
Nondeterministic Asynchronous Dataflow1

in Isabelle/HOL2

Rafael Castro Gonçalves Silva #3

Department of Computer Science, University of Copenhagen4

Laouen Fernet #5

Department of Computer Science, University of Copenhagen6

Dmitriy Traytel #7

Department of Computer Science, University of Copenhagen8

Abstract9

We formalize nondeterministic asynchronous dataflow networks in Isabelle/HOL. Dataflow networks10

are comprised of operators that are capable of communicating with the network, performing silent11

computations, and making nondeterministic choices. We represent operators using a shallow embed-12

ding as codatatypes. Using this representation, we define standard asynchronous dataflow primitives,13

including sequential and parallel composition and a feedback operator. These primitives adhere to a14

number of laws from the literature, which we prove by coinduction using weak bisimilarity as our equal-15

ity. Albeit coinductive and nondeterministic, our model is executable via code extraction to Haskell.16

2012 ACM Subject Classification Security and privacy → Logic and verification; Computing17

methodologies → Distributed algorithms; Software and its engineering → Data flow languages18

Keywords and phrases dataflow, verification, coinduction, Isabelle/HOL19

Digital Object Identifier 10.4230/LIPIcs...20

1 Introduction21

Data stream processing frameworks like Flink [12], Kafka [21], Spark Streaming [33], and22

Timely Dataflow [26] are widely used in industry to compute with and analyze streams of23

data at a large scale. With a long-term objective of formally verifying the correctness of24

programs expressed in such frameworks in mind, we focus on their common algebraic dataflow25

foundation in this paper. The dataflow programming paradigm represents a streaming26

computation as a graph of operators, which are themselves data stream transformers.27

We focus on asynchronous dataflow in which operators work autonomously without block-28

ing the overall computation following the mantra “if I cannot make progress maybe someone29

else can.” Asynchronous computation is naturally nondeterministic: the order in which oper-30

ators are invoked is not predetermined and might affect the to overall computation’s behavior.31

Bergstra et al. [3] provide an algebra of asynchronous dataflow operators and building32

blocks (including sequential and parallel composition and a feedback loop construct), ax-33

iomatize the properties of these operators, and give two instances satisfying the axioms. We34

develop a new instance in Isabelle/HOL, represented as a shallow embedding as a coinductive35

datatype (short: codatatype). Our operators are essentially nondeterministic input-output36

machines with silent actions (Section 2). The coinductive representation allows us to keep37

the state implicit when composing operators. We use corecursion to define composition,38

feedback, and the various basic asynchronous operators of Bergstra et al. (Section 3). We use39

countable sets to represent nondeterminism, which simplifies our definition of composition40

and feedback operators.41

We validate that our operators work as intended by proving all but one of Bergstra et42

al.’s axioms by coinduction (Section 4). Thereby, we use weak bisimilarity as the notion of43

operator equality. Some of our originally proved properties deviate mildly from Bergstra et44

© Rafael Castro G. Silva, Laouen Fernet, Dmitriy Traytel;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rasi@di.ku.dk
https://orcid.org/0000-0002-0723-231X
mailto:lafe@di.ku.dk
https://orcid.org/0000-0001-9028-1480
mailto:traytel@di.ku.dk
https://orcid.org/0000-0001-7982-2768
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

al.’s axioms due to a simplification we made in some operators’ definitions and the fact that45

Isabelle does not have empty types. (Types are used by both us and Bergstra et al. to index46

the inputs and outputs of an operator. Bergstra et al.’s empty types signify that an operator47

has no inputs or no outputs). We show how to close this gap and obtain precisely Bergstra48

et al.’s axioms by working with the subtype of well-behaved operators (Section 5).49

With the help of Isabelle’s code generator, we extract executable Haskell code from our50

formalization (Section 6). To this end, we represent countable sets as a quotient of lazy lists.51

This allows us to run operators, which is useful for testing. A particular challenge is the execut-52

ability of the union of a countable set of countable sets as the corresponding merge function53

on lazy lists. We conclude with discussions of related work (Section 7) and particular formal-54

ization aspects (Section 8). Our Isabelle formalization is available as supplementary material.55

2 Operators as a Codatatype56

Isabelle/HOL’s codatatypes [6] formalize potentially infinite objects such as infinite streams57

(stream type) and lazy lists (l list type). We introduce operators as:58

codatatype (inputs : 'i, outputs : 'o, 'd) op =
Read 'i ('d ⇒ ('i, 'o, 'd) op) | Write (('i, 'o, 'd) op) 'o 'd
| Silent ('i, 'o, 'd) op | Choice (('i, 'o, 'd) op) cset

59

This codatatype command introduces a new type constructor, op (written postfix), with60

type parameters 'i indexing the input ports, 'o indexing the output ports, and 'd representing61

the type of data items (or events) an operator processes. An operator will perform one of four62

actions corresponding to the four codatatype constructors: (1) read an event from a given63

input port and continue based on the read event, (2) write an event to a given output port64

and continue as specified, (3) execute an internal (silent) action and continue as specified, and65

(4) nondeterministically choose a continuation from a countable set (type cset) of options.66

Operators are possibly infinite trees with nodes labeled by one of these four actions with67

Read branching over the read event 'd and Choice branching over the countable set of choices.68

For an operator to be finite, the operator must eventually reach the only leaf ⊘ ≡ Choice {}c69

along all branches. Note that we use the subscript c to distinguish sets and operations on70

them from their countable set counterparts: set and cset are separate types in Isabelle.71

The codatatype command also introduces the functions inputs :: ('i, 'o, 'd) op ⇒ 'i set72

and outputs :: ('i, 'o, 'd) op ⇒ 'o set that collect the sets of used ports as well as a map func-73

tion on the ports map_op :: ('i1 ⇒ 'i2)⇒ ('o1 ⇒ 'o2)⇒ ('i1 , 'o1 , 'd) op ⇒ ('i2 , 'o2 , 'd) op.74

Note that an operator does not necessarily have to use all available ports. For example, an oper-75

ator of type (nat, nat, nat) op does not necessarily have an infinite number of input and output76

ports; rather, it uses some subset of naturally-numbered ports, given by inputs and outputs.77

Isabelle requires all functions to be total. For recursive functions on datatypes, totality78

means termination. In contrast, corecursive functions, which produce elements of a codata-79

type, are guaranteed to be total if they are productive—that is, they must always eventually80

produce a codatatype constructor. The corec command facilitates the definition of core-81

cursive functions, in which a codatatype constructor guards all corecursive calls and all call82

contexts are comprised of friendly functions [5], thereby maintaining productivity and totality.83

For example, we define two uncommunicative operators using corec in Figure 1. The oper-84

ator ⊙ corecurses forever with the Silent constructor. The operator ⊗ corecurses forever with85

the (singleton) Choice constructor as shown in the lemma spin_op_code. The actual corec86

definition is slightly more convoluted. The codatatype nests the corecursive occurrence of op,87

R. Castro G. Silva, L. Fernet, D. Traytel XX:3

corec silent_op (⊙) where
⊙ = Silent ⊙

corec spin_op (⊗) where
⊗ = Choice ((λ_. ⊗) c̀ {()}c)

lemma spin_op_code :
⊗ = Choice {⊗}c

Figure 1 Two uncommunicative operators

datatype ('i, 'o, 'd) IO = Inp 'i 'd | Out 'o 'd | Tau
inductive step where

step (Inp p x) (Read p f) (f x) | step (Out q x) (Write op q x) op | step Tau (Silent op) op
| op ∈c ops =⇒ step io op op′ =⇒ step io (Choice ops) op′

definition sim where
sim R op1 op2 = (∀io op′

1. step io op1 op′
1 −→ (∃op′

2. step io op2 op′
2 ∧ R op′

1 op′
2))

coinductive bisim (infix ∼ 40) where
sim (∼) op1 op2 =⇒ sim (∼) op2 op1 =⇒ op1 ∼ op2

Figure 2 Labeled transition system and strong bisimilarity

in the countable set type cset, which means that any corecursive call guarded by the Choice con-88

structor must be applied using the map function on cset, i.e., the image function c̀ (written in-89

fix). To this end, we pull the corecursive call out of the singleton set. We also use similar trans-90

formations in some subsequent operators. To improve readability, we only present the user-91

friendly derived equations, such as spin_op_code, rather than the original corec command.92

2.1 Operators Equivalences93

The initial examples ⊘, ⊙, and ⊗ represent operators that appear to be identical to an94

external observer examining their (lack of) communication. However, these operators are95

syntactically different, which prevents us from proving their equality using op’s coinduction96

principle. Syntactic equality proves too rigid to support more nuanced semantic reasoning.97

This limitation leads us to Milner’s classic approach of using bisimilarity [25], which is an98

equivalence relation based on labeled transition systems (LTS). In an LTS, transitions are asso-99

ciated with labels that represent the performed actions. For our operators, these actions can be100

a read, a write, or a silent action (τ). Two operators are bisimilar if their corresponding trans-101

ition systems can mutually simulate each other’s transitions. In this work, we formalize both102

strong bisimilarity, which requires matching transitions one-by-one in simulations, and weak103

bisimilarity, which allows one to abstract away finite sequences of silent actions in simulations.104

In Figure 2, we define the datatype IO for labels and our LTS as the inductive predicate105

step, where the first three introduction rules associate the Read, Write, and Silent operator106

constructors with the appropriate labels. The Choice constructor does not have a label on its107

own; it depends on the existence of a label from a step made by an operator in its set of choices.108

Strong simulation follows from the definition sim (Figure 2) that takes a relation R and109

two operators op1 and op2, which must meet the following condition: whenever op1 steps110

to op′
1 with a label io, there must exist a corresponding step from op2 to some op′

2 with111

the same label io, such that R relates op′
1 and op′

2. Relation R is a strong simulation if112

∀op1 op2. R op1 op2 −→ sim R op1 op2. Moreover, R is a strong bisimulation when both R and113

its converse R−1 are strong simulations. Strong bisimilarity is the largest strong bisimulation.114

In Isabelle/HOL, a coinductive predicate is defined as the greatest fixed point of a115

corresponding predicate transformer on the predicate lattice following the Knaster—Tarski’s116

theorem [27]. Coinductive predicates are convenient for defining strong bisimilarity bisim117

(denoted with ∼, Figure 2) because they provide a useful coinduction principle [1]. We refor-118

mulate and mildly strengthen this coinduction principle for ∼, to improve readability and us-119

XX:4 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

lemma ex1_op_code :
ex1_op = Choice {Write ex1_op (1 :: nat) (42 :: nat),⊘}c

lemma ex2_op_code :
ex2_op = Choice {Write ex2_op (1 :: nat) (42 :: nat), ex2_op}c

lemma ex3_op_code :
ex3_op = Choice {Write ex3_op (1 :: nat) (42 :: nat), Silent ex3_op}c

lemma step_ex1_op_elim :
assumes step io ex1_op op′ obtains op′ = ex1_op and io = Out 1 42

lemma step_ex1_op_intro :
assumes io = Out 1 42 and op′ = ex1_op shows step io ex1_op op′

lemma step_ex2_op_elim :
assumes step io ex2_op op′ obtains op′ = ex2_op and io = Out 1 42

lemma step_ex2_op_intro :
assumes io = Out 1 42 and op′ = ex2_op shows step io ex2_op op′

lemma step_ex3_op_elim :
assumes step io ex3_op op′

obtains op′ = ex3_op and io = Out 1 42 | op′ = ex3_op and io = Tau
lemma step_ex3_op_intro1 :

assumes io = Out 1 42 and op′ = ex3_op shows step io ex3_op op′

lemma step_ex3_op_intro2 :
assumes io = Tau and op′ = ex3_op shows step io ex3_op op′

Figure 3 Examples of operators, and their step elimination and introduction rules

ability, by incorporating basic upto-techniques for strong bisimilarity (yielding bisimilarity up120

to reflexivity, up to symmetry, and up to bisimilarity) via the auxiliary inductive predicate S:121

inductive bisim_upto (S) for R where
R x y =⇒ S R x y | x ∼ y =⇒ S R x y | x = y =⇒ S R x y | S R y x =⇒ S R x y

122

lemma bisim_coinduct : R op1 op2 =⇒
(
∧

op1 op2 io op′
1. R op1 op2 =⇒ step io op1 op′

1 =⇒ ∃op′
2. step io op2 op′

2 ∧
S R op′

1 op′
2) =⇒

(
∧

op1 op2 io op′
2. R op1 op2 =⇒ step io op2 op′

2 =⇒ ∃op′
1. step io op1 op′

1 ∧
S R op′

1 op′
2) =⇒

op1 ∼ op2

123

A coinduction proof that a coinductive predicate holds for given arguments thus involves124

exhibiting a witness relation R that relates these arguments. Isabelle’s coinduction proof125

method [6] generates a canonical instantiation for R when applied to a specific goal.126

This principle is first used to demonstrate that∼ indeed constitutes an equivalence relation,127

i.e., it is reflexive, symmetric, and transitive. The next proof by coinduction shows that ⊘ ∼ ⊗,128

which is a consequence that neither operator can make a step. Three more intricate examples129

are given in Figure 3. These operators output the natural number 42 at port 1 until they130

may eventually stop doing so. They illustrate our general technique for proving strong (and131

weak) bisimilarity: we derive step elimination and introduction rules for specific operators,132

which allow us to prove the cases resulting from the application of the coinduction proof133

method, e.g., to prove ex1_op ∼ ex2_op. Note that neither ex1_op nor ex2_op are strongly134

bisimilar to ex3_op, because ex3_op can perform Tau actions while the other two cannot.135

This leads us towards the notion of weak bisimilarity, which can abstract silent steps away.136

R. Castro G. Silva, L. Fernet, D. Traytel XX:5

fun estep where estep Tau = (step Tau)== | estep io = step io
definition wstep io = (step Tau)∗∗ OO (estep io) OO (step Tau)∗∗

definition wsim where
wsim R op1 op2 = (∀io op′

1. step io op1 op′
1 −→ (∃op′

2. wstep io op2 op′
2 ∧R op′

1 op′
2))

coinductive wbisim (infix ≈ 40) where
wsim (≈) op1 op2 =⇒ wsim (≈) op2 op1 =⇒ op1 ≈ op2

inductive wbisim_upto (W) for R where
R x y =⇒ W R x y | x ≈ y =⇒ W R x y | x = y =⇒ W R x y | W R y x =⇒ W R x y

lemma wbisim_coinduct : R op1 op2 =⇒
(
∧

op1 op2 io op′
1. R op1 op2 =⇒ step io op1 op′

1 =⇒ ∃op′
2. wstep io op2 op′

2 ∧
W R op′

1 op′
2) =⇒

(
∧

op1 op2 io op′
2. R op1 op2 =⇒ step io op2 op′

2 =⇒ ∃op′
1. wstep io op1 op′

1 ∧
W R op′

1 op′
2) =⇒

op1 ≈ op2

Figure 4 Weak bisimilarity and corresponding coinduction principle

To define weak bisimilarity, we first define what constitutes a weak step, denoted by wstep137

in Figure 4. We use Isabelle’s notation: infix OO is the relation composition, the superscript138

∗∗ denotes the reflexive-transitive closure, and the superscript == the reflexive closure. A weak139

step consists of a finite, possibly empty sequence of Tau steps, followed by a single extended step140

(estep) and another sequence of Tau steps. The extended step introduces reflexivity for Tau ac-141

tions, which enables operators that lack Tau steps to simulate operators that include Tau steps.142

The definition of wsim is similar to sim, but it uses a weak step in the implication’s143

conclusion. Specifically, for op1 to be simulated by op2, every step taken by op1 with label144

io must be matched using a corresponding weak step by op2 with the same label io. The145

weak bisimulation coinductive predicate wbisim (denoted with ≈) is analogous to ∼ .146

We show that ≈ is an equivalence relation by coinduction using wbisim_coinduct following147

Milner [25, p. 109]. We also show that strong bisimilarity implies weak bisimilarity: op1 ∼148

op2 =⇒ op1 ≈ op2. Lastly, we have ex2_op ≈ ex3_op as an example of equivalence of149

operators in which one Tau step of ex3_op is simulated by a “reflexive step” of ex2_op.150

2.2 Trace Equivalence151

The concept of an external observer analyzing communication channels is formalized through152

the notion of trace. More specifically, we adopt Jonsson’s view [19]: a trace is a potentially153

non-terminating, linearly ordered sequence of communication events produced by an operator.154

Hence, the meaning of trace equivalence is the equality of set of traces of two operators.155

In Figure 5, we define visible actions using the datatype VIO, along with a function156

that transforms VIO into IO. We then introduce the concept of an operator being finished,157

meaning that the operator can no longer produce any visible actions. This is formalized158

using the coinductive predicate wfinished (the prefix w means we are in a weak setting that159

does not observe Tau steps). Next, we define the traces of an operator using the coinductive160

predicate wtraced, which consists of two cases: the base case, which associates the empty161

lazy list (LNil) with the operator being finished, and the coinductive case, which prepends162

(using LCons) the visible action from a weak step to a trace of the operator after this weak163

step. Lastly, trace equivalence ≡t is the equality of the set of traces. As expected, we show164

that weak bisimilarity implies trace equivalence op1 ≈ op2 =⇒ op1 ≡t op2.165

XX:6 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

datatype ('i, 'o, 'd) VIO = VInp 'i 'd | VOut 'o 'd
fun io_of_vio where io_of_vio (VInp p x) = Inp p x | io_of_vio (VOut p x) = Out p x
coinductive wfinished where

(∀op. op ∈ ops −→ wfinished op) =⇒ wfinished (Choice ops)
| wfinished op =⇒ wfinished (Silent op)

coinductive wtraced where
wfinished op =⇒ wtraced op LNil
| wstep (io_of_vio vio) op op′ =⇒ wtraced op′ lxs =⇒ wtraced op (LCons vio lxs)

definition wtraces op = {lxs. wtraced op lxs}
abbreviation wtrace_equiv (infix ≡t 40) where

op1 ≡t op2 ≡ wtraces op1 = wtraces op2

Figure 5 Traces and trace equivalence

2.3 Numeral Types for Ports166

A typical choice for input/output port types is to use Isabelle/HOL’s existing numeral types167

0 , 1 , 2 , 3 . . . which model sets of the respective finite cardinality. For example, an operator168

with two inputs and three outputs can be represented with the type (2 , 3 , 'd) op.169

Because all Isabelle/HOL types must be nonempty, the numeral type 0 is peculiar: it is170

isomorphic to the type of natural numbers. Its “cardinality” is still 0, because in Isabelle’s171

standard library the cardinality of infinite sets is defined to be 0. This raises a challenge172

when working with operators that should have no inputs or outputs, such as operator of type173

(0 , 'o, 'd) op or ('i, 0 , 'd) op. Although these operators should not be capable of reading or174

writing data, they may use the infinitely many ports available in 0 .175

To address this limitation, we introduce a type class called defaults, that defines a set of176

elements named defaults. (A similar type class singling out a particular default value already177

existed in Isabelle, but working with a set results in better closure properties for sum types.)178

We instantiate the defaults type class for 0 by setting its defaults to UNIV (the universal179

set containing all elements of the specified type). For other numeral types 1 , 2 , . . . , their180

defaults instance defines defaults = {}. We also make the sum type + an instance of defaults181

by taking the union of the defaults from both sides. Hence, the type 0 + 0 , just as 0 , has182

no non-default elements. The set of all non-default elements is U = UNIV − defaults. We183

introduce another type class all_defaults where U = {}, as a subclass of defaults. Naturally,184

we also provide instances of all_defaults for 0 and +. Finally, when defining operators, we185

assume that both input and output ports belong to the defaults and countable type classes186

and follow the convention to only use ports in Uc (the countable set counterpart of U).187

3 Asynchronous Dataflow Operators188

This section explains the set of operators of the network algebra for asynchronous dataflow.189

Following Bergstra et al. [3], they are divided into two categories: 1. The basic network190

algebra, which include three operators for structuring the network: sequential composition,191

parallel composition, and feedback. Additionally, there are two constants: identity and192

transposition; 2. The additional asynchronous dataflow constants: split, sink, merge, dummy193

source, asynchronous copy, and asynchronous equality test. Except for the sink, all operators194

are stateful, maintaining internal buffers to store communication data. These buffers function195

as intermediate first-in-first-out communication channels where data can reside indefinitely.196

R. Castro G. Silva, L. Fernet, D. Traytel XX:7

lemma id_op_code : id_op buf = Choice
(((λp. Read p (λx. id_op (BENQ p x buf))) c̀ Uc) ∪c

((λp. Write (id_op (BTL p buf)) p (BHD p buf)) c̀ {p ∈c Uc | buf p ̸= []}))
abbreviation id_empty_op (I) where I ≡ id_op (λ_. [])
lemma transp_op_code : transp_op buf = Choice

(((λp. Read p (λx. transp_op (BENQ p x buf))) c̀ Uc) ∪c

((λp. Write (transp_op (BTL p buf)) (case_sum Inr Inl p) (BHD p buf))
c̀ {p ∈c Uc | buf p ̸= []}))

abbreviation transp_empty_op (X) where X ≡ transp_op (λ_. [])

Figure 6 The identity and transposition operators

3.1 Buffer Infrastructure197

Most of our definitions will include a buffer function buf :: 'a ⇒ 'd list (where 'a is the type198

of the relevant ports). This buffer function buf represents the operator’s current state, e.g.,199

what data has already been read (and on which ports) but not yet written. In the rest of the200

paper, we will make use of the following convenience functions on buffers: BHD gives the first201

element, on the given port, in the buffer; BTL dequeues this first element; BENQ enqueues202

an element to the buffer; BULK_BENQ (or infix ≫) concatenates the data contained in two203

buffers. Buffers act as queues: we add elements to the list’s end and remove from its start.204

type_alias buf = list205

definition BHD :: 'a ⇒ ('a ⇒ 'd buf)⇒ 'd where BHD p buf = hd (buf p)206

definition BTL :: 'a ⇒ ('a ⇒ 'd buf)⇒ ('a ⇒ 'd buf) where
BTL p buf = buf (p := tl (buf p))

207

definition BENQ :: 'a ⇒ 'd ⇒ ('a ⇒ 'd buf)⇒ ('a ⇒ 'd buf) where
BENQ p x buf = buf (p := buf p @ [x])

208

definition BULK_BENQ (infixr ≫ 65) where buf 1 ≫ buf 2 = (λp. buf 2 p @ buf 1 p)209

3.2 Network Algebra Operators210

We present building blocks for defining arbitrary asynchronous dataflow operators. We recall211

the convention established in the previous section: only ports in U can be used. The first212

two primitives are the identity and transposition operators, defined respectively as id_op213

and transp_op. Their code equations are given in Figure 6.214

The operator id_op is a stream delayer: it can read data from any of its (non-default)215

input ports and enqueue it in its corresponding internal buffer; the operator can also dequeue216

data from any non-empty buffer and write data to the corresponding output port. The217

operator transp_op has type ('m + 'n, 'n + 'm, 'd) op, i.e., it operates on a sum type for the218

input ports and transposes the ports in the output. For instance, the data read on some input219

port Inl p, where p :: 'm, is enqueued on the internal buffer of the transposition operator and220

may eventually be written on output port Inr p. We abbreviate the initial states of these221

operators (in which internal buffers are empty) by I and X respectively.222

To combine operators, we define a general composition operator in Figure 7. To compose223

two operators, we must specify the wiring between them, as well as the buffer associated with224

this wiring. Given operators op1 :: ('i1 , 'o1 , 'd) op and op2 :: ('i2 , 'o2 , 'd) op, the wire is a par-225

tial function 'o1 ⇀ 'i2 defining how op1’s output ports of are connected to op2’s input ports.226

The definition of comp_op uses the choices function and sound_reads abbreviation.227

The function choices descends through Choice constructors until it reaches a non-Choice228

XX:8 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

lemma comp_op_code : comp_op wire buf op1 op2 = Choice
(((λop. case op of

Read p f ⇒ Read (Inl p) (λx. comp_op wire buf (f x) op2)
| Write op p x ⇒ (case wire p of

None⇒Write (comp_op wire buf op op2) (Inl p) x
| Some q ⇒ Silent (comp_op wire (BENQ q x buf) op op2))
| Silent op ⇒ Silent (comp_op wire buf op op2))

c̀ choices op1) ∪c

((λop. case op of
Read p f ⇒ if p ∈ ran wire

then Silent (comp_op wire (BTL p buf) op1 (f (BHD p buf)))
else Read (Inr p) (λx. comp_op wire buf op1 (f x))

| Write op p x ⇒Write (comp_op wire buf op1 op) (Inr p) x
| Silent op ⇒ Silent (comp_op wire buf op1 op))

c̀ sound_reads wire buf (choices op2)))
definition pcomp_op :: ('i1, 'o1, 'd) op ⇒ ('i2, 'o2, 'd) op ⇒

('i1 + 'i2, 'o1 + 'o2, 'd) op (infixl ∥ 64) where
op1 ∥ op2 = comp_op (λ_. None) (λ_. []) op1 op2

definition scomp_op :: ('i1, 'o1, 'd) op ⇒ ('o1, 'o2, 'd) op ⇒
('i1, 'o2, 'd) op (infixl • 65) where

op1 • op2 = map_op projl projr (comp_op Some (λ_. []) op1 op2)

Figure 7 The general, parallel, and sequential composition operators

constructor. It thus computes all steps an operator can make (e.g., choices ⊗ = {} and229

Silent op′ ∈c choices op ←→ step Tau op op′). It returns a countable set of operators: Read,230

Write, and Silent are returned as singletons and for Choice ops we obtain the union of choices231

applied to each operator in ops; formally choices (Choice ops) =
⋃

c(choices c̀ ops). The232

function sound_reads wire buf ops filters the Read operators in ops to only keep those whose233

port either is not connected by the wire (i.e., they communicate with the external world) or234

the buffer on the port connected by the wire is not empty. This makes reading from the empty235

buffer an impossible action. The standard ran function returns the range of a partial function.236

The comp_op operator proceeds by stepping one of the operators independently. In237

particular, either of the operators may be neglected and never take steps. This design is238

intentional, as it reflects the behavior of independent nodes in a decentralized network,239

where no global orchestrator ensures a fair or synchronized execution schedule. Moreover,240

the left operator is restricted to reading inputs from the external environment, while its241

outputs can be directed either to the wire’s buffers or to the external world, depending on242

the wiring. Conversely, the second operator can read either from the buffer or from the243

external environment, again based on the wiring, but its outputs are limited to the external244

world. Interactions with the wire’s buffers are recorded by comp_op as a silent action.245

We consider two special cases for the wiring function. When wire = (λ_. None), the246

two operators are not interacting with each other and we thus obtain parallel composition247

(infix ∥): the sum types of input and output ports reflect this. When wire = Some, it means248

that the output ports of op1 are connected with the input ports of op2 so that all the data249

that op2 may read must have been written by op1. Thus, we obtain sequential composition250

(infix •). Here, map_op projl projr is applied to remove the sum types, since in this case we251

know that the sequential composition’s input ports are the input ports of the first operator,252

and its output ports are the outputs ports of the second operator. Moreover, we prove253

R. Castro G. Silva, L. Fernet, D. Traytel XX:9

corec loop_op :: ('o ⇀ 'i)⇒ ('i ⇒ 'd buf)⇒ ('i, 'o, 'd) op ⇒ ('i, 'o, 'd) op where
loop_op wire buf op = Choice ((λop. case op of

Read p f ⇒ if p ∈ ran wire
then Silent (loop_op wire (BTL p buf) (f (BHD p buf)))
else Read p (λx. loop_op wire buf (f x))

| Write op′ p x ⇒ (case wire p of
None⇒Write (loop_op wire buf op′) p x
| Some q ⇒ Silent (loop_op wire (BENQ q x buf) op′))
| Silent op′ ⇒ Silent (loop_op wire buf op′))

c̀ sound_reads wire buf (choices op))
definition feedback_op (_ ↑ [66] 65) where

op ↑ = map_op projl projl (loop_op
(case_sum (λ_. None) (λp. if p ∈ defaults then None else Some (Inr p)))
(case_sum undefined (λ_. [])) op)

Figure 8 The loop and feedback operators

inputs (comp_op wire buf op1 op2) ⊆ Inl ` inputs op1 ∪ Inr ` (inputs op2 − ran wire) and254

outputs (comp_op wire buf op1 op2) ⊆ Inl ` (outputs op1 − dom wire) ∪ Inr ` outputs op2.255

Similarly to comp_op we define a general loop operator loop_op in Figure 8, which utilizes256

the choices function and is also parameterized by a wiring. The wiring determines when data257

is going to/coming from the outside environment or the loop’s own buffer (which is both258

written to and read from). We give a standard wiring configuration using the sum type, where259

the left-side ports communicate with the external environment, and the right-side ports handle260

the looping-back mechanism. We call loop_op with this wiring instance the feedback operator261

(_ ↑). Notably, ports in the defaults set are excluded from looping-back, enabling the definition262

of feedback operators without any looping-back ports (e.g., when the sum’s right-side is the263

0 type). We show that loop_op has similar inputs/outputs lemmas as the ones for comp_op.264

The composition and loop operators combine other operators. Thus it is useful to have con-265

gruence rules for them. Below, we show comp_op’s and loop_op’s congruence rules for weak266

bisimilarity. Similar rules also hold for strong bisimilarity as well as for the derived operators.267

lemma wbisim_comp_op_cong : op1 ≈ op′
1 =⇒ op2 ≈ op′

2 =⇒
comp_op wire buf op1 op2 ≈ comp_op wire buf op′

1 op′
2

268

lemma wbisim_loop_op_cong : op ≈ op′ =⇒
loop_op wire buf op ≈ loop_op wire buf op′

269

Now, we describe the remaining operators shown in Figure 9. The dummy source operator270

(!) is defined as the sequential composition of ⊘ with the I. Since ⊘ does not produce271

any output, the identity operator, in turn, also generates no output. In contrast, the sink272

operator (!) is capable of reading (and ignoring) data from all its usable input ports.273

To informally describe the final operators, we consider a fixed usable port p of type 'm ::274

{countable, defaults}. The split operator (Λ) reads data from p and nondeterministically buf-275

fers it either on the left (Inl p) or on the right (Inr p). Eventually, it may send that input data276

out through the corresponding port (Inl p or Inr p). The merge operator (V) acts as the dual of277

Λ by nondeterministically reading data from either the left (Inl p) or the right (Inr p) port and278

buffering it. V may eventually send this input data out through port p. The asynchronous copy279

operator (C) behaves similarly to (Λ), but it buffers the data on both sides (Inl p) and (Inr p).280

Finally, the equality test operator (Q) resembles (V). However, it operates with optional data281

and only outputs the data when the heads of both buffers are equal; otherwise, it outputs None.282

XX:10 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

abbreviation dummy_source_op (!) where

!

≡ ⊘ • I
corec sink_op :: ('i :: {countable, defaults}, 'o, 'd) op (!) where

! = Choice ((λp. Read p (λ_. !)) c̀ Uc)
lemma split_op_code : split_op buf = Choice

(((λp. Read p (λx. split_op (BENQ (Inl p) x buf))) c̀ Uc) ∪c

((λp. Read p (λx. split_op (BENQ (Inr p) x buf))) c̀ Uc) ∪c

((λp. Write (split_op (BTL p buf)) p (BHD p buf)) c̀ {p ∈c Uc | buf p ̸= []}))
abbreviation split_empty_op (Λ) where Λ ≡ split_op (λ_. [])
lemma merge_op_code : merge_op buf = Choice

(((λp. Read (Inl p) (λx. merge_op (BENQ (Inl p) x buf))) c̀ Uc) ∪c

((λp. Read (Inr p) (λx. merge_op (BENQ (Inr p) x buf))) c̀ Uc) ∪c

((λp. Write (merge_op (BTL (Inl p) buf)) p (BHD (Inl p) buf))
c̀ {p ∈c Uc | buf (Inl p) ̸= []}) ∪c

((λp. Write (merge_op (BTL (Inr p) buf)) p (BHD (Inr p) buf))
c̀ {p ∈c Uc | buf (Inr p) ̸= []}))

abbreviation merge_empty_op (V) where V ≡ merge_op (λ_. [])
lemma acopy_op_code : acopy_op buf = Choice

(((λp. Read p (λx. acopy_op (BENQ (Inr p) x (BENQ (Inl p) x buf)))) c̀ Uc) ∪c

((λp. Write (acopy_op (BTL (Inl p) buf)) (Inl p) (BHD (Inl p) buf))
c̀ {p ∈c Uc | buf (Inl p) ̸= []}) ∪c

((λp. Write (acopy_op (BTL (Inr p) buf)) (Inr p) (BHD (Inr p) buf))
c̀ {p ∈c Uc | buf (Inr p) ̸= []}))

abbreviation acopy_empty_op (C) where C ≡ acopy_op (λ_. [])
lemma aeq_op_code : aeq_op buf = Choice

(((λp. Read (Inl p) (λx. aeq_op (BENQ (Inl p) x buf))) c̀ Uc) ∪c

((λp. Read (Inr p) (λx. aeq_op (BENQ (Inr p) x buf))) c̀ Uc) ∪c

((λp. (if BHD (Inl p) buf = BHD (Inr p) buf
then Write (aeq_op (BTL (Inr p) (BTL (Inl p) buf))) p (BHD (Inl p) buf)
else Write (aeq_op (BTL (Inr p) (BTL (Inl p) buf)) p None)))
c̀ {p ∈c Uc | buf (Inl p) ̸= [] ∧ buf (Inr p) ̸= []}))

abbreviation aeq_empty_op (Q) where Q ≡ aeq_op (λ_. [])
Figure 9 Additional operators

4 Asynchronous Dataflow Properties283

We show that the axioms from Tables 1, 2, and 3 presented in Bergstra et al. [3] with the284

exception of axiom A1 in their Table 3 are valid in our shallow embedding. We discuss285

insights from proving the axioms and explain formulation differences. To make referencing286

transparent, we will use the axiom numbering of Bergstra et al.’s, but we merge their Tables287

2 and 3 (which use the same axiom numbers) into a single table.288

First, we establish a notation for sequentially composing an operator with identity: op ⊢289

denotes op • I and ⊣ op is I • op. This pre-/post-composition is added in our formalization290

to certain lemmas to ensure that the operator exhibits the required asynchronous behavior.291

This allows for a more precise account on where these additions are needed. For instance, the292

process algebra model from Bergstra et al. [3] surrounds most operators by identities on both293

sides. Changes to axiom statements of this nature are highlighted in gray. In Section 5, we294

demonstrate how these differences can be eliminated through the introduction of a new type.295

R. Castro G. Silva, L. Fernet, D. Traytel XX:11

B1 : op1 ∥ (op2 ∥ op3) ≈ map_op ↷ ↷ (op1 ∥ op2) ∥ op3

B2_1 : op ∥ (I :: (0 , 0 , 'd) op) ≈ map_op Inl Inl op
B2_2 : (I :: (0 , 0 , 'd) op) ∥ op ≈ map_op Inr Inr op
B3 : (op1 • op2) • op3 ≈ op1 • (op2 • op3)
B4_1 : op ⊢ • I ≈ op ⊢ B4_2 : I • ⊣op ≈ ⊣op
B5 : (op1 ∥ op2) • (op3 ∥ op4) ≈ (op1 • op3) ∥ (op2 • op4)
B6 : I ∥ I ≈ I B7 : X • X ≈ I
B8 : (X :: ('i + 0 , 0 + 'i, 'd) op) ≈ map_op id (case_sum Inr Inl) I
B9 : X ≈ map_op ↷ ↷ (X ∥ I) • map_op id ↶ (I ∥ X)
B10 : (⊣op1 ∥ ⊣op2) • X ≈ X • (op2⊢ ∥ op1⊢)
F1 : I ↑ ≈ (I :: (0 , 0 , 'd) op) F2 : X ↑ ≈ I
R1 : Inr -̀ inputs op1 ∩ defaults = {} =⇒ Inr -̀ outputs op1 ∩ defaults = {} =⇒

op2 • (op1 ↑) ≈ ((op2 ∥ I) • op1) ↑
R2 : Inr -̀ inputs op1 ∩ defaults = {} =⇒ Inr -̀ outputs op1 ∩ defaults = {} =⇒

(op1 ↑) • op2 ≈ (op1 • (op2 ∥ I)) ↑
R3 : Inr -̀ inputs op2 ∩ defaults = {} =⇒ Inr -̀ outputs op2 ∩ defaults = {} =⇒

op1 ∥ (op2 ↑) ≈ (map_op ↶ ↶ (op1 ∥ op2)) ↑
R4 : Inr -̀ inputs op1 ∩ defaults = {} =⇒ Inr -̀ outputs op1 ∩ defaults = {} =⇒

inputs op2 ∩ defaults = {} =⇒ outputs op2 ∩ defaults = {} =⇒
(⊣op1 • (I ∥ op2)) ↑ ≈ ((I ∥ op2) • op1⊢) ↑

R5 : Inr -̀ inputs op = {} =⇒ Inr -̀ outputs op = {} =⇒
map_op Inl Inl ((op :: ('i + 0 , 'o + 0 , 'd) op) ↑) ≈ op

R6 : Inr -̀ inputs op = {} =⇒ Inr -̀ outputs op = {} =⇒
Inr -̀ Inl -̀ inputs op = {} =⇒ Inr -̀ Inl -̀ outputs op = {} =⇒
(op ↑) ↑ ≈ (map_op ↷ ↷ op) ↑

Table 1 Basic network algebra properties

The first set of axioms is shown in Table 1. First, we identify some notable ax-296

ioms. Axiom B1 is the associativity of parallel composition and axiom B3 is the asso-297

ciativity of sequential composition. Notice that for B1 we need to map ports with the298

↷ :: ('a + 'b) + 'c ⇒ 'a + 'b + 'c function so the sum types are properly reassociated. We299

also define its inverse function ↶. Bergstra et al. mostly ignore such port mismatches; in a300

proof assistant more rigor is needed. Both parts of B4 show that an operator sequentially301

composed with identity can absorb another identity. This follows directly from the I • I ≈ I302

auxiliary lemma. We call such lemmas that remove identities identity absorption.303

The feedback operator axioms require additional assumptions to guarantee that arbitrary304

operators do not use default ports when looping-back (on the right). These assumptions use305

the inverse image function f -̀ B ≡ {x. f x ∈ B} to capture the right inputs and outputs.306

Recall that the wiring of ↑ forces defaults ports on the right to not loop back. Without these307

assumptions, the invariant that the ports on the right are the looping-back ones would be308

violated. Again, these modifications are highlighted and will be abstracted away in Section 5.309

Table 2 is about the asynchronous equality test, merge, copy, split, the dummy source, and310

sink operators. Axioms A14, A15, A18, and A19 can be seen as a recursive characterization311

of equality test, merge, copy, and split. The merge and split operators satisfy fewer axioms312

than equality test and copy. For example, A11 first duplicates inputs and then performs an313

equality test on them on the subsequent operator, which is bisimilar to the identity operator.314

For the V and Λ, the axiom A11 is not valid because nondeterministic split choices do not315

necessarily align with the nondeterministic merge order. A related reason prevented us from316

proving A1 for V. We conjecture that (V ∥ I) • V and map_op ↶ id ((I ∥ V) • V) are not317

weakly bisimilar as they make partial nondeterministic choices in different orders. We do318

XX:12 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

A1 : (Q ∥ I) • Q ≈ map_op ↶ id ((I ∥ Q) • Q)
A2 : X • > ≈ > for > ∈ {Q, V} A6 : < • X ≈ < for < ∈ {C, Λ}
A3Q : ((!:: (0 , 'a, 'd) op) ∥ I) • Q ≈ (! :: (0 + 'a, 0 , 'd) op) •

!

A3V : ((!:: (0 , 'a, 'd) op) ∥ I) • V ≈ map_op Inr id I
A4 : > • ! ≈ ! ∥ ! for > ∈ {Q, V} A8 : !

• < ≈

!

∥

! for < ∈ {C, Λ}
A5 : C • (C ∥ I) ≈ map_op id ↶ (C • (I ∥ C))
A7 : C • (! ∥ I) ≈ map_op id Inr I A9 : !

• ! ≈ I
A10 : Q • C ≈ (C ∥ C) • (map_op ↷ ↷ (map_op ↶ ↶ (I ∥ X) ∥ I)) • (Q ⊢ ∥ Q ⊢)
A11 : C • Q ≈ I A12 : !

≈ (I :: (0 , 0 , 'd) op)
A16 : ! ≈ (I :: (0 , 0 , 'd) op) A13 : !

≈

!

∥

! A17 : ! ≈ ! ∥ !
A14 : map_op id Inl (> :: (0 + 0 , 0 , 'd) op) ≈ I for > ∈ {Q, V}
A15 : > ≈ map_op ↷ ↷ (map_op ↶ ↶ (I ∥ X) ∥ I) • (> ∥ >) for > ∈ {Q, V}
A18 : map_op Inl id (< :: (0 , 0 + 0 , 'd) op) ≈ I for < ∈ {C, Λ}
A19 : < ≈ (< ∥ <) • map_op ↷ ↷ (map_op ↶ ↶ (I ∥ X) ∥ I) for < ∈ {C, Λ}
F3 : (map_op id Inr >) ↑ ≈ ! for > ∈ {Q, V}
F4 : (map_op Inr id <) ↑ ≈

! for < ∈ {C, Λ}
F5 : ((I ∥ C) • map_op ↷ ↷ (X ∥ I) • (I ∥ Q)) ↑ ≈ ! •

!

Table 2 Properties of equality test, merge, copy, split, source and sink operators

X

l1

r 1

X

r3

l3l2

r2

≈

I
l

r

Figure 10 Generalization of axiom B7 where l = l1 ≫ l2 ≫ l3 and r = r1 ≫ r2 ≫ r3

believe that they are trace equivalent, but do not have a formal proof of this statement.319

To prove the axioms, we follow the approach outlined in Section 2.1. This involves320

deriving introduction and elimination rules, such as the ones in Figure 3, for each operator321

and using these rules to construct the required simulations generated by the coinduction. The322

coinduction proofs require generalizing the operator’s buffers, as using empty buffers from the323

notations would eventually cause us to be outside of the bisimulation during the coinduction.324

Consequently, we must consider arbitrary buffers and establish an invariant between them.325

In most cases, this is straightforward. For example, in the generalization of axiom B7 in326

Figure 10, the buffers from both sides are related using the ≫ function. In this drawing, the327

left-side ports are of the numeral type 3 , and the right-side ports are of type 1 . Also, we re-use328

the same symbols as the introduced operator notations to unambiguously identify them.329

A common pattern in the proofs involves forward reasoning to move data through the330

buffers. For instance, consider one of the cases in the B7 proof, where I on the right-hand331

side of the weak bisimilarity produces an output from the l buffer. Then the left-hand side332

must also produce the same output. However, it may be the case that the buffers l2 and l3 are333

empty, and the head of l1 must traverse the diagram to generate the output. This results in334

a sequence of Tau steps that move l1’s head to l2 and then to l3. The Isar proof language [31]335

offers fact chaining using also, which is well-suited for this kind of transitive reasoning.336

The axiom A10 was a challenging one to prove as it required a non-trivial buffer invariant.337

We consider the diagram in Figure 11, and we assume that a = a1 ≫ a2 ≫ a3 ≫ a4 ≫ a5 ,338

and similarly for b, c, and d. Furthermore, we assume ac = ac1 ≫ ac2 and bd = bd1 ≫ bd2.339

To find the invariant, we analyze the left-to-right simulation first. Assume that the left-hand340

side does an equality test step with Q0. This step can only be weakly simulated on the right-341

R. Castro G. Silva, L. Fernet, D. Traytel XX:13

Q0

x
y

C0

v
wz ≈

C1

a1
b1

C2

c1
d1

X0

c 3

b3

I0

a3

I1

d3

Q1

a5

c5

Q2

d5

b5

I3

bd2

I2

ac2
a2

b2

c 2

d2

a4

c 4

b4

d4

ac1

bd1

Figure 11 Generalization of axiom A10

hand side if either or both Q1 and Q2 can make some sequences of tests to catch up with Q0.342

However, there is no way to have a simulation if either Q1 or Q2 has tested more than Q0. The343

sequence of channels a p and c p must have the same length as they are consumed together by344

Q1, and symmetrically b p and d p. Thus, for every port p, there exist natural numbers n, m,345

such that drop n (a p) = x p ∧ drop n (c p) = y p ∧ drop m (b p) = x p ∧ drop m (d p) = y p.346

As Q1 and Q2 advance independently, we maintain n = 0 ∨m = 0 as invariant. The already347

tested elements in z ≫ v and in z ≫ w can be ahead of the tested elements on the right-hand348

side of the equivalence (ac and bd). This means that (z ≫ v) p is precisely the same as ac p349

followed by the sequence of n elements still to be pairwise tested in a p and c p.350

The established invariant must also hold for the right-to-left simulation. We assume an351

equality test on the right-hand side in Q2 testing if BHD p b5 equals BHD p d5 . We must352

avoid testing too little on the left-hand of the equivalence side to keep the invariant. For353

example, if b = x and d = y, this new equality test with b5 and d5 will reduce the size of b354

and d by one; therefore, one equality test on the left-hand side must happen as well.355

5 Well-Behaved Operators356

We outline the process for eliminating the differences in our lemmas compared to Bergstra357

et al. [3]: the gray highlights in Table 1 and Table 2. To achieve this, we define a subtype358

of well-behaved operators using Isabelle’s typedef command. The new type requires its359

elements to be weakly bisimilar to some operator surrounded by ⊣ and ⊢.360

typedef ('i :: {countable, defaults}, 'o :: {countable, defaults}, 'd) operator =
{op :: ('i, 'o, 'd)op. ∃op′ :: ('i, 'o, 'd) op. op ≈ ⊣ op′ ⊢}

361

Next, we lift every definition to this new type. This includes all operators, weak bisimilarity,362

and map_op. The lifting is done by the lift_definition command [18], which requires a363

proof that the lifted term respects the subtype’s property. When an operator has identity364

absorption lemmas, it can be lifted without changes; for example, I can be lifted directly as it365

satisfies I • I ≈ I. Similarly, •, ∥, and ↑ are lifted directly too; they satisfy ⊣ (op1 • op2) ⊢ ≈366

(⊣ op1) • (op2 ⊢), ⊣ (op1 ∥ op2) ⊢ ≈ (⊣ op1 ⊢) ∥ (⊣ op2 ⊢), and ⊣ (op ↑) ⊢ ≈ (⊣ op ⊢) ↑.367

Other operators such as C are lifted with no changes as well because they also have368

identity absorption lemmas for both sides: ⊣ C ⊢ ≈ C. We lift the definitions of !and ! using369

the all_defaults type class constraint to ensure that they have no usable ports for their inputs370

and output, respectively. This guarantees their identity absorption lemmas. In contrast, the371

operators Q and V satisfy only weaker one-sided absorption lemmas: ⊣ Q ⊢ ≈ Q ⊢, ⊣ V ⊢ ≈372

V ⊢, Hence, to make the subtype constraint hold, we lift ⊣ Q and ⊣ V instead of Q and V.373

XX:14 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

The lifting of map_op requires ⊣ (map_op f g op) ⊢ ≈ map_op f g (⊣ op ⊢) to hold.374

This is not true in general, but we can impose sufficient constraints on f and g. They must375

maintain the exclusive use of ports in the set Uc (i.e., ∀x. f x ∈ defaults −→ x ∈ defaults). The376

same property must also hold for the inverse of f and g because in the bisimilarity proof their377

inverses are necessary to construct the respective simulation. In addition, this lemma further378

requires that f and g and their inverses are injective on Uc. Fortunately, all usages of map_op379

in all tables meet these conditions. Lastly, the highlighted assumptions from Table 1 are also380

eliminated for the lifted operators because they are weakly bisimilar to ⊣ op′ ⊢ for some op′,381

the ports of ⊣ op′ ⊢= I•op′ • I are in Uc, and weakly bisimilar operators have the same ports.382

6 Code Generation383

Our operators are infinitary in two respects: they may branch over a countably infinite set of384

choices and as codatatypes, they may be trees of infinite depth. We use code generation to385

Haskell [17] to execute operators lazily and produce prefixes of their traces up to a given depth.386

A particular challenge for code generation is our usage of the abstract type of countable387

sets, which are originally defined as a subtype of arbitrary sets. The default code generation388

setup for sets supports finite and cofinite sets, but not the countable sets we are interested389

in. Instead, we provide a new setup for countable sets that recasts them as quotients [20] of390

lazy list modulo reordering of elements. For this purpose, we define the abstraction function391

cset_of_llist :: 'a llist ⇒ 'a cset which is used by the code generator as the only pseudo-392

constructor of countable sets: a standard way to provide code generation for quotients [16].393

Then, operations on countable sets can be made executable by providing a code equation394

that pattern-matches on this pseudo-constructor and performs the according operation on395

the underlying lazy lists. For example, countable set union becomes lazy list interleaving:396

corec (friend) linterleave :: 'a llist ⇒ 'a llist ⇒ 'a llist where
linterleave xs ys = (case (xs, ys) of (LNil, LNil)⇒ LNil
| (LCons x xs′, LCons y ys′)⇒ LCons x (LCons y (linterleave xs′ ys′))
| (LCons x xs′, LNil)⇒ LCons x xs′ | (LNil, LCons y ys′)⇒ LCons y ys′)

397

lemma [code] : cset_of_llist xs ∪c cset_of_llist ys = cset_of_llist (linterleave xs ys)398

Things become more challenging for functions on countable sets of more complex types,399

e.g., countable sets themselves. Specifically, the above recipe fails for the function
⋃

c ::400

('a cset) cset ⇒ 'a cset. It is not a problem to define a corresponding function on lazy lists:401

corec lmerge :: ('a llist) l list ⇒ 'a llist where
lmerge xss = (case ldropWhile lnull xss of LNil⇒ LNil
| LCons xs xss ⇒ LCons (lhd xs) (linterleave (lmerge xss) (ltl xs)))

402

This definition crucially relies on Isabelle’s corecursion up-to friends [5], in particular that403

linterleave is a friendly function (which is proved automatically for its definition). However,404

the following equation uses the map function on lazy lists on the left and is thus invalid code:405

lemma
⋃

c
(cset_of_llist (lmap cset_of_llist xss)) = cset_of_llist (lmerge xss)406

A dual problem occurs for functions on subtypes with compound return types. Kun-407

čar [22, §6.4] presents and automates a solution for subtypes, which inspires our solution for408

quotients. We introduce a type 'a cset_l list that is isomorphic to ('a cset) l list as a quotient409

of ('a llist) l list (with the abstraction function abs_cset_llist :: ('a llist) l list ⇒ 'a cset_l list410

serving as the pseudo-constructor for code generation). Since this new type does not411

R. Castro G. Silva, L. Fernet, D. Traytel XX:15

have a compound domain, the standard lifting of lmerge to the function cset_llist_merge ::412

'a cset_l list ⇒ 'a cset yields a valid code equation. Thus we have reduced the problem to413

finding an executable function cset_llist_of :: ('a cset) l list ⇒ 'a cset_l list. This function414

can be defined by lifting the identity on lazy lists. And it can be made executable by lifting415

the lazy list constructors to 'a cset_llist and using the following code equations:416

lemma [code] : LNil′ = abs_cset_llist LNil
LCons′ (cset_of_llist x) (abs_cset_llist xs) = abs_cset_llist (LCons x xs)
cset_llist_of LNil = LNil′ cset_llist_of (LCons x xs) = LCons′ x xs

417

Overall, we obtain
⋃

c(cset_of_llist xss) = cset_llist_merge (cset_llist_of xss), which is ex-418

ecutable. We remark that we cannot use Lochbihler and Stoop’s framework [24] for executing419

generated Isabelle code lazily in strict programming languages, because quotient types are420

not supported by that framework. Thus, we resort to Haskell as the code generation target.421

7 Related Work422

This work provides mechanized proofs of most asynchronous dataflow algebra axioms by423

Bergstra et al [3]. They present the two original algebra instances: the relation-based stream424

transformer model and the process algebra model using the Algebra of Communicating425

Processes (ACP) [2]. Our operator definitions closely follow their ACP counterparts. One426

difference is that most of their operators are defined by explicitly pre- and post-composing427

with identity operators (⊣ op ⊢ instead of op), whereas we work with the core operators428

and only use the additional identities where they are necessary. For the stream transformer429

model, Broy and Ştefănescu [9] provide pen-and-paper proofs for a slightly different algebra.430

The recent Isabelle/HOL formalization of time-aware stream processing [30] bears some431

similarities to our work. It defines stream processing operators using a codatatype with a single432

constructor that combines both reading and writing: a finite list of outputs is produced as a re-433

action to reading an input. In contrast, we separate both operations (so that the operator can434

decide what it wants to do next) and additionally support nondeterministic choices and silent435

steps. Their approach covers time metadata associated with processed events (which is neces-436

sary for aggregating computations) but does not support loops. Moreover, their representation437

of multiple inputs/outputs using sum types requires to linearize all inputs into a single lazy list.438

We plan to extend our network algebra operators with capabilities to observe time metadata.439

Chappe et al. [14] formalize choice trees—a semantic domain for modeling nondeterministic,440

recursive, and impure programs, based on interaction trees developed by Xia et al [32] in Rocq.441

(Later, interaction trees have also been formalized in Isabelle [15].) Our operators can be seen442

as a domain specific variant of choice trees tailored to asynchronous dataflow. In particular,443

our types make inputs and output ports explicit, which is used in composition and feedback444

operators. In contrast, choice trees are monadically composed along their only output. Due to445

Isabelle’s simple types, our operators are restricted to use a fixed type parameter for the data446

items. In a dependently-typed system, the type of data could be indexed by the corresponding447

port, much like the interaction type depends on the action type in choice/interaction trees.448

The streaming language Flo [23] serves as a framework for representing streaming com-449

putations originating from different systems like Flink [12] and DBSP [11]. Flo makes two450

assumptions on stream processing systems: streaming progress and eager execution. The451

first assumption means that a program produces as much output as it can given the observed452

inputs; the second ensures that this output is deterministic. One practical challenge of their453

approach is the need to demonstrate that operators satisfy both assumptions.454

XX:16 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

Synchronous dataflow languages have received some attention in mechanization, with the455

Lustre [13] compiler Vélus [7] being a prominent example. Bergstra et al. [4] also develop al-456

gebraic foundations for synchronous dataflow, which subtly differ from the asynchronous ones.457

Milner’s classic chapter on weak bisimilarity [25] provided us with valuable insights for our458

proofs. The network algebra axioms were well-behaved in a sense that we did not have to use459

advanced up-to techniques for weak bisimilarity, such as the ones developed by Pous [28, 29].460

8 Discussion461

We have presented our Isabelle formalization of a semantic domain for asynchronous dataflow462

along with operators that satisfy all but one of Bergstra et al.’s axioms [3]. Our formalization463

comprises 28 000 lines of definitions and proofs. A major bulk of this work are the coinduction464

proofs of the 51 axioms, each spanning between 12 and almost 4 000 lines.465

In terms of proof assistant technology, we make use of Isabelle’s support for codatatypes,466

in particular using nested corecursion through the type of countable sets. While we could467

define all our desired operators, some definitions needed adjustments from their most natural468

(presented) formulations to be accepted by corec. Our formalization may give insight to469

developers on how to make this advanced command even more convenient to use.470

Although not visible in the end product, we made great use of the Sketch and Explore471

tool when proving the axioms. Typically, we would invoke auto and obtain a number of472

subgoals to work on. (In case of A10 there are more than fifty subgoals.) The Sketch and473

Explore tool presents these subgoals as an Isar proof outline, so that once finished the auto474

invocation can become a terminal proof method, which is deemed better proof style.475

Our formalization provides reusable artifacts beyond dataflow. In particular, we have476

outlined an approach for emulating empty types through the use of the defaults type class.477

We have also sketched how to generate executable code for functions on quotient types with478

compound domain types. Although we were mostly interested in countable sets, we presented479

a general technique dualizing the existing solution for a similar problem with subtypes.480

An anecdote from our formalization journey is illustrative. After having completed all481

axiom proofs, we have noticed that we actually proved the Λ version of A5, which according to482

Bergstra et al. is not expected to hold in all models. This made us suspicious and we were in-483

specting the axioms extra carefully. The proof assistant did not help here: Isabelle had happily484

accepted our proofs. It turned out that we made a mistake in statements: instead of reassoci-485

ating sum types we were rotating them, which has trivialized several axioms. We rushed to fix486

the mistake and proved all axioms but A1 for Q and V . After some (useful) struggle with Isa-487

belle, we realized that our definition of Q deviated from Bergstra et al.’s: instead of replacing488

non-equal pairs by None we were dropping such pairs entirely. Fixing Q meant that we had to489

revisit all our proofs involving it, including A10. Here, Isabelle turned out to be tremendously490

helpful: the proof structure did not change and local fixes (in places Isabelle pointed to) were491

sufficient to bring us back on track. We finally also managed to prove A1 for Q (but not for V).492

We are working on proving A1 for V using trace equivalence. As future work, we will493

formalize the history model (i.e., give operators a semantics in terms of input/output relations494

on lazy lists) and demonstrate that it suffers from the Brock–Andersen anomaly [8, 19]. We495

have already formalized the trace semantics, which constitutes Jonsson’s workaround for this496

issue [19]. However, a characterization of traces for composition and feedback in terms of their497

arguments’ traces is missing. As a long term objective, we want to make time a first-class cit-498

izen in our dataflows, so that we can formalize programs expressed in data stream processing499

frameworks such as Timely Dataflow [26]. Our work provides a solid foundation for asynchron-500

ous dataflow into which we will incorporate promising initial progress in that direction [10,30].501

R. Castro G. Silva, L. Fernet, D. Traytel XX:17

References502

1 Jesper Bengtson. Formalising process calculi. PhD thesis, Uppsala University, 2010.503

2 Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication. Inf.504

Control., 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.505

3 Jan A. Bergstra, Cornelis A. Middelburg, and Gheorghe Stefanescu. Network algebra506

for asynchronous dataflow. Int. J. Comput. Math., 65(1-2):57–88, 1997. doi:10.1080/507

00207169708804599.508

4 Jan A. Bergstra, Cornelis A. Middelburg, and Gheorghe Stefanescu. Network algebra for509

synchronous dataflow. CoRR, abs/1303.0382, 2013. URL: http://arxiv.org/abs/1303.0382.510

5 Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, and511

Dmitriy Traytel. Friends with benefits - implementing corecursion in foundational proof512

assistants. In Hongseok Yang, editor, ESOP 2017, volume 10201 of LNCS, pages 111–140.513

Springer, 2017. doi:10.1007/978-3-662-54434-1_5.514

6 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei515

Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In Gerwin516

Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 93–110. Springer,517

2014. doi:10.1007/978-3-319-08970-6_7.518

7 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel519

Rieg. A formally verified compiler for Lustre. In Albert Cohen and Martin T. Vechev, editors,520

PLDI 2017, pages 586–601. ACM, 2017. doi:10.1145/3062341.3062358.521

8 J Dean Brock and William B Ackerman. Scenarios: A model of non-determinate computation.522

In Formalization of Programming Concepts: International Colloquium Peniscola, Spain, April523

19–25, 1981 Proceedings, pages 252–259. Springer, 1981.524

9 Manfred Broy and Gheorghe Stefanescu. The algebra of stream processing functions. Theor.525

Comput. Sci., 258(1-2):99–129, 2001. doi:10.1016/S0304-3975(99)00322-9.526

10 Matthias Brun, Sára Decova, Andrea Lattuada, and Dmitriy Traytel. Verified progress527

tracking for Timely Dataflow. In Liron Cohen and Cezary Kaliszyk, editors, ITP 2021, volume528

193 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.529

doi:10.4230/LIPICS.ITP.2021.10.530

11 Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. DBSP: automatic531

incremental view maintenance for rich query languages. Proc. VLDB Endow., 16(7):1601–1614,532

2023. doi:10.14778/3587136.3587137.533

12 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas534

Tzoumas. Apache Flink™: Stream and batch processing in a single engine. IEEE Data Eng.535

Bull., 38(4):28–38, 2015. URL: http://sites.computer.org/debull/A15dec/p28.pdf.536

13 Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declarative language537

for programming synchronous systems. In POPL 1987, pages 178–188. ACM Press, 1987.538

doi:10.1145/41625.41641.539

14 Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. Choice540

trees: Representing nondeterministic, recursive, and impure programs in Coq. Proc. ACM541

Program. Lang., 7(POPL):1770–1800, 2023. doi:10.1145/3571254.542

15 Simon Foster, Chung-Kil Hur, and Jim Woodcock. Formally verified simulations of state-rich543

processes using interaction trees in Isabelle/HOL. In Serge Haddad and Daniele Varacca,544

editors, CONCUR 2021, volume 203 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl - Leibniz-545

Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CONCUR.2021.20.546

16 Florian Haftmann, Alexander Krauss, Ondrej Kuncar, and Tobias Nipkow. Data refinement in547

Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, ITP548

2013, volume 7998, pages 100–115. Springer, 2013. doi:10.1007/978-3-642-39634-2_10.549

17 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In550

Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, FLOPS 2010, volume 6009 of551

LNCS, pages 103–117. Springer, 2010. doi:10.1007/978-3-642-12251-4_9.552

https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1080/00207169708804599
https://doi.org/10.1080/00207169708804599
https://doi.org/10.1080/00207169708804599
http://arxiv.org/abs/1303.0382
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1145/3062341.3062358
https://doi.org/10.1016/S0304-3975(99)00322-9
https://doi.org/10.4230/LIPICS.ITP.2021.10
https://doi.org/10.14778/3587136.3587137
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/3571254
https://doi.org/10.4230/LIPICS.CONCUR.2021.20
https://doi.org/10.1007/978-3-642-39634-2_10
https://doi.org/10.1007/978-3-642-12251-4_9

XX:18 Nondeterministic Asynchronous Dataflow in Isabelle/HOL

18 Brian Huffman and Ondrej Kuncar. Lifting and transfer: A modular design for quotients in553

Isabelle/HOL. In Georges Gonthier and Michael Norrish, editors, CPP 2013, volume 8307 of554

LNCS, pages 131–146. Springer, 2013. doi:10.1007/978-3-319-03545-1_9.555

19 Bengt Jonsson. A fully abstract trace model for dataflow and asynchronous networks. Distrib-556

uted Computing, 7:197–212, 1994.557

20 Cezary Kaliszyk and Christian Urban. Quotients revisited for Isabelle/HOL. In William C.558

Chu, W. Eric Wong, Mathew J. Palakal, and Chih-Cheng Hung, editors, SAC 2011, pages559

1639–1644. ACM, 2011. doi:10.1145/1982185.1982529.560

21 Martin Kleppmann and Jay Kreps. Kafka, Samza and the Unix philosophy of distributed561

data. IEEE Data Eng. Bull., 38(4):4–14, 2015. URL: http://sites.computer.org/debull/562

A15dec/p4.pdf.563

22 Ondřej Kunčar. Types, abstraction and parametric polymorphism in higher-order logic. PhD564

thesis, Fakultät für Informatik, Technische Universität München, 2016.565

23 Shadaj Laddad, Alvin Cheung, Joseph M. Hellerstein, and Mae Milano. Flo: A semantic566

foundation for progressive stream processing. Proc. ACM Program. Lang., 9(POPL):241–270,567

2025. doi:10.1145/3704845.568

24 Andreas Lochbihler and Pascal Stoop. Lazy algebraic types in Isabelle/HOL, 2018.569

25 Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice570

Hall, 1989.571

26 Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and572

Martín Abadi. Naiad: a timely dataflow system. In Michael Kaminsky and Mike Dahlin,573

editors, SOSP 2013, pages 439–455. ACM, 2013. doi:10.1145/2517349.2522738.574

27 Lawrence C. Paulson. A Fixedpoint Approach to (Co)Inductive and (Co)Datatype Definitions,575

page 187–211. MIT Press, Cambridge, MA, USA, 2000.576

28 Damien Pous. Weak bisimulation up to elaboration. In Christel Baier and Holger Hermanns,577

editors, CONCUR 2006, volume 4137 of LNCS, pages 390–405. Springer, 2006. doi:10.1007/578

11817949_26.579

29 Damien Pous. New up-to techniques for weak bisimulation. Theor. Comput. Sci., 380(1-2):164–580

180, 2007. doi:10.1016/J.TCS.2007.02.060.581

30 Rafael Castro Gonçalves Silva and Dmitriy Traytel. Time-aware stream processing in Isa-582

belle/HOL. In Tobias Nipkow, Lawrence C. Paulson, and Makarius Wenzel, editors, Isabelle583

workshop 2024, pages 1–19, 2024. URL: https://files.sketis.net/Isabelle_Workshop_584

2024/Isabelle_2024_paper_8.pdf (accessed: March 2, 2024).585

31 Makarius Wenzel et al. The Isabelle/Isar reference manual, 2004.586

32 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,587

and Steve Zdancewic. Interaction trees: representing recursive and impure programs in Coq.588

Proc. ACM Program. Lang., 4(POPL):51:1–51:32, 2020. doi:10.1145/3371119.589

33 Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.590

Discretized streams: fault-tolerant streaming computation at scale. In Michael Kaminsky and591

Mike Dahlin, editors, SOSP 2013, pages 423–438. ACM, 2013. doi:10.1145/2517349.2522737.592

https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1145/1982185.1982529
http://sites.computer.org/debull/A15dec/p4.pdf
http://sites.computer.org/debull/A15dec/p4.pdf
http://sites.computer.org/debull/A15dec/p4.pdf
https://doi.org/10.1145/3704845
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1007/11817949_26
https://doi.org/10.1007/11817949_26
https://doi.org/10.1007/11817949_26
https://doi.org/10.1016/J.TCS.2007.02.060
https://files.sketis.net/Isabelle_Workshop_2024/Isabelle_2024_paper_8.pdf
https://files.sketis.net/Isabelle_Workshop_2024/Isabelle_2024_paper_8.pdf
https://files.sketis.net/Isabelle_Workshop_2024/Isabelle_2024_paper_8.pdf
https://doi.org/10.1145/3371119
https://doi.org/10.1145/2517349.2522737

	1 Introduction
	2 Operators as a Codatatype
	2.1 Operators Equivalences
	2.2 Trace Equivalence
	2.3 Numeral Types for Ports

	3 Asynchronous Dataflow Operators
	3.1 Buffer Infrastructure
	3.2 Network Algebra Operators

	4 Asynchronous Dataflow Properties
	5 Well-Behaved Operators
	6 Code Generation
	7 Related Work
	8 Discussion

