
Animating MRBNFs: Truly Modular1

Binding-Aware Datatypes in Isabelle/HOL2

Jan van Brügge #3

Heriot-Watt University4

Andrei Popescu #5

University of Sheffield6

Dmitriy Traytel #7

University of Copenhagen8

Abstract9

Nominal Isabelle provides powerful tools for meta-theoretic reasoning about syntax of logics or10

programming languages, in which variables are bound. It has been instrumental to major veri-11

fication successes, such as Gödel’s incompleteness theorems. However, the existing tooling is not12

compositional. In particular, it does not support nested recursion, linear bindings patterns, or13

infinitely branching syntax. These limitations are fundamental in the way nominal datatypes and14

functions on them are constructed within Nominal Isabelle. Taking advantage of recent theoretical15

advancements that overcome these limitations through a modular approach using the concept of16

map-restricted bounded natural functor (MRBNF), we develop and implement a new definitional17

package for binding-aware datatypes in Isabelle/HOL, called MrBNF. We describe the journey18

from the user specification to the end-product types, constants and theorems the tool generates.19

We validate MrBNF in two formalization case studies that so far were out of reach of nominal20

approaches: (1) Mazza’s isomoprhism betwenn the finitary and the infinitary affine λ-calculus, and21

(2) the POPLmark 2B challenge, which involves non-free binders for linear pattern matching.22

2012 ACM Subject Classification Security and privacy → Logic and verification23

Keywords and phrases syntax with bindings, datatypes, inductive predicates, Isabelle/HOL24

Digital Object Identifier 10.4230/LIPIcs...25

1 Introduction26

Most programming languages involve variable-binding constructs, or simply binders, such as27

the lambda abstraction or the recursive and non-recursive let operators. For the study of these28

languages’ metatheory, the specific choice of bound variable names in a language expression is29

immaterial. For example, it is customary to treat the lambda calculus expressions λx. x and30

λy. y as being syntactically equal and to choose bound variables in a way that avoids name31

clashes with surrounding free variables—this is known as Barendregt’s variable convention [6].32

The mechanization of programming language metatheory in proof assistants struggles33

to keep up with this informal convention. The POPLmark challenge [4] initiated a flurry of34

approaches to mechanized binders, each with its own strengths and weaknesses (§2). The used35

approaches can be categorized into three main paradigms: (1) the nameless representation that36

replaces bound variables in terms with pointers to the binding position [17,24]; (2) the name-37

ful or nominal representation that includes bound variable names but identifies terms modulo38

alpha-equivalence, i.e., up to bound variable renaming [18]; and (3) the reductive representa-39

tion that embeds the programming language’s binders into the metalogic’s binders [19,29,31].40

The nominal representation faithfully encodes Barendregt’s variable convention in that the41

accompanying reasoning principles (e.g., nominal induction) allow their users to assume that42

bound variables do not clash with surrounding free variables whenever bound variables are43

introduced. Nominal Isabelle [21] implements the nominal representation in the Isabelle proof44

© Jan van Brügge, Andrei Popescu, Dmitriy Traytel;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jsv2000@hw.ac.uk
https://orcid.org/0000-0003-1560-7326
mailto:a.popescu@sheffield.ac.uk
https://orcid.org/0000-0001-8747-0619
mailto:traytel@di.ku.dk
https://orcid.org/0000-0001-7982-2768
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

assistant with successful applications ranging from Gödel’s incompleteness theorems [30]45

to verifying the correctness of Haskell’s compiler optimizations [13] and the security of46

authenticated data structures [14]. All these developments use the expected binder constructs:47

lambda abstractions, existential quantifiers, and (parallel) recursive let constructs.48

Nominal Isabelle is fundamentally restricted to syntaxes with finite support, i.e., expres-49

sions may only contain finitely many free and bound variables. This rules out applications50

like Mazza’s infinitary affine lambda calculus [22]. Moreover, nested recursion, which e.g.,51

is needed to model function applications to multiple arguments, is not directly supported.52

Sometimes this limitation can be overcome by using mutual recursion instead, but this53

workaround is limited to cases where the nesting type is a datatypes itself. Nesting through54

coinductive datatypes such as streams or lazy lists or non-free structures such as finite or55

countable sets remains problematic. Also nominal datatypes, even in their flexible variant56

provided by Nominal 2 [43], cannot incorporate directly linear patterns, which are required57

in most of the complex binder structures including those of POPLmark 2B.58

Blanchette et al. [10] have proposed map-restricted bounded natural functors (MRBNFs) as59

a new modular foundation for binding-aware datatypes that overcomes the above limitations.60

MRBNFs generalize bounded natural functors (BNFs) [42], which underly Isabelle’s datatypes61

and codatatypes [11]. In this paper, we present the journey from the theoretical MRBNF62

framework to a practical package in Isabelle/HOL, called MrBNF (pronounced “Mister BNF”).63

MrBNF’s heart is the binder_datatype command for declaring binding-aware datatypes.64

Behind the scenes, the command composes and takes least fixed points of MRBNFs, defines65

the new type as the quotient of a raw nameful datatype by alpha-equivalence, lifts the raw66

constructors to the quotient, and proves nominal induction principles as well as a wealth of con-67

structor properties (§3). The command also provides a nominal recursor infrastructure, which68

is crucial for defining recursive functions. All constructions are carried out foundationally69

in Isabelle/HOL: no axioms have been introduced (§4). Our main contributions are twofold:70

We extend Isabelle/HOL with a foundational package for defining binding-aware data-71

types that supports nested recursion, complex inductive binders, and types that may have72

infinitely many free or bound variables. To this end, we design and automate mechanized73

proofs as Isabelle/ML tactics that MRBNFs, the key notion underlying our approach,74

are closed under composition and least fixed points. Our implementation includes a user-75

friendly proof method for applying the nominal induction principles and a nominal recursor76

for defining binding-aware primitive recursive functions on datatypes with binders.77

Two case studies illustrate our tool’s usefulness: (1) Following Mazza [22], we prove that78

the λ-calculus is isomorphic to an infinitary affine λ-calculus (§5). (2) We formalize the79

POPLmark challenge [4], i.e., type soundness of System F<:, including parts 1B and 2B80

which extend the language with records and pattern matching (§6). To the best of our81

knowledge, this is the first formalization of these extensions using a nominal approach.82

2 Related Work83

We refer to Blanchette et al. [10, Section 9] for a broad overview of syntax with bindings ap-84

proaches in programming languages and proof assistants. Here, we focus our attention on how85

these approaches manifest themselves in proof assistants and discuss strength and weaknesses.86

The representation of variables as de Bruijn indices [17] is widely popular in proof as-87

sistants [8, 16, 20, 26, 36, 38, 41, 45] because it is readily available via standard datatypes.88

Thereby bound variables point to the respective binders using a simple indexing scheme: a89

number indicates how many binders to skip when traversing the syntax tree towards its root.90

J. van Brügge, A. Popescu, D. Traytel XX:3

Binders such as λ-abstractions do not need to mention the bound variable. Free variables91

are numbers, too, namely those larger than the number of binders above them. For example,92

Lm (Lm (Ap (Ap 1 0) 2)) is the de Bruijn version of the λ-calculus term λx. λy. ((y x) z).93

Working with indices frequently requires shifting when a term is moved under a binder, e.g.,94

during substitution. Good automation as provided by Autosubst in Coq [37,40] can eliminate95

much of the tedium of index shifting. Nonetheless the internal representation occasionally96

leaks: index shifts may pop up in induction proofs and sometimes even lemma statements.97

The related locally nameless representation [15, 34] combines de Bruijn indices for bound98

variables with the named representation for free variables, which allows to use readable names99

for the free variables. Locally nameless replaces shifting by opening terms such that bound100

variables are turned into free ones. One downside of the locally nameless approach is that terms101

with loose bounds are malformed and need to be ruled out using a predicate (or a subtype).102

Nominal Logic [18] provides a nameful alternative to the two above approaches: binders103

carry explicit bound variable names, but the syntax is quotiented by a notion of alpha-104

equivalence which makes the name choice immaterial. Still the explicit mention of the bound105

meta-variable in the binders allows us to refer to it explicitly and choose it to avoid other sur-106

rounding variables, which enforces Barendregt’s variable convention. Nominal Isabelle is the107

Isabelle/HOL implementation of nominal logic [21,43], which has been used in several substan-108

tial formalizations efforts [7,13,14,30]. Our contribution follows the nominal approach, while109

generalizing the support for nested recursion and allowing infinitely many variables in terms.110

Higher-order abstract syntax (HOAS) [31] uses binding primitives available in the meta-111

logic to represent binders of the object of study. For example, abstraction in the λ-calculus be-112

comes Lm : (var→ term)→ term under weak HOAS and Lm : (term→ term)→ term under113

HOAS, reusing the λ-abstraction available in the language when writing specific lambda terms,114

e.g., Lm (λx. Lm (λy. Ap (Ap y x) (Vr z))). A challenge with (weak) HOAS are so-called115

exotic terms, i.e., terms that do not constitute valid λ-calculus terms because they observes as-116

pects of the meta-language that the object language should not see. HOAS is popular in logical117

frameworks pioneered by Twelf [32] and refined and extended in Beluga [33] and Abella [5].118

Berghofer and Urban [9] provide a detailed comparison between the de Bruijn and nominal119

approaches; Momigliano et al. [25] perform a similar exercise for de Bruijn and (weak) HOAS.120

Ambal et al. [2] compare all above approaches in the context of a higher-order π-calculus. Nor-121

rish and Vestergaard [28] establish a formal connection between de Bruijn and nominal terms.122

Solutions using different above techniques [1] target the POPLmark challenge [4]. How-123

ever, only four cover all proof-related parts, in particular including complex binders for linear124

pattern matching: three using de Bruijn indices in Isabelle [8] and Coq [39,45] and one using125

HOAS in Twelf [3]. We provide the first complete solution following the nominal approach.126

3 MrBNF in Action127

As users, what do we want to be the effect of specifying a datatype with bindings, such as128

those of λ- or π-calculus syntax? We want the following: (1) a type capturing the syntax129

fully abstractly, i.e., not distinguishing between alpha-equivalent terms and not including130

“junk”, i.e., invalid terms; (2) constants corresponding to the syntactic constructors and other131

syntactic operators such as renaming and free-variables; (3) propositions describing the basic132

properties of constructors, such as distinctness, injectivity (for the non-binding constructors),133

and quasi-injectivity for the binder constructors; (4) propositions describing the basic proper-134

ties concerning the interaction of constructors and the renaming and free-variable operators;135

(5) a proposition stating a binding-aware structural induction principle; and (6) a proposition136

XX:4 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

stating the characteristic equations of a binding-aware structural recursion principle.137

Importantly, we would not care how such a type and constants have been defined internally,138

because (a subset of) the above properties characterize the type uniquely up to an isomorphism.139

This ensures that these internal definitions, however they proceed, give us the correct result.140

In the remainder of this section, using a sequence of increasingly sophisticated syntaxes141

with bindings we will illustrate how our MrBNF definitional package achieves these goals.142

3.1 Preliminaries on cardinals and permutations143

Isabelle has a well-developed theory of ordinals and cardinals [12]. In a nutshell: an ordinal is144

just a well-order, while a cardinal is an ordinal that is minimal under the preorder relation ≤o145

on ordinals defined as follows: r ≤o r′ iff there exists a well-order embedding between r and r′;146

we also write <o for the strict counterpart of this preorder, and also =o for its induced equival-147

ence relation. Given any set A : ′a set, we define |A| to be its cardinality; technically, this is148

a (necessarily unique up to an order isomorphism) choice of a cardinal on ′a whose domain is149

A and that forms a well-order on A. Instead of |UNIV : ′a set|, the cardinality of the set of all150

elements of type ′a, we will simply write |′a|, and refer to it as the cardinality of the type ′a.151

For a function σ : ′a→ ′a, we write supp σ for its support, defined as the set of elements152

that σ modifies, {x | σ x ̸= x}. We call permutation any such function that (1) is bijective153

and (2) has the cardinality of its support strictly smaller than that of its underlying type.154

Formally, the (polymorphic) predicate perm : (′a→ ′a)→ bool reflects this as perm σ ←→155

bij σ ∧ |supp σ| <o |′a|. When ′a is countably infinite, being a permutation amounts to156

being a bijection of finite support, so this generalizes the standard nominal logic assumption.157

We let σ range over permutations and write σ−1 for the inverse of σ. We let a↔b denote the158

swapping permutation, which takes a to b, takes b to a, and leaves everything else unchanged.159

3.2 λ-calculus terms160

Let us start with the paradigmatic example of syntax with bindings, that of untyped λ-161

calculus. Using our package, this can be declared as the following datatype lterm of λ-terms,162

which is polymorphic in the type of variables, i.e., depends on the Isabelle type-variable ′var :163

164
binder_datatype ’var lterm = Vr ’var | Ap "’var lterm" "’var lterm"165

| Lm x::’var t::"’var lterm" binds x in t166167

When using the type ′var lterm , we will always implicitly assume that ′var has at least168

countable cardinality. (This is achieved in practice via a type class largelterm , i.e., being “large169

enough”, which means having cardinality at least as large as boundlterm , and boundlterm is a170

cardinal bound specific to each datatype—here, for lterm , it is a countable cardinal, i.e.,171

boundlterm = ℵ0, so smallness means “at least countable”—see §4 for more details.)172

The command produces the following constants, all polymorphic in ′var :173

the constructors Vr : ′var → ′var lterm , Ap : ′var lterm → ′var lterm → ′var lterm174

and Lm : ′var → ′var lterm → ′var lterm ;175

the free-variable operator FVlterm : ′var lterm → ′var set;176

the permutation operator PERMlterm : (′var → ′var) → ′var lterm → ′var lterm ,177

where we write t[σ]lterm instead of PERMlterm σ t;178

a cardinal bound, boundlterm (which, as explained above, in this case it is ℵ0);179

a binding-aware recursion combinator180

J. van Brügge, A. Popescu, D. Traytel XX:5

reclterm : ((′var → ′var)→ (′p→ ′p)) → (′p→ ′var set) →
((′var → ′var)→ (′a→ ′a)) → (′a→ ′var set) →
(′var → (′p→ ′a)) →
((′p→ ′a)→ (′p→ ′a)→ (′p→ ′a)) →
(′var → (′p→ ′a)→ (′p→ ′a)) →
′var lterm → (′p→ ′a) .

181

We write FV and _[_] instead of FVlterm and _[_]lterm (and similarly for other examples).182

The following properties are generated (stated and proved) by our command:183

▶ Prop 1. (I) Distinctness and (quasi-)injectivity of the constructors:184

(1) Vr x ̸= Ap t1 t2; (2) Vr x ̸= Lm x′ t; (3) Ap t1 t2 ̸= Lm x t;185

(4) Vr x = Vr x′ ←→ x = x′; (5) Ap t1 t2 = Ap t′
1 t′

2 ←→ t1 = t′
1 ∧ t2 = t′

2;186

(6) Lm x t = Lm x′ t′ ←→ (x′ /∈ FV t ∨ x = x′) ∧ t = t′[x↔x′];187

(II) Equivariance of the constructors:188

(1) perm σ −→ (Vr x)[σ] = Vr (σ x); (2) perm σ −→ (Ap t1 t2)[σ] = Ap (t1[σ]) (t2[σ]);189

(3) perm σ −→ (Lm x t)[σ] = Lm (σ x) (t[σ]);190

(III) Smallness (here, equivalently, finiteness) of the set of free variables:191

(1) |FV t| <o boundlterm ;192

(IV) Interaction between free variables and constructors:193

(1) FV (Vr x) = {x}; (2) FV (Ap t1 t2) = FV t1 ∪ FV t2; (3) FV (Lm x t) = FV t ∖ {x}.194

(V) Permutation identity and compositionality:195

(1) t[id] = t; (2) perm σ ∧ perm σ′ −→ t[σ][σ′] = t[σ′ ◦ σ];196

(VI) Interaction between free variables and permutation (infix ` denotes image):197

(1) perm σ −→ FV (t[σ]) = σ ` FV t; (2) perm σ ∧ (∀x ∈ FV t. σ x = x) −→ t[σ] = t.198

Note that the constructors Vr and Ap are free, hence injective (points (4) and (5) in the199

above proposition). On the other hand, the λ-constructor Lm is not free, since it introduces200

bindings—for example, Lm x (Vr x) = Lm y (Vr y) for any variables x, y. Therefore, only a201

quasi-injectivity, i.e., injectivity up to a renaming, property holds for it (point (6)).202

Points (I.6), (IV.3) and (VI.2) all reflect the fact that we work not with entirely free203

terms but with terms quotiented to alpha-equivalence. And so does the following proposition,204

expressing strong version of structural induction, which is also generated by the command:205

▶ Prop 2. (Binding-aware structural induction) Assume Pvars : ′p→ ′var set and φ : ′p→206

′var lterm → bool are such that (1) ∀p. |Pvars p| <o boundlterm , i.e., ∀p. finite (Pvars p);207

(2) ∀p, x. φ p (Vr x); (3) ∀p, t1, t2. (∀q. φ q t1) ∧ (∀q. φ q t2) −→ φ p (Ap t1 t2); and208

(4) ∀p. ∀x, t. x /∈ Pvars p ∧ (∀q. φ q t) −→ φ p (Lm x t). Then ∀p, t. φ p t.209

The above resembles standard structural induction (as available for the standard data-210

types), except for the highlighted part, which allows one to assume during the induction211

process that the bound variables are disjoint from the variables coming from a designated type212

′p of parameters—this enables the rigorous application of Barendregt’s variable convention [6].213

Taking ′p to be the unit type and Pvars p = ∅, we obtain standard structural induction.214

Given a type ′a together with operators resembling the free-variable and permutation oper-215

ators, namely afv : ′a→ ′var set and aprm : (′var → ′var)→ ′a→′ a, we say that they form216

a loosely-supported pre-nominal structure, written lspnom afv aprm, when the following holds:217

Compositionality (Prop. 1, V.2): perm σ∧perm σ′−→ aprm σ (aprm σ′ a) = aprm (σ◦σ′) a.218

Congruence (Prop. 1, VI.2): perm σ ∧ (∀x ∈ afv a. σ x = x) −→ aprm σ a = a.219

XX:6 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

Moreover, for any cardinal κ, we say that they form a κ-loosely-supported nominal structure,220

written lsnomκ afv aprm, when lspnom afv aprm holds and additionally the following holds:221

Smallness (Prop. 1, III.1 in case κ = boundlterm): |FV a| <o κ.222

Finally, given two types ′p and ′a and operators on them223

pfv : ′p→ ′var set, pprm : (′var → ′var)→ ′p→ ′p,224

afv : ′a→ ′var set, aprm : (′var → ′var)→ ′a→ ′a,225

vr : ′var → (′p→ ′a), ap : ′var lterm → (′p→ ′a)→ ′var lterm → (′p→ ′a)→ (′p→226

′a), lm : ′var → ′var lterm → (′p→ ′a)→ (′p→ ′a)227

(where vr , ap, lm have types resembling those of lterm ’s constructors Vr, Ap and Lm), we say228

that they form an lterm -model, written modellterm pfv pprm afv aprm vr ap lm, provided that:229

(1) lsnomboundlterm pfv pprm holds; (2) lspnom afv aprm holds; and (3) the following properties,230

corresponding to properties of lterm , hold, where paprm σ f = aprm σ ◦ f ◦ pprm (σ−1):231

1. equivariance of the constructors (Prop 1, II.1, II.2, II.3):232

perm σ −→ paprm σ (vr x) = vr (σ x);233

perm σ −→ paprm σ (ap t1 f1 t2 f2) = ap (t1[σ]) (paprm σ f1) (t2[σ]) (paprm σ f2);234

perm σ −→ paprm σ (lm x t f) = lm (σ x) (t[σ]) (paprm σ f);235

2. free-variables sub-distributing under constructors (weaker versions of Prop 1, IV.1, IV.2,236

IV.3, with inclusions instead of equalities):237

afv (vr x p) ⊆ {x} ∪ pfv p;238

afv (f1 p) ⊆ afv t1 ∪ pfv p ∧ afv (f2 p) ⊆ afv t2 ∪ pfv p −→239

afv (ap t1 f1 t2 f2 p) ⊆ afv t1 ∪ afv t2 ∪ pfv p;240

x /∈ pfv p ∧ afv (f p) ⊆ afv t∖{x} ∪ pfv p −→ afv (lm x t f p) ⊆ afv t ∖ {x} ∪ pfv p.241

We refer to the types ′p and ′a above as the parameter type and the carrier type of the lterm -242

model, respectively. Our binding-aware recursor operates on lterm -models, in that, given any243

lterm -model it returns a function from terms and parameters to carrier elements that (1) com-244

mutes with the constructors and permutation operators; and (2) preserves the free-variable op-245

erators. Moreover, commutation with the binding constructor happens in a binding-aware fash-246

ion, that is, avoiding clashes between the bound variables and the parameter variables—i.e.,247

again obeying Barendregt’s variable convention. This is expressed in the following proposition:248

▶ Prop 3. (Binding-aware recursion) Assume modellterm pfv pprm afv aprm vr ap lm holds249

and let g : ′var lterm → ′p→ ′a denote reclterm pfv pprm afv aprm vr ap lm. The following250

properties hold: (1) g (Vr x) p = vr x p; (2) g (Ap t1 t2) p = ap t1 (g t1) t2 (g t2) p;251

(3) x /∈ pfv p −→ g (Lm x t) p = lm x t (g t) p; (4) perm σ −→ g (a[σ]) p = paprm σ (g a) p;252

and (5) afv (g t p) ⊆ FV t ∪ pfv p.253

In the current implementation, we do not get a single recursor constant and the above254

recursion theorem, but rather given a model define g and derive its properties on the fly.255

Our recursor definition follows Blanchette et al.’s [10] design, which generalizes Norrish’s256

nominal recursor [27] and removes one of the unnecessary assumptions [35].257

Here is an example of applying the recursor. For any ρ : ′var → ′var lterm , we258

let its support Supp ρ be {x : ′var | ρ x ̸= Vr x}, and its image-support ImSupp ρ be259

Supp ρ ∪
⋃

t∈Supp ρ FV t. We let the type of substitution-functions ′var substFun be the260

type of all functions ρ such that |Supp ρ| <o boundlterm (obtained as a subtype of ρ :261

′var → ′var lterm); function application and composition are inherited to ′var substFun262

from the function type and are denoted the same. To define term-for-variable substitution263

J. van Brügge, A. Popescu, D. Traytel XX:7

operator subst : ′var lterm → ′var substFun → ′var lterm , we take ′p = ′var substFun264

and ′a = ′var lterm , and determine the model from the desired recursive clauses for the265

constructors and the desired behavior of substitution w.r.t. free variables and permutation:266

(1) subst (Vr x) ρ = ρ x; (2) subst (Ap t1 t2) ρ = Ap (subst t1 ρ) (subst t2 ρ);267

(3) x /∈ ImSupp ρ −→ subst (Lm x t) ρ = Lm x (subst t ρ);268

(4) subst (t[σ]) ρ = subst t ((_[σ]) ◦ ρ); (5) FV (subst t ρ) ⊆ FV t ∪ ImSupp ρ.269

Namely, here is the lterm -model structure (pfv, pprm, afv, aprm, vr , ap, lm) corresponding270

to (and unambiguously determined from) the above:271

(M1) vr x ρ = ρ x; (M2) ap t1 f1 t2 f2 ρ = Ap (f1 ρ) (f2 ρ); (M3) lm x t f ρ = Lm x (f ρ);272

(M4) aprm t σ = t[σ] and pprm ρ σ = (_[σ])◦ρ; (M5) afv t = FV t and pfv ρ = ImSupp ρ.273

Indeed, the (Mi) definitions are obtained by “fishing” the codomain operator behind the (i) re-274

cursive clause—e.g., (M2) turns (2) into subst (Ap t1 t2) ρ = ap t1 (subst ρ t1) t2 (subst ρ t2) ρ.275

Currently this fishing process is not implemented in our package, so the user has to explicitly276

indicate these operators and then infer (1)–(5) from the recursion theorem.277

3.3 Infinitary λ-calculus terms278

Let ′a stream and ′a dstream be the polymorphic types of streams (i.e., countable sequences)279

and distinct (i.e., non-repetitive) streams, respectively. While streams exist in Isabelle’s280

standard library, we introduce distinct streams of a subtype of streams that ensures that281

stream elements do not repeat. To simplify the exposition, we pretend that making a type282

non-repetitive (or linear) is performed automatically using the following command, while for283

now we are executing manually a uniform construction sketched by Blanchette et al. [10, §4].284

linear_type ′a dstream = ′a stream on ′a285

The type of infinitary λ-terms [22], where λ-abstraction binds a distinct stream of variables286

and application applies a term to a stream of terms, is introduced by the following command:287

288
binder_datatype ’var iterm = iVr ’var | iAp "’var iterm" "’var iterm stream"289

| iLm "(xs::’var) dstream" t::"’var iterm" binds xs in t290291

This time (employing the same type-class mechanism explained in §3.2) when using the292

type ′var iterm we will implicitly assume that ′var has cardinality at least ℵ1, i.e., is more293

than countable. Indeed, to accommodate the countable branching syntax while ensuring that294

no term can exhaust the entire supply of variables, we now have bounditerm = ℵ1.295

Our command produces again the familiar constants: the constructors iVr, iAp and iLm,296

free-variable operator iFV, permutation operator iPERM (written _[_]), a cardinal bound297

bounditerm (here, ℵ1), and a binding-aware recursion combinator reciterm. Moreover, it298

generates similar properties as for lterm . We only show properties that differ in a major299

way from the lterm case (while keeping the numbering). We use an auxiliary predicate for300

a function that behaves as identity on a given set: id_on A f = ∀x ∈ A. f x = x.301

▶ Prop 4. (I) Distinctness and (quasi-)injectivity of the constructors: (6) iLm xs t =302

iLm xs′ t′ ←→ (∃σ. perm σ ∧ id_on (iFV t ∖ dsset xs) σ ∧ dsmap σ xs = xs′ ∧ t[σ] = t′);303

(II) Equivariance of the constructors:304

(2) perm σ −→ (iAp t ts)[σ] = iAp (t[σ]) (smap (λt′. t′[σ]) ts);305

(3) perm σ −→ (iLm xs t)[σ] = iLm (dsmap σ xs) (t[σ]);306

XX:8 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

(III) Smallness (here, equivalently, at most countability) of the set of free variables:307

(1) |iFV t| <o bounditerm;308

(IV) Interaction between free variables and constructors:309

(2) iFV (iAp t ts) = iFV t ∪
⋃

t′∈sset ts iFV t′; (3) iFV (iLm xs t) = iFV t ∖ dsset xs;310

(V) Permutation identity and compositionality;311

(VI) Interaction between free variables and permutation.312

Again, iVr and iAp are free constructors, hence injective, whereas the binding constructor313

iLm only satisfies quasi-injectivity, i.e., injectivity up to a permutation of the bound variables314

which leaves the term’s free variables untouched (I.6)—note that the latter property uses315

the dstream -specific free variables (dsset) and permutation operators (dsmap). Similarly the316

recursive occurrences of iterm nested under stream in the iAp constructor are accessed via317

the stream’s smap and sset functions in II.2 and IV.2, respectively. We obtain binding-aware318

structural induction and recursion principles, too, and highlight the main differences to319

Props. 2 and 3 (for a corresponding notion of iterm-model):320

▶ Prop 5. (Binding-aware structural induction) Assume Pvars : ′p→ ′var set and φ : ′p→321

′var iterm→ bool are such that (1) ∀p. |Pvars p| <o bounditerm, i.e., ∀p. countable (Pvars p);322

(2) ∀p, x. φ p (iVr x); (3) ∀p, t, ts. (∀q. φ q t) ∧ (∀t′ ∈ sset ts. ∀q. φ q t′) −→ φ p (iAp t ts);323

and (4) ∀p, xs, t. dsset xs ∩ Pvars p = ∅ ∧ (∀q. φ q t) −→ φ p (iLm xs t). Then ∀p, t. φ p t.324

▶ Prop 6. (Binding-aware recursion) Assume modeliterm pfv pprm afv aprm ivr iap ilm325

holds, and let g : ′var iterm → ′p → ′a denote reciterm pfv pprm afv aprm ivr iap ilm.326

Further let paprm σ f = aprm σ ◦ f ◦ pprm (σ−1). The following hold: (1) g (iVr x) p =327

ivr x p; (2) g (iAp t ts) p = iap t (g t) ts (smap g ts) p; (3) dsset xs ∩ pfv p = ∅ −→328

g (iLm xs t) p = ilm xs t (g t) p; (4) perm σ −→ g (a[σ]) p = paprm σ (g a) p; and329

(5) afv (g t p) ⊆ iFV t ∪ pfv p.330

3.4 Types and terms for System F<:331

We define the types and terms of System F<:, which we will use in our solution to the332

POPLmark challenge (§6). Because we aim for 2B, we directly introduce the syntax that333

incorporates nested types and pattern matching. Compared to the previous subsections we334

will be much briefer regarding the output of our binder_datatype commands: the previous335

examples already cover many of the arising ingredients and phenomena.336

We start by introducing a non-repetitive (in the keys) type of finite sets of key-value pairs337

that will be used to represent records (where we use strings as keys).338

type_synonym label = string
linear_type (′a,′ b) lfset = (′a ×′ b) fset on ′a

339

The challenge description and all existing solutions favor ordered collections for records, and it340

would be easy for us to adjust our entire formalization to use lists instead of finite sets (fset).341

We chose to use fset as the basis for our records because in practical languages like Standard342

ML or JSON records are considered to be unordered collections. We also chose it because it343

displays the flexibility of our approach to work with nested recursion through non-datatypes:344

345
binder_datatype ’tvar type = TVr ’tvar | Top | Arr "’tvar type" "’tvar type"346

| All X::’tvar "’tvar type" T::"’tvar type" binds X in T347

| TRec "(label, ’tvar type) lfset"348349

The above command defines POPLmark types. The only binding constructor is All and we350

obtain the following quasi-injectivity property for it (where TFV : ′tvar type→ ′tvar set):351

J. van Brügge, A. Popescu, D. Traytel XX:9

All X T1 T2 = All X ′ T ′
1 T ′

2 ←→ (T1 = T ′
1 ∧ (X ′ /∈ TFV T2 ∨X = X ′) ∧ T2 = T ′

2[X↔X ′]).352

Naturally, we also obtain binding-aware induction and recursion principles.353

We continue with defining terms. For that purpose we introduce patterns as the non-354

repetitive subtype of the (non-binding) “pre-pattern” datatype that recurses through lfset.355

datatype (′tvar , ′var) ppat = PPVr ′var (′tvar type) | PPRec (label, (′tvar , ′var) ppat) lfset
linear_type (′tvar , ′var) pat = (′var , ′tvar) ppat on ′var

356

We lift the pre-pattern constructors PPVr and PPRec to the pattern type as PVr : ′var →357

′tvar type→ (′tvar , ′var) pat and PRec : (label, (′tvar , ′var) pat) lfset→ (′tvar , ′var) pat.358

The latter operator is not a free constructor: its argument must satisfy a non-repetitiveness pre-359

dicate (nonrepPRec : (label, (′tvar , ′var) pat) lfset→ bool). We are ready to define terms:360

361
binder_datatype (’tvar, ’var) term = Vr ’var362

| Ap "(’tvar, ’var) term" "(’tvar, ’var) term"363

| Lm x::’var "’tvar typ" t::"(’tvar, ’var) term" binds x in t364

| ApT "(’tvar, ’var) term" "’tvar typ"365

| LmT X::’tvar "’tvar typ" t::"(’tvar, ’var) term" binds X in t366

| Rec "(label, (’tvar, ’var) term) lfset" | Proj "(’tvar, ’var) term" label367

| Let "(’tvar, P::’var) pat" "(’tvar, ’var) term" t::"(’tvar, ’var) term" binds P in t368369

Of the eight constructors, three are binding. We show their quasi-injectivity properties:370

Lm x T t = Lm x′ T ′ t′ ←→ (T = T ′ ∧ (x′ /∈ FV t ∨ x = x′) ∧ t = t′[x↔x′])
LmT X T t = LmT X ′ T ′ t′ ←→ (T = T ′ ∧ (X ′ /∈ FTV t ∨ x = x′) ∧ t = t′[X↔X ′])
Let P t1 t2 = Let P ′ t′

1 t′
2 ←→ (t1 = t′

1∧
(∃σ. perm σ ∧ id_on (FV t ∖ PV P) σ ∧ P [σ] = P ′ ∧ t2[σ] = t′

2))

371

These hinge on our ability to refer to a term’s free variables (FV) and its free type variables372

(FTV), as well as a pattern’s free type variables (PV). Similarly, we obtain and make use373

of infrastructure to permute a pattern’s variables, a term’s variables, and a term’s type374

variables. Again, we also obtain binding-aware induction and recursion principles, where375

e.g., the parameter p avoids a pattern P ’s free variables in the Let case of the induction by376

providing the assumption PVars p ∩ PV P = ∅ to the user.377

4 MrBNF’s Internals: Construction of Datatypes with Bindings378

Isabelle’s definitional package for standard (co)datatypes [12], sometimes referred to as the379

BNF package, is based on bounded natural functors (BNFs) [42]—which are comprised380

of meta-information associated with well-behaved type constructors and are closed under381

composition and fixpoints (datatype and codatatype construction). The meta-information382

consists of a few constants and relations between them. Specifically, a BNF is an n-ary383

type constructor α T along with a mapper mapT : (α→ β) → α T → β T , the relator384

relT : (α→ β → bool) → α T → β T → bool, several setters seti
T : α T → αi set,385

and the cardinal bound boundT satisfying a number of properties, e.g., mapT id = id or386

seti
T (map f x) = fi ` seti

T x. For example, standard lists form a BNF with the standard map387

function, the relator list_all2, which relates two lists of the same length provided that lists’388

elements satisfy the given relation when zipped pair-wise, the set function that returns all the389

list’s elements and the cardinality bound ℵ0. Standard datatypes are least fixpoints of BNFs.390

The BNF properties require mapT to behave well when applied to arbitrary functions.391

Blanchette et al. [10] observed that this is too restrictive when dealing with syntax with392

bindings and generalized BNFs to map-restricted bounded natural functions (MRBNFs).393

MRBNFs thus resemble BNFs but distinguish between three modes of type arguments: bound394

XX:10 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

variables which can be mapped by permutations, free variables which can be mapped by395

small-support (endo)functions, and live variables which correspond to BNF’s variables and396

can be mapped by arbitrary functions. (Both BNFs and MRBNFs also support variables397

that are ignored by mapT , which are called dead.) We write (α, β) T for the MRBNF398

with m = |α| free and bound variables and |β| live variables (dead variables are left399

implicit) with the mapper mapT : (α→ α) → (β → γ) → (α, β) T → (α, γ) T , the re-400

lator relT : (α→ α) → (β → γ → bool) → (α, β) T → (α, γ) T → bool, several setters401

seti
T : (α, β) T → γi set where γi = αi if i < m and γi = βi−m otherwise, and the cardinal402

bound boundT . Note that relT only acts on the bound and free variables using permutations or403

small-support functions, respectively. The MRBNF properties clarify which of the α are bound404

or free. For example, distinct streams ′a dstream are an MRBNF with bound variable ′a. Our405

MrBNF package implements Blanchette et al.’s [10] construction of binding-aware datatypes as406

least fixpoints of MRBNF type equations, and also customizes it to the high-level operators and407

theorems required by the users. In this section, we describe the construction’s main milestones.408

4.1 From User-Specifications to Fixpoint Equations409

The binder_datatype command’s syntax is naturally inspired by Isabelle’s standard410

datatype command. Bound and free variables in binder datatypes are always left poly-411

morphic. A custom name can be provided for the free variable operators. A type class on the412

type argument ensures that the type chosen is large enough for the size of the binder datatype,413

e.g., that it is at least countable for finite syntax like lterm and at least uncountable for iterm.414

The “at least” makes nesting binder datatypes in other potentially larger (e.g. uncountable)415

types easier as the variable type can be increased to match the size of the surrounding type.416

The other major addition to the command’s syntax compared with standard datatypes417

are the binding annotations (inspired by Nominal Isabelle) and the subterm selectors. Normal418

datatypes allow to automatically define accessor functions using the fun_name::type syntax.419

For binder datatypes this syntax is repurposed and generalized to define the binding structure.420

A selector can not only appear on the top level (i.e. on a field of a constructor as in the Lm con-421

structor in term) but also nested within other types (as in the Let constructor in term). Valid422

targets for the selectors are variable positions and (potentially mutually) recursive positions.423

MrBNF translates the user specification into the pre-datatype, a non-recursive sum of424

products. Thereby, variable and recursive positions are separated based on whether they425

appear in a binding clause. Next to the free variables visible in the syntax (’var), the pre-426

datatype also has a bound variable position, and two recursive positions for recursive occur-427

rences under a binder and not under a binder respectively. The iterm type’s pre-datatype is:428

429
type_synonym (’var, ’bvar, ’rec, ’brec) pre_iterm = ’var (* free occurrence *)430

+ (’rec * ’rec stream) (* recursive non-binding occurrences *)431

+ (’bbar dstream * ’brec) (* bound and recursive bound occurrence *)432433

Next, MrBNF defines a “raw” standard datatype with a single constructor (which is434

completelty free, i.e., not yet quotiented to α-equivalence):435

436
datatype ’var raw_iterm =437

ctorraw_iterm "(’var, ’var, ’var raw_iterm, ’var raw_iterm) pre_iterm"438439

For the above step as well as to prepare for the next steps in the construction of the binder data-440

type, the pre-datatype must form an MRBNF with free ′var (setter set1
pre_iterm), bound ′bvar441

(setter set2
pre_iterm), and live ′rec (setter set3

pre_iterm) and ′brec (setter set4
pre_iterm) positions—442

this is ensured by tracking the registered MRBNFs and automating their composition.443

J. van Brügge, A. Popescu, D. Traytel XX:11

4.2 Composition of MRBNFs444

The proof that a given type forms an MRBNF proceeds recursively via composition. For445

the individual components there are three cases to consider. If the type is a type-variable446

then return the identity MRBNF (live ′a, TID := ′a, mapID := id : (′a → ′a) → ′a → ′a,447

relID := id : (′a → ′a → bool) → ′a → ′a → bool, and setID := λx. {x} :→ ′a → ′a set). If448

the topmost type constructor is not known to be a (MR)BNF then return the constant MRBNF449

(dead ′d, TCST := ′d, mapCST := id : ′d → ′d, relCST := (=) : ′d → ′d → bool). Otherwise450

(i.e., the topmost type constructor is a MRBNF) recursively prove that its arguments are451

MRBNFs. Then do a composition step between the outer MRBNF and the inner MRBNFs.452

Inspired by BNF composition [12], MRBNF composition is split into several phases. First453

step is demoting. All type-variables shared between the involved MRBNFs are demoted to the454

same mode. Given that modes can only become more specific (live > free > bound > dead),455

this will result in the lowest mode a variable is used at in any of the MRBNFs. If a type-456

variable appears under a type constructor that is not a (MR)BNF, it must be demoted to dead457

(using the constant MRBNF). The second step is lifting: new dummy type-variables are added458

to all MRBNFs to ensure that all involved MRBNFs have the same (modulo reordering) bound459

and free type-variables and all the inner MRBNFs have the same live type-variables (again460

modulo reordering). The third step is permuting: brings shared type variables into the same461

order in all involved MRBNFs. Finally, composition proceeds along the following definition:462

▶ Definition 1. Given an outer MRBNF (α, β) G where |α| = m and |β| = n and inner463

MRBNFs (α, γ) F1 . . . (α, γ) Fn where |γ| = k, the composed MRBNF (α, γ) H is given by:464

(α, γ) TH = (α, (α, γ) F1, . . . , (α, γ) Fn) G

mapH = λf g. mapG f (mapF1 f g) . . . (mapFn
f g)

: (α→ α)→ (γ → γ′)→ (α, γ) TH → (α, γ′) TH

seti≤m
H = λx. seti

G x ∪
⋃ (

y ∈ setm+1
G x. seti

F1
y
)
∪ · · · ∪

⋃ (
y ∈ setm+n

G . seti
Fn

y
)

: (α, γ) TH → αi set
seti>m

H = λx.
⋃ (

y ∈ setm+1
G x. seti

F1
y
)
∪ · · · ∪

⋃ (
y ∈ setm+n

G . seti
Fn

y
)

: (α, γ) TH → γi−m set
relH = λf R. relG f (relF1 f R) . . . (relFn

f R)
: (α→ α)→ (γ → γ′ → bool)→ (α, γ) TH → (α, γ′) TH → bool

465

4.3 Fixpoint and Quotienting Constructions466

Next, MrBNF automates Blanchette et al. [10] definition of free variables, permutation and
α-equivalence on the raw datatype. Free variables are defined via an inductive predicate free
that specifies if a variable x is free in a term t, here shown on our running example iterm.

a ∈ set1
pre_iterm x

free a (ctorraw_iterm x)
TopFree

z ∈ set3
pre_iterm x free a z

free a (ctorraw_iterm x)
RecFree

z ∈ set4
pre_iterm x free a z a /∈ set2

pre_iterm x

free a (ctorraw_iterm x)
RecBound

The FVraw_iterm function is then defined as λt. {a. free a x}. One also defines a primitive467

recursive function permute that takes an permutation on the variable position and applies it468

to all variables (bound and free). This function uses the map function of the pre-datatype:469

permute σ (ctorraw_iterm x) = ctorraw_iterm (mappre_iterm σ σ (permute σ) (permute σ) x).470

Equipped with these two functions, alpha-equivalence is defined inductively as follows:471

472

XX:12 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

perm σ id_on
((⋃

z∈set4
pre_iterm x FVraw_iterm z

)
\ set2

pre_iterm x
)

σ

relpre_iterm id σ alphaiterm (λz. alphaiterm (permute σ z)) x y

alphaiterm (ctorraw_iterm x) (ctorraw_iterm y)

MrBNF proves alphaiterm to be an equivalence relation and uses it to define a quotient of473

the raw datatype. The constructor, free variable and permutation operators are lifted from the474

raw datatype to the quotient. The lifted constructor ctoriterm is used to define the high-level475

constructors iVr, iAp, and iLm, and to prove all the high-level theorems illustrated in §3.476

MrBNF actually implements a milld generalization of Blanchette et al. [10]’s fixpoint477

construction, which only allows to bind variables in recursive subterms. However, sometimes478

it is necessary to bind variables that appear free in another (non-recursive) type occurrence.479

To solve this issue in the pre-datatype, instead of just having positions for free and bound480

type-variables, we also introduce a hybrid called bfree type-variables. Then, alpha-equivalence481

ensures that the portion of bfree variables that appear bound is appropriately renamed.482

4.4 Recursion483

MrBNF also implements Blanchette et al. [10]’s binding-aware recursion principle. To define484

a recursive function from a binding-aware datatype α T of free type-variables α to some other485

α-type α U , one needs: (1) a parameter structure consisting of a type α P , a permutation486

Pmap : α→ α→ α P → α P and support operators PVarsi : α P → αi set, and (2) a model487

consisting of a type α U , permutation, and support operators similar to the parameter struc-488

ture as well as an algebra structure encoding the recursive behavior of the all the constructors,489

Uctor :
(

α, α T × (α P → α U)
)

pre_T→ αP → αU , where pre_T is the pre-datatype of T .490

We introduce a precursor of our recursor on raw terms, which applies Uctor recursively491

while suitably permuting bound variables “out of the way” with regard to the parameter struc-492

ture. Suitably means that the “out of the way” function f returns a permutation that does not493

change the frees and makes bounds disjoint from the frees. For iterm, suitable is defined as:494

suitableiterm f = ∀x p. perm (f x p) ∧
imsupp (f x p) ∩

(
(FViterm (ctoriterm x) ∪ PVars p) \ set2

pre_iterm x
)

= ∅ ∧
f x p ` set2

pre_iterm x ∩ (FViterm (ctoriterm x) ∪ PVars p) = ∅
495

Here, imsupp f = supp f ∪ f ` supp f . As the precursor must permute the bound variables,
it is not possible to define it using primitive recursion. Instead, we use well-founded recursion
via an auxiliary subshape relation, which provides the necessary wiggle room:

perm σ alphaiterm (permuteraw_iterm σ y) z z ∈ set3
pre_iterm x ∪ set4

pre_iterm x

subshape y (ctorraw_iterm x)

We obtain the definition of the precursor recU for a suitable “out of the way” function f :496

recU f (ctorraw_iterm x) p = if ¬suitableiterm f then undefined else Uctor
(mappre_iterm id (f x p) ((λt. (t, recU f t)) ◦ permuteraw_iterm (f x p)) (λt. (t, recU f t)) x) p

497

The main lemma that the package proves is that the precursor commutes with permutation,498

it returns the same result for alpha-equivalent terms, and that the specific choice of the “out of499

the way” function is irrelevant. These properties must be proved simultaneously by induction500

on the binder datatype using the induction scheme associated with the subshape relation:501

suitableiterm f =⇒ suitableiterm f ′ =⇒ perm σ =⇒ alphaiterm t t′ =⇒
recU f (permuteraw_iterm σ t) p = Umap σ

(
recU f t (Pmap σ−1 p)

)
∧ recU f t p = recU f ′ t′ p

502

J. van Brügge, A. Popescu, D. Traytel XX:13

To move towards the binding-aware recursor, we use Hilbert Choice to hide the “out of503

the way” function by choosing an arbitrary suitable one rrecU = recU (εf. suitableiterm f).504

The invariance of the precursor under alpha is needed to lift it from the raw type to the505

quotient type. The definition of the precursor is used to derive a better simplification rule506

that hides the permuting function. This rule requires that the top-level bound variables are507

disjoint from the parameter structure and from the free variables. We then use identity as the508

“out of the way” function on the top level and an arbitrary suitable function in the recursion.509

set2
pre_iterm x ∩

(
set1

pre_iterm x ∪ (
⋃

z∈set3
pre_iterm x FViterm z) ∪ PVars p

)
= ∅ =⇒

rrecU (ctorraw_iterm x) p = Uctor
(
mappre_iterm id id (λt. (t, rrecU t)) (λt. (t, rrecU t)) x

)
p

510

Relativized Recursion. The above is a slightly simplified version of our recursion facilities.511

To accommodate situations where the domain of parameters or the target domain for the inten-512

ded recursion function do not make up the entire types but only certain subsets, MrBNF allows513

the user to optionally provide predicates validP : α P → bool and validU : α U → bool that514

restrict these domains—while producing proof obligations that the user-provided parameter-515

structure and recursor-model operators preserve these predicates, and producing recursor516

clauses relativized to these predicates. For normal datatypes such a feature would be useless,517

as there are no proof obligations incurred for recursion. But for binding datatypes this is useful,518

since organizing the entire type as a parameter structure or a recursor model (so that the proof519

obligations can be discharged) is often difficult or awkward. An example of leveraging the520

validP flexibility is if the user prefers to define substitution using actual functions subject to the521

small-support requirement, as opposed to defining a subtype corresponding to this requirement522

(substFun at the end of §3.2). In §5, we show an example that leverages the validU flexibility.523

5 Application I: Mazza’s Isomorphism524

In his work on connecting the meta-theory of λ-calculus with the notion of metric completion,525

Mazza [23] establishes an isomorphic translation between standard λ-calculus (using the526

lterm syntax in §3.2) and a (uniform affine) infinitary λ-calculus (the iterm syntax from527

§3.3). We show our formalization using MrBNF of some key constructions in his development.528

Recall that the type-variable for the lterm type constructor must be infinite (since529

boundlterm = ℵ0), and the one for iterm must be uncountably infinite (since bounditerm = ℵ1).530

In what follows, we fix these type-variables, namely fix a countable type var (a copy of nat)531

and an uncountable type ivar; we will call ivariables the elements of ivar. We will simply532

write lterm instead of var lterm and iterm instead of ivar iterm.533

Following Mazza, we choose a countable set Spr : (var dstream) set of distinct streams534

of variables called supervariables, having the property that any two are mutually disjoint:535

∀xs, ys ∈ Spr. sset xs ∩ sset ys = ∅. The intention is restricting the λ-iterms to only use536

these as bindings. Moreover, we choose a function spr : var→ (var dstream) set for which537

bij_betw spr (UNIV : var set) Spr holds, i.e., spr is a bijection between variables and super-538

variables; we write spr−1 : (var dstream) set→ var for its inverse. We refer to the elements539

of nat list as positions, and choose a bijection natOf : nat list→ nat. For p : nat list540

and n : nat, p ·n denotes the concatenation of p and [n]. According to Mazza’s definition, the541

finitary-to-infinitary translation should be a function J_K_ : lterm → nat list → iterm542

given by: (1) JVr xKp = iVr ((spr x)natOf p); (2) JLm x tKp = iLm (spr x) JtKp; and543

(3) JAp t1 t2Kp = iAp Jt1Kp·0 (Jt2Kp·1, Jt2Kp·2, Jt2Kp·3, . . .).544

The intuition is that every variable x in the original term is duplicated in the translation545

into countably many ivariable “copies” of it sourced from its corresponding supervariable, spr x.546

XX:14 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

xs ∈ Spr {x, x′} ⊆ sset xs
iVr x ≈ iVr x′ iVr xs ∈ Spr t ≈ t′

iLm xs t ≈ iLm xs t′ iLm

t ≈ t′ ∀t1, t2. {t1, t2} ⊆ sset ts ∪ sset ts′ −→ t1 ≈ t2

iAp t ts ≈ iAp t′ ts′ iAp

Figure 1 Renaming equivalence relation

The positions make sure that the copies located in different parts of the resulting iterm are dis-547

tinct, thus ensuring that the iterm is affine. Indeed, in the recursive case for application, we see548

that the position p grows with different numbers appended to the arguments of infinitary ap-549

plication, which ensures disjointness in conjunction with choosing the particular “copy” based550

on this position counter (natOf p) when reaching the Vr-leaves. Correspondingly, abstraction551

over a variable is translated to abstraction over its supervariable, i.e., over all its “copies”.552

Moreover, to describe the image of this translation, Mazza defines the notion of renaming553

equivalence expressed as the relation ≈ : iterm→ iterm→ bool defined inductively in Fig. 1.554

It relates two λ-iterms t and t′ just in case they (i) have the same (iVr, iLm, iAp)-structure555

(as trees), (ii) only use supervariables in binders, (iii) at the leaves have variables appearing556

in the same supervariable, and (iv) for both t and t′ all the subterms that form the righthand557

side of an application are mutually renaming equivalent. Then uniformity of an iterm, which558

will characterize the translation’s image, is self-renaming-equivalence: uniform t = (t ≈ t).559

We aim to define a function satisfying clauses (1)–(3) above, with (2) formally written as560

iAp Jt1Kp·0 (smap Jt2Kp·_ (natsFrom 1)) where, for any n, natsFrom n denotes the stream of561

naturals starting from n. To turn these clauses into a formal definition, we deploy our recursor562

for lterm , which requires also indicating the desired interaction between the to-be-defined563

function with permutation and free-variables. Upon analysis, we converge to (4) Jt[σ]Kp =564

JtKp[v2iv σ] and (5) spr−1 ` touched JtKp ⊆ FV t, where v2iv σ (read “variable to ivariable”) con-565

verts σ : var → var , via spr, into a supervariable-preserving function; namely, for any y ∈ ivar566

such that y appears in some (necessarily unique) supervariable xs, we define v2iv σ y : ivar as567

(spr (σ (spr−1 xs)))i for the unique i such that xsi = y; and touched t is the set of all super-568

variables that are touched by (the free variables of) t, namely {xs ∈ Spr | sset xs ∩ FV t ≠ ∅}.569

Equation (4) above is seen to be intuitive if we remember that the translation sends vari-570

ables to supervariables, which means that bijections σ between variables naturally correspond571

to bijections between supervariables, hence (thanks to the supervariables being mutually dis-572

joint) to supervariable-structure preserving bijections between ivariables; therefore indeed (A)573

applying a bijection on variables and then translating should be the same as (B) first translat-574

ing and then applying this corresponding bijection of its ivariable “copies” in the translation.575

As for the above inclusion (5), we obtained it by adjunction from touched JtKp ⊆ spr ` FV t,576

which is again intuitive if we think in terms of the variable-supervariable correspondence.577

Clauses (1)–(5) give us a structure on the intended codomain of J_K_, nat list→ iterm,578

using the recipe sketched at the end of §3.2. However, for these to give us an lterm -model,579

we must restrict the codomain to include only those functions f : nat list→ iterm whose580

image consists of renaming-equivalent items only—otherwise the model properties do not581

hold; this is not suprising, since Mazza’s translation’s goal is to produce uniform iterms. We582

therefore employ the codomain-relativized recursion discussed at the end of §4.4, obtaining:583

▶ Prop 7. There exists a unique function J_K_ : lterm → nat list → iterm such that584

clauses (1)–(5) hold, and in addition ∀p, q. JtKp ≈ JtKq; in particular, ∀p. uniform JtKp.585

For the opposite translation L_M (from infinitary back to finitary terms), Mazza writes586

equations that in our notation look as follows, restricting the domain to uniform iterms:587

(1) L iVr xsi M = Vr (spr−1 xs); (2) L iLm xs tM = Lm (spr−1 xs) LtM; (3) L iAp t ts M = Ap LtM Lts0 M.588

J. van Brügge, A. Popescu, D. Traytel XX:15

With the help of a custom recursor for a suitable superset of the uniform iterms, again589

adding clauses for permuation and free variables, we are able to prove:590

▶ Prop 8. There exists a function L_M : iterm→ lterm satisfying the above clauses (1)–(3)591

when resticted to uniform iterms (i.e., assuming iVr xsi, iLm xs t and iAp t ts are uniform),592

and such that J_K’s restriction to uniform iterms is uniquely determined by these properties.593

Mazza’s main result consists of a sequence of five statements, three of which refer to the594

syntactic component of the finitary-infinitary isomorphism.595

▶ Prop 9. The following hold: (1) (Lemma 16 from [23]) t ≈ t −→ LtM = Lt′ M.596

(2) (Thm. 19(1) from [23]) LJsKp M = s. (3) (Thm. 19(2) from [23]) uniform t −→ JLtMKp ≈ t.597

The theorem states that, for any position p, J_K and L_Mp give mutually inverse bijections598

between terms and equivalence classes of uniform iterms w.r.t. renaming equivalence. An599

additional lemma (omitted here) shows that the ≈-representative produced by L_Mp is affine600

(i.e., has no repeated variables). Thus the result establishes a syntactic isomorphism, up to re-601

naming equivalence, between terms and uniform affine iterms. Mazza’s isomorphism also has602

an operational-semantics component, given by a theorem stating that J_K and L_Mp preserve603

β-reduction in both calculi in a manner that matches the number of reduction steps [23, Thm.604

19(3,4)]. We omit this result here, but details can be found in the supplementary material.605

6 Application II: POPLmark Challenge606

We report on our solution to the part 2 of the POPLmark challenge [4], which is concerned607

with the type soundness of System F<:; our formalization also solves part 1, which is concerned608

with subtyping. We work with the System F<: types and terms we have introduced in §3.4.609

With our setup that enforces the variable convention in all induction proofs, the formalization610

becomes a routine exercise: we can follow the formalization document and transcribe auxiliary611

lemmas and their proofs. We show our core definitions of part 2. Naturally, they rely on612

some definitions of part 1 (notably the subtyping relation) and other basic infrastructure613

(notably contexts modeled as lists); we refer to our supplementary material for full details.614

We start with the typing judgments for patterns and terms:615

616
inductive pat_typing ("⊢ _ : _ → _" [30,29,30] 30) where617

PTPVr: "⊢ PVr x T : T → ∅ , Inr x <: T"618

| PTPRec: "nonrep_PRec PP =⇒ labels PP = labels TT =⇒619

(∀l P T. (l, P) ∈∈ PP −→ (l, T) ∈∈ TT −→ ⊢ P : T → ∆ l) =⇒620

⊢ PRec PP : TRec TT → concat (map ∆ (labelist TT))"621

622 inductive typing ("_ ⊢ _ : _" [30,29,30] 30) where623

TVr: "⊢ Γ OK =⇒ (Inr x, T) ∈ set Γ =⇒ Γ ⊢ Vr x : T"624

| TLm: "Γ , Inr x <: T1 ⊢ t : T2 =⇒ Γ ⊢ Lm x T1 t : Arr T1 T2"625

| TAp: "Γ ⊢ t1 : Arr T11 T12 =⇒ Γ ⊢ t2 : T11 =⇒ Γ ⊢ App t1 t2 : T12"626

| TLmT: "Γ , Inl X <: T1 ⊢ t : T2 =⇒ Γ ⊢ LmT X T1 t : All X T1 T2"627

| TApT: "Γ ⊢ t1 : All X T11 T12 =⇒ proj_ctxt Γ ⊢ T2 <: T11 =⇒628

Γ ⊢ ApT t1 T2 : substT (TVr(X := T2)) T12"629

| TSub: "Γ ⊢ t : S =⇒ proj_ctxt Γ ⊢ S <: T =⇒ Γ ⊢ t : T"630

| TRec: "⊢ Γ OK =⇒ rel_lfset id (λt T. Γ ⊢ t : T) XX TT =⇒ Γ ⊢ Rec XX : TRec TT"631

| TProj: "Γ ⊢ t : TRec TT =⇒ (l, T) ∈∈ TT =⇒ Γ ⊢ Proj t l : T"632

| TLet: "Γ ⊢ t : T =⇒ ⊢ P : T → ∆ =⇒ Γ , ∆ ⊢ u : U =⇒ Γ ⊢ Let P t u : U"633634

All rules follow closely the challenge description [4]. A few rules deserve some explanation.635

Rules TVr and TRec assume that the context is well-scoped (⊢ Γ OK); other rules preserve this636

invariant inductively. Rule TRec uses the relator rel_lfset to relate the values in two lfsets637

pairwise grouped by label. Rule TApT uses the parallel substitution function on System F<:638

types (substT), which we define using our recursor. Rule PTPRec assumes that the destructed639

XX:16 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

record pattern is nonrepetitive (nonrep_PRec); it also writes ∈∈ for membership in lfset and640

constructs the resulting context by sorting the finite set of labels lexicographically (labelist).641

We next define matching and the evaluation function for the terms.642
643

inductive match for σ where644

MPVr: "σ X = v =⇒ match σ (PVr X T) v"645

| MPRec: "nonrep_PRec PP =⇒ labels PP ⊆ labels VV =⇒646

(∀l P v. (l, P) ∈∈ PP −→ (l, v) ∈∈ VV −→ match σ P v) =⇒647

match σ (PRec PP) (Rec VV)"648

649 definition "restrict σ A x = (if x ∈ A then σ x else Vr x)"650

651 inductive step where652

ApLm: "value v =⇒ step (Ap (Lm x T t) v) (subst (Vr(x := v)) TVr t)"653

| ApTLmT: "step (ApT (LmT X T t) T2) (subst Vr (TVr(X := T2)) t)"654

| LetV: "value v =⇒ match σ P v =⇒ step (Let P v u) (subst (restrict σ (PV p)) TVr u)"655

| ProjRec: "∀v ∈ values VV. value v =⇒ (l, v) ∈∈ VV =⇒ step (Proj (Rec VV) l) v"656

| ApCong1: "step t t’ =⇒ step (Ap t u) (Ap t’ u)"657

| ApCong2: "value v =⇒ step t t’ =⇒ step (Ap v t) (Ap v t’)"658

| ApTCong: "step t t’ =⇒ step (ApT t T) (ApT t’ T)"659

| ProjCong: "step t t’ =⇒ step (Proj t l) (Proj t’ l)"660

| RecCong: "step t t’ =⇒ (l, t) ∈∈ XX =⇒ step (Rec XX) (Rec (XX⟨l := t’⟩))"661

| LetCong: "step t t’ =⇒ step (Let P t u) (Let P t’ u)"662663

Similar to Berghofer’s solution [8], we use a matching predicate rather than a (partial)664

function that computes the matching substitution. The rules ApLm, ApTLmT, LetV, and665

ProjRec implement actual transitions; the remaining rules of step are congruence rules666

navigating to allowed redexes. We prefer this formulation over an equivalent context-based one,667

because the congruence steps are in all cases the easy cases of the involved induction proofs.668

The rules ApLm, ApTLmT, LetV use the parallel substitution subst, which we again define using669

our recursor. This substitution function acts both on term variables (first argument) and670

type variables (second argument). We then prove the main results: progress and preservation.671
672

lemma progress: "∅ ⊢ t : T =⇒ value t ∨ (∃t’. step t t’)"673

674 lemma preservation: : "Γ ⊢ t : T =⇒ step t t’ =⇒ Γ ⊢ t’ : T"675676

The proofs are canonical following the challenge description [4]. We pervasively use677

binding-aware induction on our datatypes but also on the shown inductive predicates, which678

has recently been developed in Isabelle by van Brügge et al. [44]. Occasionally we use679

induction even in places where a case distinction would have sufficed: this is because our680

tool lacks case distinction theorems following the variable convention. One omission in the681

challenge proof sketch, which has been also noted by Berghofer [8], is the following lemma,682

crucial for progress, about the existence of matching substitutions for well-typed patterns.683
684

lemma pat_typing_ex_match: ⊢ P : T → ∆ =⇒ ∅ ⊢ v : T =⇒ value v =⇒ ∃σ. match σ P v685686

7 Conclusion687

MrBNF is a new definitional package in Isabelle/HOL for defining binding-aware datatypes.688

It follows a modular approach to datatypes relying on the notion of MRBNF as infrastructure689

to refer to free, bound, and recursive occurrences in a syntax declaration. It comprises 20 000690

lines of Standard ML. While some of its usability edges are still rough, our case studies suggest691

that MrBNF can be a cornerstone in mechanized developments, pushing the boundaries of692

nominal techniques. We are currently proceeding to polish MrBNF’s rough edges, which693

involves providing a high-level interface to the recursor, automating the non-repetitiveness694

construction (linear_type), and providing variable-avoiding case distinction rules and a695

proof method to apply them effectively. At the same time, we are extending MrBNF’s scope696

to binding-aware codatatypes, which will have applications such as Böhm trees [6].697

J. van Brügge, A. Popescu, D. Traytel XX:17

References698

1 Submitted solutions to the POPLmark challenge. https://www.seas.upenn.edu/~plclub/699

poplmark/, accessed March 22, 2025, 2005.700

2 Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt. HOπ in Coq. J. Autom. Reason.,701

65(1):75–124, 2021. doi:10.1007/S10817-020-09553-0.702

3 Michael Ashley-Rollman, Karl Crary, and Robert Harper. Group from CMU’s solution to the703

POPLmark challenge. https://www.seas.upenn.edu/~plclub/poplmark/cmu.html, accessed704

March 22, 2025, 2005.705

4 Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.706

Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve707

Zdancewic. Mechanized metatheory for the masses: The POPLMark challenge. In Joe Hurd708

and Thomas F. Melham, editors, TPHOLs 2005, volume 3603 of LNCS, pages 50–65. Springer,709

2005. doi:10.1007/11541868_4.710

5 David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen711

Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications. J.712

Formaliz. Reason., 7(2):1–89, 2014. doi:10.6092/ISSN.1972-5787/4650.713

6 Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume 103 of714

Studies in logic and the foundations of mathematics. North-Holland, 1985.715

7 Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using nominal logic. Log.716

Methods Comput. Sci., 5(2), 2009. URL: http://arxiv.org/abs/0809.3960.717

8 Stefan Berghofer. A solution to the POPLMark challenge using de Bruijn indices in Isa-718

belle/HOL. J. Autom. Reason., 49(3):303–326, 2012. doi:10.1007/S10817-011-9231-4.719

9 Stefan Berghofer and Christian Urban. A head-to-head comparison of de Bruijn indices and720

names. In Alberto Momigliano and Brigitte Pientka, editors, LFMTP 2006, volume 174 of721

ENTCS, pages 53–67. Elsevier, 2006. doi:10.1016/J.ENTCS.2007.01.018.722

10 Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. Bindings723

as bounded natural functors. Proc. ACM Program. Lang., 3(POPL):22:1–22:34, 2019. doi:724

10.1145/3290335.725

11 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei726

Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In Gerwin727

Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 93–110. Springer,728

2014. doi:10.1007/978-3-319-08970-6_7.729

12 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Cardinals in Isabelle/HOL.730

In Gerwin Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 111–127.731

Springer, 2014. doi:10.1007/978-3-319-08970-6_8.732

13 Joachim Breitner. Formally proving a compiler transformation safe. In Ben Lippmeier, editor,733

Haskell Symposium 2015, pages 35–46. ACM, 2015. doi:10.1145/2804302.2804312.734

14 Matthias Brun and Dmitriy Traytel. Generic authenticated data structures, formally. In735

John Harrison, John O’Leary, and Andrew Tolmach, editors, ITP 2019, volume 141 of736

LIPIcs, pages 10:1–10:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:737

10.4230/LIPICS.ITP.2019.10.738

15 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,739

2012. doi:10.1007/s10817-011-9225-2.740

16 Zaynah Dargaye and Xavier Leroy. Mechanized verification of CPS transformations. In741

Nachum Dershowitz and Andrei Voronkov, editors, LPAR 2007, volume 4790 of LNCS, pages742

211–225. Springer, 2007. doi:10.1007/978-3-540-75560-9_17.743

17 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula744

manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae745

(Proceedings), 75(5):381–392, 1972. doi:10.1016/1385-7258(72)90034-0.746

18 Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable747

binding. Formal Aspects Comput., 13(3-5):341–363, 2002. doi:10.1007/s001650200016.748

https://www.seas.upenn.edu/~plclub/poplmark/
https://www.seas.upenn.edu/~plclub/poplmark/
https://www.seas.upenn.edu/~plclub/poplmark/
https://doi.org/10.1007/S10817-020-09553-0
https://www.seas.upenn.edu/~plclub/poplmark/cmu.html
https://doi.org/10.1007/11541868_4
https://doi.org/10.6092/ISSN.1972-5787/4650
http://arxiv.org/abs/0809.3960
https://doi.org/10.1007/S10817-011-9231-4
https://doi.org/10.1016/J.ENTCS.2007.01.018
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3290335
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1007/978-3-319-08970-6_8
https://doi.org/10.1145/2804302.2804312
https://doi.org/10.4230/LIPICS.ITP.2019.10
https://doi.org/10.4230/LIPICS.ITP.2019.10
https://doi.org/10.4230/LIPICS.ITP.2019.10
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/978-3-540-75560-9_17
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/s001650200016

XX:18 Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

19 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. In749

LICS 1987, pages 194–204. IEEE Computer Society, 1987.750

20 Gérard P. Huet. Residual theory in lambda-calculus: A formal development. J. Funct.751

Program., 4(3):371–394, 1994. doi:10.1017/S0956796800001106.752

21 Brian Huffman and Christian Urban. A new foundation for Nominal Isabelle. In Matt753

Kaufmann and Lawrence C. Paulson, editors, ITP 2010, volume 6172 of LNCS, pages 35–50.754

Springer, 2010. doi:10.1007/978-3-642-14052-5_5.755

22 Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full lambda-calculus.756

In LICS 2012, pages 471–480. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.57.757

23 Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full lambda-calculus.758

In 2012 27th Annual IEEE Symposium on Logic in Computer Science, pages 471–480, 2012.759

doi:10.1109/LICS.2012.57.760

24 Conor McBride and James McKinna. Functional pearl: i am not a number-i am a free761

variable. In Henrik Nilsson, editor, Haskell Workshop 2004, pages 1–9. ACM, 2004. doi:762

10.1145/1017472.1017477.763

25 Alberto Momigliano, S.J. Ambler, and R.L. Crole. A comparison of formalizations of the764

meta-theory of a language with variable bindings in Isabelle. In TPHOLs 2001, Supplemental765

Proceedings, pages 267–282, 2001. URL: https://www.inf.ed.ac.uk/publications/online/766

0046/b267.pdf.767

26 Tobias Nipkow. More Church-Rosser proofs. J. Autom. Reason., 26(1):51–66, 2001. doi:768

10.1023/A:1006496715975.769

27 Michael Norrish. Recursive function definition for types with binders. In Konrad Slind, Annette770

Bunker, and Ganesh Gopalakrishnan, editors, TPHOLs 2004, volume 3223 of LNCS, pages771

241–256. Springer, 2004. doi:10.1007/978-3-540-30142-4_18.772

28 Michael Norrish and René Vestergaard. Proof pearl: De Bruijn terms really do work. In Klaus773

Schneider and Jens Brandt, editors, TPHOLs 2007, volume 4732 of LNCS, pages 207–222.774

Springer, 2007. doi:10.1007/978-3-540-74591-4_16.775

29 Lawrence C. Paulson. The foundation of a generic theorem prover. J. Autom. Reason.,776

5(3):363–397, 1989. doi:10.1007/BF00248324.777

30 Lawrence C. Paulson. A mechanised proof of Gödel’s incompleteness theorems using Nominal778

Isabelle. J. Autom. Reason., 55(1):1–37, 2015. doi:10.1007/s10817-015-9322-8.779

31 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat,780

editor, PLDI 1988, pages 199–208. ACM, 1988. doi:10.1145/53990.54010.781

32 Frank Pfenning and Carsten Schürmann. System description: Twelf - A meta-logical framework782

for deductive systems. In Harald Ganzinger, editor, CADE 1999, volume 1632 of LNCS, pages783

202–206. Springer, 1999. doi:10.1007/3-540-48660-7_14.784

33 Brigitte Pientka and Jana Dunfield. Beluga: A framework for programming and reasoning with785

deductive systems (system description). In Jürgen Giesl and Reiner Hähnle, editors, IJCAR786

2010, volume 6173 of LNCS, pages 15–21. Springer, 2010. doi:10.1007/978-3-642-14203-1_787

2.788

34 Andrew M. Pitts. Locally nameless sets. Proc. ACM Program. Lang., 7(POPL):488–514, 2023.789

doi:10.1145/3571210.790

35 Andrei Popescu. Nominal recursors as epi-recursors. Proc. ACM Program. Lang., 8(POPL):425–791

456, 2024. doi:10.1145/3632857.792

36 Tom Ridge and James Margetson. A mechanically verified, sound and complete theorem793

prover for first order logic. In Joe Hurd and Thomas F. Melham, editors, TPHOLs 2005,794

volume 3603 of LNCS, pages 294–309. Springer, 2005. doi:10.1007/11541868_19.795

37 Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with de Bruijn terms796

and parallel substitutions. In Christian Urban and Xingyuan Zhang, editors, ITP 2015, volume797

9236 of LNCS, pages 359–374. Springer, 2015. doi:10.1007/978-3-319-22102-1_24.798

38 Natarajan Shankar. A mechanical proof of the Church-Rosser theorem. J. ACM, 35(3):475–522,799

1988. doi:10.1145/44483.44484.800

https://doi.org/10.1017/S0956796800001106
https://doi.org/10.1007/978-3-642-14052-5_5
https://doi.org/10.1109/LICS.2012.57
https://doi.org/10.1109/LICS.2012.57
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://www.inf.ed.ac.uk/publications/online/0046/b267.pdf
https://www.inf.ed.ac.uk/publications/online/0046/b267.pdf
https://www.inf.ed.ac.uk/publications/online/0046/b267.pdf
https://doi.org/10.1023/A:1006496715975
https://doi.org/10.1023/A:1006496715975
https://doi.org/10.1023/A:1006496715975
https://doi.org/10.1007/978-3-540-30142-4_18
https://doi.org/10.1007/978-3-540-74591-4_16
https://doi.org/10.1007/BF00248324
https://doi.org/10.1007/s10817-015-9322-8
https://doi.org/10.1145/53990.54010
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1145/3571210
https://doi.org/10.1145/3632857
https://doi.org/10.1007/11541868_19
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1145/44483.44484

J. van Brügge, A. Popescu, D. Traytel XX:19

39 Kathrin Stark. Mechanising syntax with binders in Coq. PhD thesis, Saarland University, Saar-801

brücken, Germany, 2020. URL: https://publikationen.sulb.uni-saarland.de/handle/20.802

500.11880/28822.803

40 Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with multi-sorted de804

Bruijn terms and vector substitutions. In Assia Mahboubi and Magnus O. Myreen, editors,805

CPP 2019, pages 166–180. ACM, 2019. doi:10.1145/3293880.3294101.806

41 Dawit Legesse Tirore, Jesper Bengtson, and Marco Carbone. A sound and complete projection807

for global types. In Adam Naumowicz and René Thiemann, editors, ITP 2023, volume808

268 of LIPIcs, pages 28:1–28:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.809

doi:10.4230/LIPICS.ITP.2023.28.810

42 Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette. Foundational, composi-811

tional (co)datatypes for higher-order logic: Category theory applied to theorem proving. In812

LICS 2012, pages 596–605. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.75.813

43 Christian Urban and Cezary Kaliszyk. General bindings and alpha-equivalence in Nominal814

Isabelle. Log. Methods Comput. Sci., 8(2), 2012. doi:10.2168/LMCS-8(2:14)2012.815

44 Jan van Brügge, James McKinna, Andrei Popescu, and Dmitriy Traytel. Barendregt convenes816

with Knaster and Tarski: Strong rule induction for syntax with bindings. Proc. ACM Program.817

Lang., 9(POPL):57:1–57:32, 2025. doi:10.1145/3704893.818

45 Jérôme Vouillon. A solution to the POPLMark challenge based on de bruijn indices. J. Autom.819

Reason., 49(3):327–362, 2012. doi:10.1007/S10817-011-9230-5.820

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28822
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28822
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/28822
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.1109/LICS.2012.75
https://doi.org/10.2168/LMCS-8(2:14)2012
https://doi.org/10.1145/3704893
https://doi.org/10.1007/S10817-011-9230-5

	1 Introduction
	2 Related Work
	3 MrBNF in Action
	3.1 Preliminaries on cardinals and permutations
	3.2 -calculus terms
	3.3 Infinitary -calculus terms
	3.4 Types and terms for System F<:

	4 MrBNF's Internals: Construction of Datatypes with Bindings
	4.1 From User-Specifications to Fixpoint Equations
	4.2 Composition of MRBNFs
	4.3 Fixpoint and Quotienting Constructions
	4.4 Recursion

	5 Application I: Mazza's Isomorphism
	6 Application II: POPLmark Challenge
	7 Conclusion

