatype we use the118

nominal_function command. The syntax for Nominal function definitions is the same as for119

normal functions except that freshness assumptions may be added when operating on datatype120

constructors that bind variables. For example, the Lam case of the definition for capture-121

avoiding substitution, written t[t′/x] and read as “in t substitute t′ for x,” is the following.122

atom y ] (x, t′) −→ (Lam y t)[t′/x] = Lam y (t[t′/x])123

Definitions of inductive predicates use similar premises, as can be seen for example in our124

typing judgment’s Lam rule in Figure 4. To enable binding-aware proofs by rule induction,125

Nominal can be instructed to prove a strong induction rule (after the user discharges a126

simpler abstract property, which is automatic for most definitions). The strong induction127

rule guarantees the absence of name clashes with a finite but arbitrary set of atoms.128

ITP 2019



10:4 Generic Authenticated Data Structures, Formally

nominal_datatype term =
Unit
| Var var
| Lam (x :: var) (t :: term) binds x in t

| Rec (x :: var) (t :: term) binds x in t

| Inj1 term
| Inj2 term
| Pair term term
| Let term (x :: var) (t :: term) binds x in t

| App term term
| Case term term term
| Prj1 term
| Prj2 term
| Roll term
| Unroll term
| Auth term
| Unauth term
| Hash hash
| Hashed hash term

nominal_datatype ty =
One
| Fun ty ty
| Sum ty ty
| Prod ty ty
| Mu (α :: tvar) (τ :: ty) binds α in τ

| Alpha tvar
| AuthT ty

inductive value :: term ⇒ bool where
value Unit
| value (Var x)
| value (Lam x e)
| value (Rec x e)
| value v −→ value (Inj1 v)
| value v −→ value (Inj2 v)
| value v1 ∧ value v2 −→ value (Pair v1 v2)
| value v −→ value (Roll v)
| value (Hash h)
| value v −→ value (Hashed h v)

Figure 2 Syntax for terms and types

Nominal is designed to support user-defined types as long as all objects have finite129

support. A particularly useful type for us will be that of finite maps, written (α, β) fmap,130

to model type environments and parallel substitutions. Finite maps are defined as the131

subtype of functions α⇒ β option that map all but finitely many arguments to None. Other132

formalizations use association lists to represent type environments [18]. However, to ensure133

that any key in the list occurs at most once these require a validity predicate, cluttering the134

rules and proofs with implementation details. Finite maps nicely complemented our use of135

Nominal and allowed us to keep the statements of definitions and lemmas very close to those136

in ADSG. We use the syntax ∅ to denote the empty finite map, Γ[x] to denote a lookup of x137

in the finite map Γ and Γ[x 7→ a] to denote an update to the finite map Γ, assigning a to x.138

3 Syntax and Semantics of λ•139

We formalize the terms and types for λ• as Nominal datatypes, along with an inductive140

predicate specifying which terms are considered to be values. These are listed in Figure 2.141

The terms and types are those of a standard lambda calculus with unit (One), product142

(Prod), sum (Sum), and recursive types (Mu), and the corresponding term constructors (e.g.,143

Roll, the constructor of recursive types) and their inverses (e.g., Unroll, the destructor of144

recursive types) [14]. They also include the non-standard AuthT type constructor, Auth and145

Unauth term constructors, and auxiliary constructors Hashed consisting of a hash-value pair146

and Hash consisting of just a hash. We postpone the discussion of hash values and the type147

hash and introduce a few auxiliary functions first. Also the precise meaning of the Auth148

and Unauth constructors will become clear once we formally define the small-step semantics.149

Intuitively, Auth signals the client and server to compute a hash value, while Unauth signals150

the server to output a value to the client and the client to verify the hash of this value.151

Substitution on terms and on types uses the syntax t[u/x] for both. The definitions are152
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nominal_function shallow :: term ⇒ term (L_M) where
LUnitM = Unit | LVar vM = Var v
| LLam x eM = Lam x LeM | LRec x eM = Rec x LeM
| LInj1 eM = Inj1 LeM | LInj2 eM = Inj2 LeM
| LPair e1 e2M = Pair Le1M Le2M | LRoll eM = Roll LeM
| LLet e1 x e2M = Let Le1M x Le2M | LApp e1 e2M = App Le1M Le2M
| LCase e e1 e2M = Case LeM Le1M Le2M | LPrj1 eM = Prj1 LeM
| LPrj2 eM = Prj2 LeM | LUnroll eM = Unroll LeM
| LAuth eM = Auth LeM | LUnauth eM = Unauth LeM
| LHash hM = Hash h | LHashed h eM = Hash h

Figure 3 The shallow projection

standard, with simple, structural recursion on the non-standard constructs:153

(Auth t)[u/x] = Auth (t[u/x]) (Unauth t)[u/x] = Unauth (t[u/x])
(Hash h)[u/x] = Hash h (Hashed h t)[u/x] = Hashed h (t[u/x])154

Furthermore, we define a parallel substitution function psubst :: term ⇒ (var , term) fmap ⇒155

term. It replaces all variables by terms assigned by the finite map given as its second argument:156

psubst (Var y) ∆ = (case ∆[y] of Some t⇒ t | None⇒ Var y)157

For all other cases it is structurally recursive.158

A closed term is one with empty support or, equivalently, closed t = (∀x :: var . atom x ] t).159

ADSG also introduces the shallow projection function, written L_M, whose formal definition160

is given in Figure 3. It replaces all Hashed h v subterms in a given term with Hash h.161

3.1 Modeling the Hash Function162

The security of λ• relies on a collision-resistant hash function. ADSG provides a useful163

modeling trick, which permits us to omit the formalization of this assumption or collision-164

resistance in general. In our formalization, we use very mild assumptions on how the hash165

function may behave. Our security statement is then a disjunction between the statements166

“everything worked out as planned” and “a hash collision has occurred.” Clearly, if we use a167

collision-resistant hash function, the second disjunct will be violated with high probability.168

(This meta-argument is not captured in our formal modeling.)169

We start by introducing a new type: typedecl hash. The only property we require of170

this type is that it does not contain any atoms, which we obtain by instantiating the pure171

type class. Doing so allows us to make use of the following lemma with α = hash.172

I Lemma 1 (No atoms occur in pure types).

atom x ] (t :: α :: pure)173

Because our desired hash function hash :: term ⇒ hash will be used in inductive predicates174

involving the term type, such as the small-step semantics, Nominal requires it to be equivariant,175

i.e., satisfy the strong property ∀p. p • hash t = hash (p • t) for all terms t. Here, p is a permu-176

tation, i.e., a variable renaming, and • denotes its application to a an arbitrary object. (The ap-177

plication to the object’s variables is defined by instantiating a type class, which is automatic for178

Nominal datatypes.) Since a hash contains no free variables, applying a permutation to it is the179

identity function. Clearly then, equivariance can only hold if permuting free variables does not180

change the hash—a counterintuitive requirement for a hash function, which we want to avoid.181

ITP 2019
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Γ ` Unit : One

Γ[x] = Some τ

Γ ` Var x : τ

atom x ] Γ Γ[x 7→ τ1] ` e : τ2

Γ ` Lam x e : Fun τ1 τ2

atom x ] (Γ, e1) Γ ` e1 : τ1 Γ[x 7→ τ1] ` e2 : τ2

Γ ` Let e1 x e2 : τ2

Γ ` e : Fun τ1 τ2 Γ ` e′ : τ1

Γ ` App e e′ : τ2

atom x ] Γ atom y ] (Γ, x) Γ[x 7→ Fun τ1 τ2] ` Lam y e : Fun τ1 τ2

Γ ` Rec x (Lam y e) : Fun τ1 τ2

Γ ` e : τ1

Γ ` Inj1 e : Sum τ1 τ2

Γ ` e : τ2

Γ ` Inj2 e : Sum τ1 τ2

Γ ` e : Prod τ1 τ2

Γ ` Prj1 e : τ1

Γ ` e : Prod τ1 τ2

Γ ` Prj2 e : τ2

Γ ` e : Sum τ1 τ2 Γ ` e1 : Fun τ1 τ Γ ` e2 : Fun τ2 τ

Γ ` Case e e1 e2 : τ

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` Pair e1 e2 : Prod τ1 τ2

atom α ] Γ Γ ` e : τ [Mu α τ/α]

Γ ` Roll e : Mu α τ

atom α ] Γ Γ ` e : Mu α τ

Γ ` Unroll e : τ [Mu α τ/α]

Γ ` e : τ

Γ ` Auth e : AuthT τ

Γ ` e : AuthT τ

Γ ` Unauth e : τ

Figure 4 The typing judgment

Γ `W e : τ

Γ `W Auth e : τ

Γ `W e : τ

Γ `W Unauth e : τ

Figure 5 Alternative, weaker typing rules

For closed terms t the above property holds for any function hash. Moreover, it turns out182

that we will only apply hash to closed terms. Nominal, however, is blind to this fact and still183

requires us to prove equivariance for all terms. These two observations lead to the following184

solution. We declare a hash function using Isabelle’s consts command, which introduces a185

new constant symbol without providing any specification of the constant beyond its type.186

consts hash_term :: term ⇒ hash187

This function is not necessarily equivariant. (We can neither prove nor disprove this.) Equivari-188

ance is established by composing hash_term with the function collapse_frees :: term ⇒ term,189

which maps all free variables of a term to a single fixed variable (definition omitted).190

definition hash :: term ⇒ hash where hash = hash_term ◦ collapse_frees191

The function hash is equivariant (∀p. p • hash t = hash (p • t)) and equal to hash_term on192

closed terms (closed t −→ hash t = hash_term t), because collapse_frees t = t on closed terms193

t. Whenever we make use of the hash function hash, we ensure that its argument is closed.194

3.2 Typing Judgement195

The typing judgment Γ ` e : τ , read “given the type environment Γ :: (var , ty) fmap the term196

e is well-typed and has type τ ,” for λ• is defined in Figure 4. The rules are standard except197

for the last two, which allow the introduction and elimination of authenticated types AuthT τ198

via the Auth and Unauth constructors. In other words, these two rules fix the following types199

for the authentication constructors: Auth :: τ ⇒ AuthT τ and Unauth :: AuthT τ ⇒ τ .200
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In addition to this typing judgment, we define an alternative, weaker typing judgment201

Γ `W e : τ , which is not present in ADSG. This version replaces the last two rules with202

the ones in Figure 5, which do not introduce authenticated types, i.e., fixing Auth :: τ ⇒ τ203

and Unauth :: τ ⇒ τ . This modification is motivated by an ambiguity in ADSG, which204

we will encounter when discussing type soundness. We use the unqualified well-typed to205

mean well-typed according to the original typing judgment and weakly well-typed to mean206

well-typed according to the modified rules.207

Neither well-typed nor weakly well-typed terms may contain the Hashed and Hash term208

constructors, as there is no rule for them. These auxiliary constructors will arise only as the209

result of some computations and are not meant to be used as a language construct by the210

end-users of λ•. Thus, the use of these constructors loosely resembles the use of memory211

locations as an auxiliary language construct in lambda calculi with references [14, Chapter 13].212

3.3 Operational Small-Step Semantics213

Figure 6 defines the small-step semantics as the inductive predicate 〈π1, e1〉 m→ 〈π2, e2〉,214

meaning “the expression e1 in combination with the proof stream π1 can take a step in mode215

m to yield the expression e2 and the proof stream π2.” A proof stream is simply a list of216

λ•-expressions; the infix operator @ appends lists. The mode, which is a parameter of the217

semantics, can be one of three values:218

datatype mode = I | P | V219

The three modes I, P, and V are read as ideal, prover, and verifier, respectively. The ideal220

mode represents the unauthenticated evaluation. The authenticated evaluation proceeds221

with the prover mode running on the server, while the verifier mode runs on the client. Most222

rules are those of a standard lambda-calculus; they are shared for all three modes. Only the223

last six rules of 〈π1, e1〉 m→ 〈π2, e2〉 for Auth and Unauth depend on the mode.224

In the ideal mode, Auth and Unauth are simply removed, i.e., semantically they are225

identity functions. Upon encountering Auth v, both the prover and the verifier compute the226

hash of v’s shallow projection. The prover uses the hash to generate the hash-value-pair227

Hashed (hash LvM) v, wheras the verifier generates just the hash Hash (hash v). The rules228

thus enforce that the Hashed constructor only ever arises in the prover mode and the Hash229

constructor only in the verifier mode. Thus, the shallow projection can be omitted for the230

verifier. The Unauth rules are the most interesting ones, as they establish the communication231

of the prover and the verifier via the proof stream. Unauth can only ever be applied to232

expressions of type AuthT. Values of this type are always Hashed h v′ and Hash h (for some h,233

v′) in the prover and verifier modes, respectively. The prover appends the shallow projection234

of v′ to the proof stream and continues to evaluate v′. The shallow projection ensures that235

any hash-value pairs within v′ discard the value, keeping just the hash. The verifier consumes236

the first element of its input proof stream to verify that this value’s hash is equal to the hash237

of its argument. Only if the check succeeds, the evaluation may proceed.238

The rules demonstrate that the evaluation in all three modes is structurally identical but239

a compiler would have to substitute a different function for the Auth and Unauth functions240

for the prover and verifier modes. In this semantics any given expression can first be executed241

in mode P by the prover, generating a proof stream, and then in mode V by the verifier,242

consuming a proof stream. The execution in mode I does not modify or depend on the proof243

stream at all. The last two rules lift the single-step evaluation to multiple steps, while at the244

same time counting the number of taken steps.245

ITP 2019
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〈π, e1〉 m→ 〈π′, e′
1〉

〈π, App e1 e2〉 m→ 〈π′, App e′
1 e2〉

value v1 〈π, e2〉 m→ 〈π′, e′
2〉

〈π, App v1 e2〉 m→ 〈π′, App v1 e
′
2〉

value v atom x ] (v, π)

〈π, App (Lam x e) v〉 m→ 〈π, e[v/x]〉

value v atom x ] (v, π) e′ = e[Rec x e/x]

〈π, App (Rec x e) v〉 m→ 〈π, App e′ v〉

value v atom x ] (v, π)

〈π, Let v x e〉 m→ 〈π, e[v/x]〉

atom x ] (e1, e
′
1, π, π

′) 〈π, e1〉 m→ 〈π′, e′
1〉

〈π, Let e1 x e2〉 m→ 〈π′, Let e′
1 x e2〉

〈π, e1〉 m→ 〈π′, e′
1〉

〈π, Pair e1 e2〉 m→ 〈π′, Pair e′
1 e2〉

value v1 〈π, e2〉 m→ 〈π′, e′
2〉

〈π, Pair v1 e2〉 m→ 〈π′, Pair v1 e
′
2〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Prj1 e〉 m→ 〈π′, Prj1 e′〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Prj2 e〉 m→ 〈π′, Prj2 e′〉

value v1 value v2

〈π, Prj1 (Pair v1 v2)〉 m→ 〈π, v1〉

value v1 value v2

〈π, Prj2 (Pair v1 v2)〉 m→ 〈π, v2〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Inj1 e〉 m→ 〈π′, Inj1 e′〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Inj2 e〉 m→ 〈π′, Inj2 e′〉

value v

〈π, Case (Inj1 v) e1 e2〉 m→ 〈π, App e1 v〉

value v

〈π, Case (Inj2 v) e1 e2〉 m→ 〈π, App e2 v〉

value v

〈π, Unroll (Roll v)〉 m→ 〈π, v〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Case e e1 e2〉 m→ 〈π′, Case e′ e1 e2〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Unroll e〉 m→ 〈π′, Unroll e′〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Roll e〉 m→ 〈π′, Roll e′〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Auth e〉 m→ 〈π′, Auth e′〉

〈π, e〉 m→ 〈π′, e′〉

〈π, Unauth e〉 m→ 〈π′, Unauth e′〉

value v

〈π, Auth v〉 I→ 〈π, v〉

value v

〈π, Unauth v〉 I→ 〈π, v〉

closed LvM value v

〈π, Auth v〉 P→ 〈π, Hashed (hash LvM) v〉

value v

〈π, Unauth (Hashed h v)〉 P→ 〈π @ [LvM], v〉

closed v value v

〈π, Auth v〉 V→ 〈π, Hash (hash v)〉

closed s0 hash s0 = h

〈s0#π, Unauth (Hash h)〉 V→ 〈π, s0〉

〈π, e〉 m→0 〈π, e〉

〈π1, e1〉 m→i 〈π2, e2〉 〈π2, e2〉 m→ 〈π3, e3〉

〈π1, e1〉 m→i+1 〈π3, e3〉

Figure 6 The small-step semantics of λ•



M. Brun and D. Traytel 10:9

The three Auth and Unauth rules that require hash computation all have a premise that246

ensures that hashes are only computed on closed terms. The small-step semantics given in247

ADSG is not restricted in this way. But the restriction is unproblematic: even though our248

semantics allows the prover and the verifier to evaluate strictly fewer expressions, we will show249

later that they can still simulate any ideal computation that starts with a closed formula.250

Above, we have stated informally that the prover generates the proof stream and the251

verifier consumes the proof stream. We can formalize this notion in the following two lemmas252

that will be necessary for the correctness and security proofs.253

I Lemma 2 (Execution in mode P generates the proof stream).

〈π1, eP〉 P→i 〈π2, e′
P〉 −→ ∃π. π2 = π1 @ π254

I Lemma 3 (Execution in mode V consumes the proof stream).

〈π1, eV 〉 V→i 〈π2, e′
V 〉 −→ ∃π. π1 = π @ π2255

Furthermore, we can show that in mode P we are allowed to add (or remove) a prefix to256

(from) the proof stream.257

I Lemma 4 (Add/remove prefix of prover proof stream).

〈π, eP〉 P→i 〈π′, e′
P〉 ←→ 〈X @ π, eP〉 P→i 〈X @ π′, e′

P〉258

In mode V we can modify the proof stream by adding or removing a suffix.259

I Lemma 5 (Add/remove suffix of verifier proof stream).

〈π, eV 〉 V→i 〈π′, e′
V 〉 ←→ 〈π @ X, eV 〉 V→i 〈π′ @ X, e′

V 〉260

In mode I we do not touch the proof stream at all, so we will not need to prepend, append or261

remove data from them during proofs. However, we do want to prove that the proof stream262

does not change during evaluation.263

I Lemma 6 (Ideal execution does not modify the proof stream).

〈π, e〉 I→i 〈π′, e′〉 −→ π = π′
264

3.4 Freshness Lemmas265

In Section 2, we emphasized the importance of freshness when working with Nominal. In266

many instances, we have to show in our proofs that a certain variable is fresh with respect267

to some term, proof stream, or type environment. In this section, we discuss some of the268

more interesting freshness lemmas we needed to prove. One of the most useful lemmas is269

the following, relating freshness in a typing environment with freshness in terms. We show270

the lemma for the weak typing judgment, but similar statements hold for the strong typing271

judgment and for agreement, which will be introduced in Section 4.272

I Lemma 7 (Freshness in environment implies freshness in terms).

atom x ] Γ ∧ Γ `W e : τ −→ atom x ] e273

Proof. The proof is by induction on Γ `W e : τ , with the only interesting case being the274

one for Var x. Since Var x can only be well-typed if the type environment assigns a type to275

x, it is easy to show that a being fresh in Γ implies a 6= x. Hence, atom a ] Var x. J276
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For the small-step semantics we have lemmas showing that evaluation preserves freshness277

in some object, for example in the term when evaluating in mode P.278

I Lemma 8 (Prover evaluation preserves freshness in terms).

atom x ] e ∧ 〈π, e〉 P→ 〈π′, e′〉 −→ atom x ] e′
279

For the proof stream this only holds if the atom is fresh in both the term and the proof280

stream.281

I Lemma 9 (Prover evaluation preserves freshness in proof streams).

atom x ] e ∧ atom x ] π ∧ 〈π, e〉 P→ 〈π′, e′〉 −→ atom x ] π′
282

3.5 Type Soundness283

Now that we have defined the typing judgment and the small-step semantics of λ•, we turn284

our attention to type soundness for the execution in mode I. We proceed by proving the285

standard progress and preservation lemmas.286

I Lemma 10 (Progress).

∅ `W e : τ −→ value e ∨ (∃e′.〈[], e〉 I→ 〈[], e′〉)287

I Lemma 11 (Preservation).

〈[], e〉 I→ 〈[], e′〉 ∧ ∅ `W e : τ −→ ∅ `W e′ : τ288

Using Lemma 10 and Lemma 11, type soundness for weakly well-typed terms follows easily.289

I Lemma 12 (Type Soundness).

∅ `W e : τ −→ value e ∨ (∃e′. 〈[], e〉 I→ 〈[], e′〉 ∧ ∅ `W e′ : τ)290

There are two differences in our Lemma 12 compared to ADSG’s type soundness statement291

(Lemma 1). First, ADSG formulates the lemma for an arbitrary environment Γ (and292

consequently for terms that may contain free variables) in the judgment—an oversight which293

trivially invalidates the lemma: for example, Prj1 (Var x) is not a value and cannot take a step.294

The second difference is that we formulate type soundness using the weak typing judgment.295

Type soundness does not hold for the original set of typing rules. Consider, for example,296

the well-typed expression Auth Unit of type AuthT One. Since it is not a value it must take297

a step. However, the resulting expression Unit has the different type One, violating type298

soundness (namely the preservation property). ADSG notes that “for mode I, authenticated299

values of type •τ [i.e., AuthT τ ] are merely values of type τ .” This remark seems to imply300

that ∀τ. AuthT τ ≡ τ , a property that is essential to a successful type soundness proof. Our301

weak typing judgment simulates syntactic equality of authenticated types by simply omitting302

them and allowing the introduction of the Auth and Unauth constructors without a change of303

types. However, although this interpretation is necessary for type soundness, it is undesirable.304

The main purpose of authenticated types is to ensure that Unauth can only be applied305

to expressions to which Auth has been applied previously. This disallows terms such as306

Unauth Unit, whose semantics is well-defined in the ideal execution mode but not in the prover307

and verifier modes. In the weakened typing judgment such terms are considered well-typed.308
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nominal_function erase :: ty ⇒ ty where
erase One = One
| erase (Fun τ1 τ2) = Fun (erase τ1) (erase τ2)
| erase (Sum τ1 τ2) = Sum (erase τ1) (erase τ2)
| erase (Prod τ1 τ2) = Prod (erase τ1) (erase τ2)
| erase (Mu α τ) = Mu α (erase τ)
| erase (Alpha α) = Alpha α
| erase (AuthT τ) = erase τ

Figure 7 The erase function

Since type soundness does not hold for the strong typing judgment, we show the weaker309

property that well-typed terms are also weakly well-typed after removing any AuthT anno-310

tations from its type and type environment. For this purpose we define the function erase311

(Figure 7), which erases all AuthT annotations in a type but leaves it otherwise unchanged.312

Using erase we can state and prove the relationship between the weak and the strong typing313

judgment. The function fmmap :: (β ⇒ γ)⇒ (α, β) fmap ⇒ (α, γ) fmap is the canonical314

map function for the type of finite maps.315

I Lemma 13 (Well-typedness implies weak well-typedness).

Γ ` e : τ −→ fmmap erase Γ `W e : erase τ316

4 Agreement317

When introducing the small-step semantics we have discussed the intended interpretation of318

the mode. Any expression can be evaluated in mode I, performing a simple unauthenticated319

computation; in mode P, performing the computation and generating the proof stream; or in320

mode V, performing the computation and verifying the proof stream. Even though the three321

modes differ in their semantics and their terms may differ at any point during evaluation,322

their evaluations are structurally identical. This observation is captured by the agreement323

relation, written as Γ ` e, eP , eV : τ and read as “in environment Γ, ideal expression e, prover324

expression eP , and verifier expression eV all agree at type τ” (quoted from ADSG [10]).325

We formalize agreement as an inductive predicate, with the introduction rules presented326

in Figure 8. Most rules are straightforward extensions of the (strong) typing judgment to327

three terms. This immediately gives us the following result, which states that any well-typed328

expression can be used in the ideal, prover, and verifier positions to yield an agreeing triple.329

I Lemma 14 (Well-typedness implies agreement).

Γ ` e : τ −→ Γ ` e, e, e : τ330

The interesting exception to the agreement rules being extensions of the typing rules331

is the last rule. It is modeled after the Auth small-step rules for the three modes. This332

rule allows the three expressions to diverge during the evaluation of Auth and still be in333

agreement. Note that the agreeing triple in the rule’s premises may not contain any free334

variables. This property is enforced by the empty type environment, using the agreement335

version of Lemma 7. Therefore, the use of the hash function in this rule is unproblematic.336

Lemma 14 states that well-typedness implies agreement. Ideally, we would also like to337

show the other direction of this property: agreement implying well-typedness. Unfortunately338
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Γ ` Unit, Unit, Unit : One

atom x ] Γ Γ[x 7→ τ1] ` e, eP , eV : τ2

Γ ` Lam x e, Lam x eP , Lam x eV : Fun τ1 τ2

Γ[x] = Some τ

Γ ` Var x, Var x, Var x : τ

Γ ` e1, eP 1, eV 1 : Fun τ1 τ2 Γ ` e2, eP 2, eV 2 : τ1

Γ ` App e1 e2, App eP 1 eP 2, App eV 1 eV 2 : τ2

atom x ] (Γ, e1, eP 1, eV 1) Γ ` e1, eP 1, eV 1 : τ1 Γ[x 7→ τ1] ` e2, eP 2, eV 2 : τ2

Γ ` Let e1 x e2, Let eP 1 x eP 2, Let eV 1 x eV 2 : τ2

atom x ] Γ atom y ] (Γ, x) Γ[x 7→ Fun τ1 τ2] ` Lam y e, Lam y eP , Lam y eV : Fun τ1 τ2

Γ ` Rec x (Lam y e), Rec x (Lam y eP), Rec x (Lam y eV ) : Fun τ1 τ2

Γ ` e, eP , eV : τ1

Γ ` Inj1 e, Inj1 eP , Inj1 eV : Sum τ1 τ2

Γ ` e, eP , eV : τ1

Γ ` Inj2 e, Inj2 eP , Inj2 eV : Sum τ1 τ2

Γ ` e, eP , eV : Sum τ1 τ2 Γ ` e1, eP 1, eV 1 : Fun τ1 τ Γ ` e2, eP 2, eV 2 : Fun τ2 τ

Γ ` Case e e1 e2, Case eP eP 1 eP 2, Case eV eV 1 eV 2 : τ

Γ ` e1, eP 1, eV 1 : τ1 Γ ` e2, eP 2, eV 2 : τ2

Γ ` Pair e1 e2, Pair eP 1 eP 2, Pair eV 1 eV 2 : Prod τ1 τ2

Γ ` e, eP , eV : Prod τ1 τ2

Γ ` Prj1 e, Prj1 eP , Prj1 eV : τ1

Γ ` e, eP , eV : Prod τ1 τ2

Γ ` Prj2 e, Prj2 eP , Prj2 eV : τ2

atom α ] Γ Γ ` e, eP , eV : τ [Mu α τ/α]

Γ ` Roll e, Roll eP , Roll eV : Mu α τ

atom α ] Γ Γ ` e, eP , eV : Mu α τ

Γ ` Unroll e, Unroll eP , Unroll eV : τ [Mu α τ/α]

Γ ` e, eP , eV : τ

Γ ` Auth e, Auth eP , Auth eV : AuthT τ

Γ ` e, eP , eV : AuthT τ

Γ ` Unauth e, Unauth eP , Unauth eV : τ

value v value vP ∅ ` v, vP , LvPM : τ hash LvPM = h

Γ ` v, Hashed h vP , Hash h : AuthT τ

Figure 8 The agreement predicate

this does not hold. This is due to the extra agreement rule, allowing the introduction of339

authenticated types for any ideal value. Consider for example that with ∅ ` Unit, Unit, Unit :340

One, we can obtain ∅ ` Unit, Hashed h Unit, Hash h : AuthT One. Clearly we cannot show341

∅ ` Unit : AuthT One. However, we can show weak well-typedness:342

I Lemma 15 (Reformulated Lemma 2.3 from ADSG).

Γ ` e, eP , eV : τ −→ fmmap erase Γ `W e : erase τ343

We now prove Lemma 16 and Lemma 17 that are used extensively in later proofs.344

I Lemma 16 (Lemma 2.1 from ADSG).

Γ ` e, eP , eV : τ −→ LePM = eV345

I Lemma 17 (Lemma 2.4 from ADSG).

Γ ` e, eP , eV : τ −→ (value e ∧ value eP ∧ value eV ) ∨ (¬value e ∧ ¬value eP ∧ ¬value eV )346

In addition to Lemmas 15, 16, and 17, ADSG also states the following false property347

as Lemma 2.2. (Although ADSG states the property as a lemma, we did not encounter a348
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situation where this statement was required to complete a proof.)349

Γ ` e, eP , eV : τ ∧ Γ ` e, e′
P , e′

V : τ −→ eP = e′
P ∧ eV = e′

V350

To demonstrate why this property does not hold we construct a counterexample. We define351

h = Hash Unit and we abbreviate Unit as u for better readability. Let us first consider the352

following two agreeing triples.353

∅ ` u, u, u : One
∅ ` u, Hashed h u, Hash h : AuthT One354

The second triple can be generated from the first one by applying the last agreement rule.355

Both triples share the environment and the first term but disagree in the second and third356

term as well as their type. Using the Pair rule we obtain the following two agreeing triples.357

∅ ` Pair u u, Pair u u, Pair u u : Prod One One
∅ ` Pair u u, Pair u (Hashed h u), Pair u (Hash h) : Prod One (AuthT One)358

Applying Prj1 to these triples removes the difference in the types but preserves the differences359

in the second and third terms, completing our counterexample to ADSG’s Lemma 2.2.360

∅ ` Prj1 (Pair u u), Prj1 (Pair u u), Prj1 (Pair u u) : One
∅ ` Prj1 (Pair u u), Prj1 (Pair u (Hashed h u)), Prj1 (Pair u (Hash h)) : One361

In the following we prove that, given a well-typed λ• term, containing only free variables362

of authenticated types, substituting agreeing values of the same type produces an agreeing363

triple. This property is significant because it occurs in the following practical scenario. The364

verifier must represent the data structure in a query it sends to the prover. It does so by365

replacing it with a free variable, for which the prover substitutes its representation of the366

data structure. The prover then returns the generated proof stream to the verifier, who367

substitutes the free variable with its hash of the data structure and verifies the proof stream.368

We formalized this lemma as stated below, with fmdom returning a finite map’s domain as a369

finite set and |∈| denoting membership on finite sets.370

I Lemma 18 (Reformulated Lemma 3 from ADSG). For ∆, ∆P , ∆V :: (var , term) fmap:371 
Γ ` e : τ ∧
fmdom ∆ = fmdom Γ ∧ fmdom ∆P = fmdom Γ ∧ fmdom ∆V = fmdom Γ ∧ ∀x. x |∈| fmdom Γ −→ (∃τ ′, v, vP , h. Γ[x] = Some (AuthT τ ′) ∧

∆[x] = Some v ∧ ∆P [x] = Some (Hashed h vP) ∧ ∆V [x] = Some (Hash h) ∧
∅ ` v, Hashed h vP , Hash h : AuthT τ ′)


−→

∅ ` psubst e ∆, psubst e ∆P , psubst e ∆V : τ

372

ADSG’s Lemma 3 includes an additional premise:373

Γ ` e : τ where e contains no values of type AuthT τ374

Since variables are values, this premise implies that e contains neither bound nor free375

variables of type AuthT τ (only for this particular τ , it can contain other variables with other376

authenticated types). The premise does not impose any further restrictions, since variables377

are the only expressions that are values and can have type AuthT σ for some σ. We are378

unclear as to what this premise’s purpose is. Fortunately, the lemma holds without it.379

Finally, we prove a straightforward but crucial lemma, which states that substituting380

agreeing values of the correct type for a free variable in an agreeing triple preserves agreement.381

I Lemma 19 (Lemma 4 from ADSG).(
Γ[x 7→ τ ′] ` e, eP , eV : τ ∧ ∅ ` v, vP , vV : τ ′ ∧
value v ∧ value vP ∧ value vV

)
−→ Γ ` e[v/x], eP [vP/x], eV [vV/x] : τ382
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5 Correctness383

Having formalized λ• and proved a number of lemmas about it, we now take a look at the384

main claims formulated in ADSG, concerning the correctness and security of λ•. We start385

with some agreeing terms e, eP , eV . The properties we would then like to obtain can be386

informally stated as follows:387

1. Correctness: If e takes i steps in mode I, then eP and eV can also take i steps in their388

respective modes, with the verifier consuming the prover’s output proof stream. The389

resulting terms agree.390

2. Security: If eV takes i steps in mode V, consuming the proof stream π (which may be391

legit or created by an adversary trying to trick the verifier) then either e and eP can also392

take i steps in their respective modes, with the prover generating π and the resulting393

terms agreeing, or otherwise there exists a term in the proof stream π, such that we can394

show the presence of a hash collision.395

Besides these primary claims ADSG formulates a third claim (named Remark 1 ) that starts396

with the prover’s computation and lets the other two modes follow:397

3. Remark 1 : If eP takes i steps in mode P generating the proof stream π, then e and398

eV can also take i steps in their respective modes, with the verifier consuming π. The399

resulting terms agree.400

In a first step we formulate and prove these three properties on the single-step relation.401

Afterwards we will lift these lemmas to obtain the main results on the multi-step relation.402

I Lemma 20 (Single step version of Correctness, Lemma 5 from ADSG).

∅ ` e, eP , eV : τ ∧ 〈[], e〉 I→ 〈[], e′〉 −→(
∃e′

P , e′
V , π. ∅ ` e′, e′

P , e′
V : τ ∧

(∀πP . 〈πP , eP〉 P→ 〈πP @ π, e′
P〉) ∧ (∀π′. 〈π @ π′, eV 〉 V→ 〈π′, e′

V 〉)

)
403

Proof. The proof is by induction on the agreement relation. Most cases are straightforward,404

using the lemmas about agreement and various freshness lemmas. The most interesting405

cases are those for Let, Auth and Unauth. Let is the only construct with a binder that allows406

recursive evaluation, requiring an additional freshness lemma to show that the recursive step407

preserves freshness. The Auth and Unauth cases require us to show that the expressions being408

hashed are closed. In both cases we have an agreeing triple with an empty typing context, so409

we can apply the counterpart of Lemma 7 for agreement to show that property. J410

I Lemma 21 (Single step version of Security, Lemma 6 in ADSG).

∅ ` e, eP , eV : τ ∧ 〈πA, eV 〉 V→ 〈π′, e′
V 〉 −→∃e′, e′

P , π. 〈[], e〉 I→ 〈[], e′〉 ∧ (∀πP . 〈πP , eP〉 P→ 〈πP @ π, e′
P〉) ∧

((∅ ` e′, e′
P , e′

V : τ ∧ πA = π @ π′) ∨
((∃s, s′. π = [s] ∧ πA = [s′] @ π′ ∧ s 6= s′ ∧ hash s = hash s′ ∧ closed s ∧ closed s′))

411

Proof. The proof is similar to that of Lemma 20, though the Unauth case here does not412

involve hashes and therefore does not need special treatment. J413

I Lemma 22 (Single step version of Remark 1).

∅ ` e, eP , eV : τ ∧ 〈πP , eP〉 P→ 〈πP @ π, e′
P〉 −→

(∃e′, e′
V . ∅ ` e′, e′

P , e′
V : τ ∧ 〈[], e〉 I→ 〈[], e′〉 ∧ 〈π, eV 〉 V→ 〈[], e′

V 〉)
414
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Proof. The proof is by straightforward induction on the agreement relation, without any of415

the special cases of Lemmas 20 and 21. J416

Having proven Lemmas 20, 21 and 22 we can now lift the results to the small-step semantics’417

transitive closure to obtain the main results, described informally above.418

I Theorem 23 (Correctness, Theorem 1 in ADSG).

∅ ` e, eP , eV : τ ∧ 〈[], e〉 I→i 〈[], e′〉 −→
(∃e′

P , e′
V , π. ∅ ` e′, e′

P , e′
V : τ ∧ 〈[], eP〉 P→i 〈π, e′

P〉 ∧ 〈π, eV 〉 V→i 〈[], e′
V 〉)

419

I Theorem 24 (Security, Theorem 1 in ADSG).

∅ ` e, eP , eV : τ ∧ 〈πA, eV 〉 V→i 〈π′, e′
V 〉 −→

(∃e′, e′
P , π. 〈[], e〉 I→i 〈[], e′〉 ∧ 〈[], eP〉 P→i 〈π, e′

P〉 ∧
πA = π @ π′ ∧ ∅ ` e′, e′

P , e′
V : τ) ∨

(∃e′
P , j, π0, π

′
0, s, s

′. j ≤ i ∧ 〈[], eP〉 P→j 〈π0 @ [s], e′
P〉 ∧

πA = π0 @ [s′] @ π′
0 @ π′ ∧ s 6= s′ ∧ hash s = hash s′ ∧ closed s ∧ closed s′)

420

I Theorem 25 (Remark 1 in ADSG).

∅ ` e, eP , eV : τ ∧ 〈πP , eP〉 P→i 〈πP @ π, e′
P〉 −→

(∃e′, e′
V . ∅ ` e′, e′

P , e′
V : τ ∧ 〈[], e〉 I→i 〈[], e′〉 ∧ 〈π, eV 〉 V→i 〈[], e′

V 〉)
421

The statement of Theorem 24 differs from the one in ADSG. In the case where colliding422

hashes cause the verifier to falsely accept a computation as correct, the theorem ensures423

that the offending proof stream πA has a specific shape. ADSG claims this shape to be424

πA = π0 @ [s′] @ π′, i.e., the evaluation must stop after a hash collision is encountered. For425

Lemma 21, the single-step version, this holds, since we only evaluate a single step. However,426

this fact is no longer true when taking multiple steps, since the verifier may continue to427

evaluate and consume valid (or invalid) elements of the proof stream after encountering428

the hash collision. In fact, the verifier cannot recognize that a hash collision has occurred.429

Formally, this means that πA = π0 @ [s′] @ π′
0 @ π′ for some π′

0, as our corrected theorem430

states. We illustrate the problem with ADSG’s formulation with a concrete counterexample:431

Let (Unauth (Auth (Inj1 Unit))) x (Let (Unauth (Auth Unit)) y (Var x))432

This term can be evaluated in the prover mode to generate the proof stream [Inj1 Unit,Unit].433

We assume a hash function, which satisfies hash (Inj1 Unit) = hash (Inj2 Unit) and hash Unit 6=434

hash t for all t 6= Unit. Note that, since all theorems are formulated to be agnostic to the choice435

of the hash function, this is an entirely reasonable hash function to use in a counterexample.436

A verifier using the adversarial proof stream πA = [Inj2 Unit,Unit] evaluates the given term437

to Inj2 Unit. The original statement of the theorem would require the proof stream to be438

of the shape πA = π0 @ [s′] @ π′ with π′ = []. However, our adversarial proof stream439

does not fit this pattern since the term with a colliding hash is not the last term from the440

proof stream that is evaluated. With our amended, formally verified version, the shape441

πA = π0 @ [s′] @ π′
0 @ π′ can be matched as πA = [] @ [Inj1 Unit] @ [Unit] @ [].442

Since ADSG requires terms to be in administrative normal form, the above counterexample443

cannot be expressed in ADSG’s definition of λ•. However, in our formalization we include a444

(more verbose) counterexample in administrative normal form.445
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6 Discussion446

We have formalized λ• and proved its correctness and security in Isabelle/HOL. Our work can447

be seen as the mechanized supplement to Miller et al.’s ADSG [10]. Ultimately, ADSG passed448

the test of formalization. However, achieving this result turned out to be harder than we first449

had expected, given the mistakes and imprecisions we had to overcome. We discovered major450

problems in the paper’s Lemmas 1 and 2.2. We repaired Lemma 1 in a rather unsatisfactory451

fashion. However, in our view type soundness, and more specifically type preservation, is452

not very relevant for λ•; what is more important is the preservation of agreement, which453

correctness and security establish. Lemma 2.2 could not be salvaged. Moreover, we removed a454

redundant (and nonsensical) assumption from ADSG’s Lemma 3 and corrected a slip in the for-455

mal statement of ADSG’s main security theorem. We have not reported here the minor typos456

we found in ADSG’s informal definitions and refer to the first author’s Bachelor’s thesis [4] for457

such an overview. Taken together, our findings confirm the value of formal proofs. The formal-458

ization could (and arguably should) have been undertaken as part of the research on ADSG.459

The last point is typically countered by the disproportional effort needed to obtain the460

formalization. However, in this case the effort was modest: The main difficulties stemmed461

from the fact that on several occasions we first tried to prove false statements from ADSG.462

At 3500 lines of proof, our formalization is concise. In our view, Nominal was the main463

asset behind this conciseness, because it allowed us to closely follow the informal proofs,464

while discharging straightforward freshness obligations along the way. Nominal’s seamless465

integration with the type of finite maps provided the right level of abstraction to reason466

about type environments and term substitutions.467

However, we also noticed a few points where Nominal could provide a better user468

experience. First, the introduction of binding-aware recursive functions and inductive469

predicates requires some boilerplate proofs, which in many cases seem automatable. This470

impression is confirmed by the fact that we could literally copy these proofs from unrelated471

formalizations that were also using Nominal and perform minor adjustments to make them472

work in our case. Second, ADSG uses terms of the form rec x λy. t for defining recursive473

functions, which we model with the term Rec x (Lam y t). The more faithful way to model this474

form would be a single Nominal datatype constructor that simultaneously binds two variables:475

Rec (x :: var) (y :: var) (t :: term) binds x and y in t476

Nominal supports this declaration. However, the reasoning infrastructure it provides for such477

constructors is significantly more difficult to use than the one for the special case of construc-478

tors binding a single variable. We had started our formalization with the above formulation,479

but soon switched to the presented Rec constructor that only binds the recursive variable x.480

Note that both typing and agreement require Rec’s second argument to be of a function type,481

which is what the above form used in ADSG aims to hardwire into the syntax. Third, unlike482

ADSG we do not consider actually running λ• programs. Here, in our opinion, Nominal does483

not score very well by not being integrated with Isabelle’s code generator. And moreover,484

it is not clear in general how to execute recursive functions that carry freshness assumptions.485

Executability can be regained by translating the Nominal types to a nameless representation486

(e.g., de Bruijn indices) and lifting all definitions to this representation. Developing a more487

principled approach to executing Nominal programs is interesting future work.488
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