
Noname manuscript No.
(will be inserted by the editor)

Soundness and Completeness Proofs by Coinductive Methods

Jasmin Christian Blanchette · Andrei Popescu ·
Dmitriy Traytel

the date of receipt and acceptance should be inserted later

Abstract Codatatypes are absent from many programming languages and theorem provers,
reflecting their absence from the standard repertoire of most computer scientists and logi-
cians. We make a case for their usefulness by showing how they can be employed to produce
compact, high-level proofs of key results in logic: the soundness and completeness of proof
systems for variations of first-order logic. For the classical completeness result, we first es-
tablish an abstract property of possibly infinite derivation trees. The abstract proof can be
instantiated for a wide range of Gentzen and tableau systems as well as various flavors of
first-order logic. Soundness is often easy to prove, but it becomes interesting as soon as one
allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof
systems for first-order logic augmented with inductive predicate definitions studied in the
literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced
support for codatatypes and corecursion. The development illustrates some unique features
of Isabelle/HOL’s new coinductive specification language such as nesting through non-free
types and mixed recursion–corecursion.

1 Introduction

Gödel’s completeness theorem [20] is a major result about first-order logic (FOL). It forms
the basis of results and techniques in various areas, including mathematical logic, automated
deduction, and program verification. It can be stated as follows: If a set of formulas is satis-
fied by all structures, then it has a proof. The theorem enjoys many accounts in the literature

Jasmin Christian Blanchette
Inria Nancy & LORIA, Villers-lès-Nancy, France
Max-Planck-Institut für Informatik, Saarbrücken, Germany
E-mail: jasmin.blanchette@{inria.fr,mpi-inf.mpg.de}

Andrei Popescu
Department of Computer Science, School of Science and Technology, Middlesex University, UK
E-mail: a.popescu@mdx.ac.uk

Dmitriy Traytel
Institute of Information Security, Department of Computer Science, ETH Zurich, Switzerland
E-mail: traytel@inf.ethz.ch

2 J. C. Blanchette et al.

that generalize and simplify the original proof; indeed, a textbook on mathematical logic
would be incomplete without a proof of this fundamental theorem.

Formal logic has always been a battleground between semantic and syntactic methods.
Generally, mathematicians belong to the semantic school, whereas computer scientists tend
to take the other side of the argument. The completeness theorem, which combines syntax
and semantics, is also disputed, with the result that each school has its own proof. In his
review of Gallier’s Logic for Computer Science [19], Pfenning, a fellow “syntactician,” notes
the following [38]:

All too often, proof-theoretic methods are neglected in favor of shorter, and super-
ficially more elegant semantic arguments. [In contrast, in Gallier’s book] the treat-
ment of the proof theory of the Gentzen system is oriented towards computation
with proofs. For example, a pseudo-Pascal version of a complete search procedure
for first-order cut-free Gentzen proofs is presented.

In the context of completeness, the “superficially more elegant semantic arguments” are
proofs that rely on Hilbert systems. These systems have several axioms but only one or two
deduction rules, providing minimal support for presenting the structure of proofs or for mod-
eling proof search. A proof of completeness based on Hilbert systems follows the Henkin
style: It employs a heavy bureaucratic apparatus to establish facts about deduction and con-
servative language extensions, culminating in a highly nonconstructive step: an application
of Zorn’s lemma to extend any syntactically consistent set of formulas to a maximally con-
sistent one, from which a model is produced.

In contrast, a proof of completeness based on more elaborate Gentzen or tableau systems
follows the Beth–Hintikka style [28]. It performs a search that builds either a finite deduction
tree yielding a proof (or refutation, depending on the system) or an infinite tree from which
a countermodel (or model) can be extracted. Such completeness proofs have an intuitive
content that stresses the tension of the argument: The deduction system systematically tries
to prove the goal; a failure yields, at the limit, a countermodel.

The intuitive appeal of the Beth–Hintikka approach comes at a price: It requires rea-
soning about infinite derivation trees and infinite paths. Unfortunately, convenient means to
reason about infinite (or lazy) data structures are lacking in mainstream mathematics. For ex-
ample, an otherwise extremely rigorous textbook such as Bell and Machover’s [1] becomes
surprisingly informal when defining and using possibly infinite refutation tableau trees:

A tableau is a set of elements, called nodes, partially ordered and classified into
levels as explained below. With each node is associated a finite set of formulas.
We shall usually identify a given node with its associated set of formulas; this is
somewhat imprecise (since in fact the same set of formulas can be associated with
different nodes) but will not cause confusion.

Each node belongs to a unique level, which is labeled by some natural number.
There is just one node of level 0, called the initial node of the tableau. Each node at
level n+1 is a successor of a unique node, which must be of level n.

In textbooks, at best the trees are defined rigorously (e.g., as prefix-closed sets), but the
reasoning is performed informally, disregarding the original definition and relying on the
intuitive notion of trees, as Gallier does. One could argue that trees are intuitive and do not
need a formal treatment, but the same holds for the syntax of formulas, which is treated very
rigorously in most of the textbooks.

The main contribution of this article is a rigorous Beth–Hintikka-style proof of the com-
pleteness theorem, based on a Gentzen system. The potentially infinite trees are captured

Soundness and Completeness Proofs by Coinductive Methods 3

by codatatypes (also called coinductive datatypes or final coalgebras) [26]. Another novel
aspect of the proof is its modularity: The core tree construction argument is isolated from
the proof system and concrete formula syntax, with the concrete syntactic details concealed
behind an abstract Herbrandness assumption (Section 3). The Herbrandness assumption can
be verified in concrete cases (by performing the standard Herbrand model construction) for
a wide range of Gentzen and tableau systems for FOL, various flavors of FOL (e.g., with or
without predicates, equality, or sorts), and even modal logics with explicit-world Gentzen
systems (Section 4). This modularization replaces the textbook proofs by analogy. The core
of the argument amounts to reasoning about a functional program over lazy data structures.

A second contribution of this article is an application of the same coinductive machinery
(infinite trees and streams and corecursive functions between them) to some interesting re-
cent results from the automated deduction literature: the soundness of infinite (cyclic) proofs
for FOL with inductive definitions and related logics, studied by Brotherston et al. [11–14].
For formalizing these results, we follow rather closely the abstract constructions of Broth-
erston et al. [14], except that we use coinduction and corecursion to streamline the develop-
ment. The presentation follows the same path as for completeness: The main result is stated
abstractly (Section 5) and instantiated by contrete examples (Section 6).

The proofs of the abstract results are formalized in Isabelle/HOL (Section 7). The infi-
nite trees and paths constructions rely on a new definitional package for codatatypes [5,10],
which automates the derivation of characteristic theorems from high-level specifications of
types and functions. Through Isabelle’s code generator [22], the corecursive construction
gives rise to a Haskell program that implements a semidecision procedure for validity in-
stantiable with various proof systems, yielding verified sound and complete provers.

The completeness proof has been applied to the formalization of optimized translations
between sorted and unsorted FOL [4, 6]. The soundness proofs of these translations rest
on the Löwenheim–Skolem theorem, a corollary of a slightly generalized version of the
completeness theorem. The previous formal proofs of the completeness theorem, including
two in Isabelle, support a more restrictive logic than many-sorted FOL (Section 8).

An earlier version of this article was presented at the IJCAR 2014 conference in Vi-
enna, Austria, under a different title [8]. The article considerably extends the conference
paper with infinite-proof soundness (Sections 5 and 6) as a second application of coin-
ductive methods. It also provides more details about the Beth–Hintikka-style proof of the
completeness theorem (Sections 3 and 4).

Conventions. Isabelle/HOL [36] is a proof assistant based on classical higher-order logic
(HOL) with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. It is the logic of
Gordon’s original HOL system [21] and of its many successors. HOL notations are similar to
those of functional programming languages, but they also include many traditional symbols
and syntaxes from mathematics, notably to denote simply typed sets. We refer to Nipkow
and Klein [35, Part 1] for a modern introduction. In this article, the logic is viewed not as a
formal system but rather as a framework for expressing mathematics, much like set theory
is employed by working mathematicians. In keeping with the standard semantics of HOL,
types α are identified with sets.

2 Preliminaries on First-Order Logic

The soundness and completeness results we formalize in this article apply to an array of
variations of first-order logic and beyond (modal logics, separation logic, etc.). To give some

4 J. C. Blanchette et al.

concrete grounding for the forthcoming abstract development, we recall the basic (unsorted)
first-order logic and its extension with inductive predicates.

2.1 Classical First-Order Logic

We fix a first-order language: a countably infinite set var of variables x, y, z and countable
sets fsym and psym of function symbols f and predicate symbols p together with an assign-
ment ar : fsym] psym→ nat of numeric arities. Terms t ∈ term are symbolic expressions
built inductively from variables by application of function symbols f ∈ fsym to tuples of
arguments whose lengths respect the arities: f (t1, . . . , tar f). Atoms a ∈ atom are symbolic
expressions of the form p(t1, . . . , tar p), where p ∈ psym and t1, . . . , tar p ∈ term.

Formulas ϕ, ψmay be atoms, negations, conjunctions, or universal quantifications. They
are defined as follows:

datatype fmla = Atm atom
| Neg fmla
| Conj fmla fmla
| All var fmla

As usual, we define the (syntactic) implication of two formulas ϕ1, ϕ2 by Imp ϕ1 ϕ2 =
Neg (Conj ϕ1 (Neg ϕ2)).

To distinguish between the first-order language of study and the HOL metalanguage, we
use the constructor names Neg, Conj, and All for the former, keeping the traditional symbols
¬, ∧, and ∀ for the latter. We often write a instead of Atm a, thus pretending that atoms are
included in formulas.

A structure S =
(
S, (Ff) f ∈ fsym, (Pp)p∈psym

)
for the given language consists of a car-

rier set S, together with a function Ff : Sn → S for each n-ary f ∈ fsym and a predicate
Pp : Sn→ bool for each n-ary p ∈ psym. The notions of interpretation of a term t and satis-
faction of a formula ϕ by a structure S with respect to a variable valuation ξ : var→ S are
defined in the standard way. For terms (by structural recursion):

JxKS
ξ = ξ x J f (t1, . . . , tn)KS

ξ = Ff
(
Jt1KS

ξ , . . . , JtnKS
ξ

)
For atoms:

S |=ξ p(t1, . . . , tn) iff Pp
(
Jt1KS

ξ , . . . , JtnKS
ξ

)
For formulas (by structural recursion):

S |=ξ Atm a iff S |=ξ a S |=ξ Conj ϕ ψ iff S |=ξ ϕ ∧ S |=ξ ψ

S |=ξ Neg ϕ iff S 6|=ξ ϕ S |=ξ All x ϕ iff ∀a∈S. S |=ξ[x←a] ϕ

Above, ξ[x← a] denotes the valuation that sends x to a and all other variables y to ξ y.
We define the notion of a structure S satisfying a formula ϕ, written S |= ϕ, to mean

satisfaction with respect to all valuations: ∀ξ.S |=ξ ϕ.
A sequent is a pair Γ B ∆ of finite formula sets. Satisfaction is extended to sequents:

S |= Γ B ∆ iff (∀ϕ∈ Γ. S |= ϕ) ⇒ (∃ψ∈ ∆. S |= ψ). We can think of Γ B ∆ as an
implication between the conjunction of the formulas of Γ and the disjunction of the formulas
of ∆. If S |= ΓB ∆, we also call S a model of ΓB ∆. By contrast, if S 6|= ΓB ∆, we call
S a countermodel of ΓB ∆

A standard proof system on sequents is defined inductively as follows, where the nota-
tion Γ, ϕ abbreviates the set Γ∪{ϕ}:

Soundness and Completeness Proofs by Coinductive Methods 5

AX
Γ, Atm a B ∆, Atm a

Γ B ∆, ϕ
NEGL

Γ, Neg ϕ B ∆

Γ, ϕ B ∆

NEGR
Γ B ∆, Neg ϕ

Γ, ϕ, ψ B ∆

CONJL
Γ, Conj ϕ ψ B ∆

Γ B ∆, ϕ Γ B ∆, ψ
CONJR

Γ B ∆, Conj ϕ ψ

Γ, All x ϕ, ϕ[t/x] B ∆

ALLL
Γ, All x ϕ B ∆

Γ B ∆, ϕ[y/x] ALLR
(y fresh)Γ B ∆, All x ϕ

In a proof, the rules are applied from bottom to top. One chooses a formula from either
side of the sequent, the eigenformula, and applies a rule according to the topmost connective
or quantifier. For a given choice of eigenformula, at most one rule is applicable. The aim of
applying the rules is to prove the sequent by building a finite derivation tree whose branches
are closed by an axiom (AX). Provability of a sequent in this system is denoted by prefixing
` to the sequent (e.g., ` ΓB ∆).

The soundness theorem states that any provable sequent is satisfied by all structures:

` ΓB ∆ ⇒ (∀S .S |= ΓB ∆)

The completeness theorem states the converse—namely, any sequent that is satisfied by all
structures is provable:

(∀S .S |= ΓB ∆) ⇒ ` ΓB ∆

Section 3 presents abstract versions of these classic soundness and completeness theorems.

2.2 First-Order Logic with Inductive Predicates

Another logic we consider is first-order logic with inductive predicates (IFOL). In addition
to the first-order language given by var, fsym, psym and ar : fsym] psym→ nat, we fix a
subset of predicate symbols ipsym⊆ psym which are called inductive. Moreover, we fix, for
each p ∈ ipsym, a set indp of Horn clauses specifying p, so that each element of indp has the
form Imp (Conj ψ1 . . . ψm ϕ1 . . . ϕn) ϕ, where

– Conj denotes the conjunction of multiple formulas;1

– ϕ is an atom of the form p(t1, . . . , tar p);
– each ϕi is an atom of the form p′(t1, . . . , tar p′) for some p′ ∈ ipsym;
– each ψ j is a formula not containing any p′ ∈ ipsym.

The above set of restrictions is aimed to ensure monotonicity of the Horn clauses interpreted
as inductive definitions. To simplify the exposition, we choose a rather strong restriction, but
more flexible ones are possible [11].

A first-order structure S =
(
S, (Ff) f ∈ fsym, (Pp)p∈psym

)
is said to be inductive (with

respect to ipsym and (indp)p∈ipsym) if the interpretation of each p ∈ ipsym is indeed in-
ductive, i.e., the family (Pp)p∈ ipsym constitutes the least fixpoint of all the inductive Horn
clauses interpreted in S ; in other words, if (Pp)p∈ipsym is the least family of predicates
(with respect to component-wise implication) such that S |= χ for all χ ∈

⋃
p∈psym indp.

Example 1 Assume fsym= {0, Suc}, ipsym= psym= {even, odd}, and

1 Given formulas ψ1, . . . , ψk , we let Conj ψ1 . . . ψk denote Conj ψ1 (Conj ψ2 (. . . ψn) . . .). In particular,
when k = 0 it denotes the “true” formula >, defined in a standard way, e.g., as Imp a a for some atom a.

6 J. C. Blanchette et al.

– indeven consists of the following clauses:
– even(0);
– Imp (even(x)) (even(Suc(Suc(x))));

– indodd consists of the following clauses:
– odd(Suc(0));
– Imp (odd(x)) (odd(Suc(Suc(x)))).

A structure S =
(
S, F0, FSuc, Peven

)
for this language is inductive iff, for fixed

(
S, F0,

FSuc), Peven and Podd is the least (i.e., strongest) pair of unary predicates on S such that

– Peven(F0);
– ∀n ∈ S . Peven(n)⇒ Peven(FSuc(FSuc(n)));
– Podd(FSuc(F0));
– ∀n ∈ S . Podd(n)⇒ Podd(FSuc(FSuc(n))).

In particular, if
(
S, F0, FSuc) is the standard set of natural numbers with zero and successor,

then Peven and Podd must be the standard evenness and oddness predicates.
Obviously, we have more admissible rules for inductive structures than for arbitrary

structures. The following rules are admissible for even, where Γ[t/x] denotes the (capture-
avoiding) substitution of the term t for the variable x in all formulas of Γ:

EVEN0
Γ B ∆, even(0)

Γ B ∆, even(x)
EVENSuc

Γ B ∆, even(Suc(Suc(x)))

Γ[0/x] B ∆[0/x] Γ[Suc(Suc(y))/x], even(y) B ∆[Suc(Suc(y))/x] EVENsplit
(y fresh)Γ, even(x) B ∆

The “direct” rules EVEN0 and EVENSuc (corresponding to the two cases in the induc-
tive specification of even) are admissible since all inductive structures satisfy the Horn
clauses for even. Moreover, the “inversion” rule EVENsplit is admissible by the least fixpoint
assumption—the rule expresses that, if even(x) is known, then it must have been obtained
by an application of one of the inductive clauses for even. Similar rules hold for odd:

ODD0
Γ B ∆, odd(Suc(0))

Γ B ∆, odd(x)
ODDSuc

Γ B ∆, odd(Suc(Suc(x)))

Γ[Suc(0)/x] B ∆[Suc(0)/x] Γ[Suc(Suc(y))/x], odd(y) B ∆[Suc(Suc(y))/x] ODDsplit
(y fresh)Γ, odd(x) B ∆

In general, for all inductive predicates p ∈ ipsym, the following rules are sound:

Γ B ∆, prems(χ)
pχ

Γ B ∆, concl(χ)

(Γ[t/x], prems(χ′) B ∆[t/x])χ∈indp psplit
Γ, p(x) B ∆

There is one pχ rule for each p ∈ ipsym and χ ∈ indp, with prems(χ) denoting the premises
of χ and concl(χ) its conclusion. In addition, there is one psplit rule for each p ∈ ipsym such
that

– χ′ is a fresh-variable copy of χ, with all its free variables fresh for Γ ∪ ∆;
– p(t) is concl(χ′)—with t thus being a tuple of terms (t1, . . . , tar p);
– x is a tuple of distinct variables (x1, . . . , xar p).

The Gentzen system for IFOL consists of the FOL rules from Section 2.1 extended with
the above rules pχ, psplit and the following substitution rule:

Soundness and Completeness Proofs by Coinductive Methods 7

Γ B ∆
SUBSTt,x

Γ[t/x] B ∆[t/x]

Beyond the additional admissible rules, a crucial insight originating with Brotherston
[11] is that, for inductive structures, a certain type of proof circularity can also be permitted.
It allows the proof trees to have as leaves not only axioms, but also backward links to other
sequents in the tree. This insight is useful for automating induction [11]. Brotherston et
al. [14] give an abstract, logic-independent argument for why allowing such circularities
is sound. In Section 5, we show that this argument can be naturally formalized using a
coinductive machinery similar to the one we use for classic completeness.

3 Abstract Soundness and Completeness

In this section, we develop an abstract framework that allows us to state and prove soundness
and completeness for an unspecified syntax and class of structures and satisfaction relation.
The framework is obtained by distilling the corresponding concrete results for FOL.

For soundness, we simply assume the rules to be locally sound for the models, which
immediately yields global soundness. Completeness is significantly more elaborate. The
proof is divided in two parts. The first part, captured in this section, focuses on the core of the
completeness argument in an abstract, syntax-free manner. This level captures the tension
between the existence of a proof or of a countermodel-producing path, introduced through
what we call an escape path—an infinite sequence of rule applications that “escapes” the
proof attempt. The tension is distilled in the following result: Either there exists a finite
derivation tree or there exists an infinite derivation tree containing a suitable escape path.
The second part maps the escape path to a concrete, proof-system-specific countermodel
employing a construction due to Herbrand. At the abstract level, we assume a “Herbrand
function” that produces countermodels from escape paths. In Section 4, we instantiate this
function for the Gentzen system presented in Section 2.1.

3.1 Sequents and Structures

We abstract away from the syntax of formulas and sequents and the specific rules of the
proof system. We fix countable sets sequent and rule for sequents and rules. Our abstract
sequents represent the formal statements in the logic, which can take either the form of
concrete sequents or other forms.

Moreover, we abstract away from the concrete form of structures, assuming a fixed class
structure and a satisfaction relation

|= : structure→ sequent→ bool

where S |= s indicates that S satisfies (is a model of) s. We write |= s to indicate that s is
satisfied by all models in structure: ∀S∈ structure. S |= s.

3.2 Rule Systems

We assume that the meaning of the rules is given by an effect relation

eff : rule→ sequent→ sequent fset→ bool

8 J. C. Blanchette et al.

where α fset denotes the set of finite subsets of α. The reading of eff r s ss is as follows:
Starting from sequent s, applying rule r expands s into the sequents ss. We can think of
sequents as proof goals, each goal being replaced by zero or more subgoals by applying a
rule. The triple R = (sequent, rule, eff) forms a rule system.

Example 2 The Gentzen system from Section 2.1 can be presented as a rule system. The
set sequent is the set of sequents, and rule consists of the following: a rule AXa for each
atom a; rules NEGLϕ and NEGRϕ for each formula ϕ; rules CONJLϕ,ψ and CONJRϕ,ψ for
each pair of formulas ϕ and ψ; a rule ALLLx,ϕ,t for each variable x, formula ϕ, and term t;
and a rule ALLRx,ϕ for each variable x and formula ϕ.

The eigenformula is part of the rule. Hence we have a countably infinite number of rules.
The effect is defined as follows, where we use semicolons (;) to separate set elements:

eff AXa (Γ,Atm aB ∆,Atm a) /0
eff NEGRϕ (ΓB ∆, Neg ϕ) {Γ, ϕB ∆}
eff NEGLϕ (Γ,Neg ϕB ∆) {ΓB ∆, ϕ}
eff CONJLϕ,ψ (Γ,Conj ϕ ψB ∆) {Γ, ϕ, ψB ∆}
eff CONJRϕ,ψ (ΓB ∆, Conj ϕ ψ) {ΓB ∆, ϕ; ΓB ∆, ψ}
eff ALLLx,ϕ,t (Γ,All x ϕB ∆) {Γ,All x ϕ, ϕ[t/x]B ∆}
eff ALLRx,ϕ (ΓB ∆, All x ϕ) {ΓB ∆, ϕ[y/x]} where y is fresh for Γ and All x ϕ

3.3 Derivation Trees

Possibly infinite trees with nodes labeled by elements in a set α are represented by the
following codatatype:

codatatype α tree = Node (lab: α) (sub: (α tree) fset)

This definition introduces a constructor Node : α→ (α tree) fset→ α tree and two selectors
lab : α tree→ α, sub : α tree→ (α tree) fset. Trees have the form Node a Ts, where a is
the tree’s label and Ts is the finite set of its (immediate) subtrees. The codatatype keyword
indicates that, unlike for inductive datatypes, this tree formation rule may be applied an
infinite number of times to create infinite objects.

A step combines the current sequent and the rule to be applied: step = sequent× rule.
Derivation trees are defined as trees labeled by steps, dtree = step tree, in which the root’s
label (s, r) represents the proved goal s and the first (backward) applied rule r. The well-
formed derivation trees are captured by the predicate wf : dtree→ bool defined by the coin-
ductive rule

eff r s (image (fst◦ lab) Ts) ∀T ∈Ts. wf T
WF

wf (Node (s, r) Ts)

The term image f A denotes the image of set A through function f , and fst is the left projec-
tion operator (i.e., fst (x, y) = x). The first assumption requires that the rule r from the root
be applied to obtain the subtrees’ labels. The second assumption requires that wellformed-
ness hold for the immediate subtrees. The coinductive nature of the definition ensures that
these properties hold for arbitrarily deep subtrees of T , even if T has infinite paths.

Double lines distinguish coinductive rules from their inductive counterparts. Thus, the
predicate wf is the greatest (weakest) solution to the equivalence

wf (Node (s, r) Ts) ⇐⇒ eff r s (image (fst◦ lab) Ts) ∧ (∀T ∈Ts. wf T)

Soundness and Completeness Proofs by Coinductive Methods 9

AXp(y)
∀x. p(x), p(y) B p(y)

ALLLx,p(x),y
∀x. p(x) B p(y)

AXp(z)
∀x. p(x), p(z) B p(z)

ALLLx,p(x),z
∀x. p(x) B p(z)

CONJRp(y), p(z)
∀x. p(x) B p(y)∧ p(z)

Fig. 1 A proof

AXp(y)
∀x. p(x), p(y) B p(y)

ALLLx,p(x),y
∀x. p(x) B p(y)

...
ALLLx,p(x),y

∀x. p(x), p(y) B p(z)
ALLLx,p(x),y

∀x. p(x), p(y) B p(z)
ALLLx,p(x),y

∀x. p(x) B p(z)
CONJRp(y), p(z)

∀x. p(x) B p(y)∧ p(z)

Fig. 2 A failed proof attempt

which is also the greatest solution to the implication

wf (Node (s, r) Ts) ⇒ eff r s (image (fst◦ lab) Ts) ∧ (∀T ∈Ts. wf T)

To establish a fact of the form ∀T. P T → wf T with P : dtree→ bool, a proof by coin-
duction on the definition of wf proceeds by simply showing that P is also a solution of the
same implication:

P (Node (s, r) Ts) ⇒ eff r s (image (fst◦ lab) Ts) ∧ (∀T ∈Ts. P T)

3.4 Proofs

The finite derivation trees—the trees that would result from an inductive datatype definition
with the same constructors—can be carved out of the codatatype dtree using the predicate
finite defined inductively (i.e., as a least fixpoint) by the rule

∀T ∈Ts. finite T
FIN

finite (Node (s, r) Ts)

Note the difference between inductive and coinductive definitions: An inductive defini-
tion repeatedly produces instances of the predicate, whereas a coinductive definition spec-
ifies tests that must be passed indefinitely by a particular value to be accepted. Indeed, the
traditional view is that induction proceeds by constructing, coinduction by destructing.

A proof of a sequent s is a finite well-formed derivation tree with the sequent s at its
root:

proof T s ⇐⇒ finite T ∧ wf T ∧ fst (lab T) = s

An infinite well-formed derivation tree represents a failed proof attempt.

Example 3 Given the instantiation of Example 2, Figure 1 shows a finite derivation tree for
the sequent All x (p(x)) B Conj (p(y)) (p(z)) written using the familiar syntax for logical
symbols. Figure 2 shows an infinite tree for the same sequent.

10 J. C. Blanchette et al.

3.5 Soundness

We assume that the rules are locally sound.

Local Soundness: ∀r s ss. eff r s ss ∧ (∀s′ ∈ ss. |= s′) ⇒ |= s

The soundness theorem follows by induction on the finiteness of trees representing proofs.

Theorem 4 Assume the rule system fulfills Local Soundness with respect to the structures.
Then every sequent that has a proof is satisfied by all structures. Formally:

∀s. (∃T. proof T s) ⇒ |= s

3.6 Infinite Paths and König’s Lemma

An infinite path in a derivation tree can be regarded as a way to “escape” the proof. To
represent infinite paths independently of trees, we introduce the codatatype of streams over
a type α with the constructor SCons and the selectors shead and stail:

codatatype α stream = SCons (shead: α) (stail: α stream)

The coinductive predicate ipath : dtree → step stream → bool determines whether a
stream of steps is an infinite path in a tree:

T ∈ Ts ipath T steps
IPATH

ipath (Node (s, r) Ts) (SCons (s, r) steps)

Since the trees are finitely branching, König’s lemma applies. Its proof allows us to show
a first simple corecursive definition.

Lemma 5 If the tree T is infinite, there exists an infinite path steps in T .

Proof By the contrapositive of FIN, if Node (s, r) Ts is infinite, there exists an infinite sub-
tree T ∈ Ts. Let f : {T ∈ dtree | ¬ finite T} → {T ∈ dtree | ¬ finite T} be a function wit-
nessing this fact—i.e., f T is an immediate infinite subtree of T . The desired infinite path
p : {T ∈ dtree. ¬ finite T} → step stream can be defined by primitive corecursion over the
codatatype of streams: p T = SCons (lab T) (p (f T)). Equivalently, in terms of the selectors:

shead (p T) = lab T stail (p T) = p (f T)

Thus, ipath (p T) T by straightforward coinduction on the definition of ipath. ut

The following extension of König’s lemma applies to well-formed derivation trees, al-
lowing one to construct an infinite path satisfying a unary and a binary invariant. Its state-
ment involves the “always” predicate defined coinductively for streams of any set β, namely,
alw : (β stream→ bool)→ β stream→ bool, where alw P xs states that the predicate P holds
for all suffixes of xs:

P xs alw P (stail xs)
ALW

alw P xs

Soundness and Completeness Proofs by Coinductive Methods 11

Lemma 6 Fix the set α and the predicates I : sequent×α→ bool and P : sequent×α→
rule→ sequent×α→ bool. Assume that

∀r s ss a. eff r s ss ∧ I (s, a) ⇒ (∃s′ a′. s′ ∈ ss ∧ I (s′, a′) ∧ P (s, a) r (s′, a′))

Then, if the tree T is well-formed, there exists a stream stepas ∈ (step×α) stream such that
its first projection is an infinite path in T (formally, ipath T (smap fst stepas)) and

alw (λstepas′. let ((s, r), a) = shead stepas′ and ((s′, _), a′) = shead (stail stepas′)
in I (s, a) ∧ P (s, a) r (s′, a′))

stepas

Above, the assumption is that, for any sequent s, rule r, and element a ∈ α such that the
predicate I holds for (s, a), there exists a premise sequent s′ along the backward application
of r and an element a′ such that I again holds for (s′, a′) and the predicate P holds for (s, a),
r, and (s′, a′). The conclusion is that there exists an infinite path in the tree along which
I and P always hold.

The proof is similar to that of Lemma 5, but taking a slightly more complex func-
tion f , namely f : B→ B, where B = {(T, a) ∈ dtree× α | I (fst (lab T), a)}, such that
P (fst (lab T), a) r (fst (lab T ′), a′) holds whenever (T, a) ∈ B and (T ′, a′) = f (T, a). The
lemma’s assumption ensures such a choice of f is possible.

3.7 Escape Paths

An escape path is a stream of steps that can form an infinite path in a derivation tree. It is
defined coinductively as the predicate epath : step stream→ bool, which requires that every
element in the given stream be obtained by applying an existing rule and choosing one of
the resulting sequents:

eff r s ss s′ ∈ ss epath (SCons (s′, r ′) steps)
EPATH

epath (SCons (s, r) (SCons (s′, r ′) steps))

The following lemma is easy to prove by coinduction on the definition of epath.

Lemma 7 For any stream steps and tree T , if wf T and ipath steps T , then epath steps.

Example 8 The stream

(∀x. p(x)B p(y)∧ p(z)) · (∀x. p(x)B p(z)) · (∀x. p(x), p(y)B p(z))∞

where s · steps = SCons s steps and s∞ = s · s · . . . , is an escape path for the tree of Figure 2.

3.8 Countermodel Paths

A countermodel path is a sequence of steps that witnesses the unprovability of a sequent s.
Any escape path starting in s is a candidate for a countermodel path, given that it indicates
a way to apply the proof rules without reaching any result. For it to be a genuine counter-
model path, all possible proofs must have been attempted. More specifically, whenever a
rule becomes enabled along the escape path, it is eventually applied later in the sequence.
For FOL with its standard sequents, such paths can be used to produce actual countermodels

12 J. C. Blanchette et al.

...
ALLLx,p(x),t4∀x. p(x), p(t1), p(t2), p(t3) B q(y)
ALLLx,p(x),t3∀x. p(x), p(t1), p(t2) B q(y)

ALLLx,p(x),t2∀x. p(x), p(t1) B q(y)
ALLLx,p(x),t1∀x. p(x) B q(y)

Fig. 3 A derivation tree with a countermodel path

by interpreting as true all statements made along the path on the left of the sequents, and as
false all statements on the right.

Formally, a rule r is enabled in a sequent s if it has an effect (i.e., eff r s ss for some ss).
This is written enabled r s. For any rule r, stream steps:

– takenr steps states that r is taken at the start of the stream (i.e., shead steps = (s, r) for
some s);

– enabledAtr steps states that r is enabled at the beginning of the stream (i.e., if shead steps=
(s, r ′), then enabled r s);

Recall that, given any set α, predicate P : α stream→ bool, and stream xs ∈ α stream,
the predicate alw P xs (“always P”) states that P is true for all suffixes of xs. Dually, we take
ev P steps (“eventually P”) to meant that P is true for some suffix of xs.

A stream steps is saturated if, at each point, any enabled rule is taken at a later point:

saturated steps ⇐⇒ (∀r∈ rule. alw (λsteps′. enabledAtr steps′⇒ ev takenr steps′) steps)

A countermodel path for a sequent s is a saturated escape path steps starting at s:

countermodelPath s steps ⇐⇒ epath steps ∧ saturated steps ∧ fst (shead steps) = s

Example 9 The escape path given in Example 8 is not saturated, since the rule ALLLx,p(x),z
is enabled starting from the first position but never taken.

Example 10 The escape path associated with the tree of Figure 3 is a countermodel path
for ∀x. p(x) B q(y), assuming that each possible term occurs infinitely often in the sequence
t1, t2, The only enabled rules along the path are of the form ALLLx,p(x),_, and each is
always eventually taken.

3.9 Completeness

For the proof of completeness, we assume that the set of rules satisfies two properties:

– Availability: At each sequent, at least one rule is enabled (i.e., ∀s. ∃r. enabled r s).
– Persistence: At each sequent, if a rule is enabled but not taken, it remains enabled (i.e.,
∀s, r, r ′, s′, ss. enabled r ′ s ∧ r′ 6= r ∧ eff r s ss ∧ s′ ∈ set ss ⇒ enabled r ′ s′).

(We will later remove the first condition with Theorem 16.) The above conditions are local
properties of the rules’ effect, not global properties of the proof system. This makes them
easy to verify for particular systems.

Soundness and Completeness Proofs by Coinductive Methods 13

Remark 11 The saturation condition on step streams from Section 3.8 is a stronger con-
dition than the standard properties of fairness and justice [18]. Fairness would require the
rules to be continuously enabled to guarantee that they are eventually taken. The property
of justice is stronger in that it would require the rules to be enabled infinitely often, but not
necessarily continuously. Saturation goes further: If a rule is ever enabled, it will certainly
be chosen at a later point. Saturation may seem too strong for the task at hand; however, in
the presence of Persistence, the notions of fairness, justice, and saturation all coincide.

In addition, we assume a function herbrand : sequent→ step stream→ structure that
maps countermodel paths to actual countermodels:

Herbrandness: ∀s steps. countermodelPath s steps⇒ herbrand s steps 6|= s

A countermodel path provides an argument against provability. That this argument fully
complements provability is essentially the content of the completeness theorem in its ab-
stract form:

Lemma 12 Assume the rule system fulfills Availability and Persistence. Then every sequent
admits a proof or a countermodel path. Formally:

∀s. (∃T. proof T s) ∨ (∃steps. countermodelPath s steps)

Proof The proof uses the following combinators:

– stake : α stream→ nat→ α list maps ρ and n to the list of the first n elements of ρ;
– smap : (α→ β)→ α stream→ β stream maps f to every element of the stream;
– nats : nat stream denotes the stream of natural numbers: 0 ·1 ·2 ·3 · . . . ;
– flat : (α list) stream→ α stream maps a stream of finite nonempty lists to the stream

obtained by concatenating those lists;
– sdropWhile : (α→ bool)→ α stream→ α stream removes the maximal prefix of ele-

ments that fulfill a given predicate from a given stream (or returns an irrelevant default
value if the predicate holds for all elements of the stream).

We start by constructing a stream of rules fenum in a fair fashion, so that every rule oc-
curs infinitely often in fenum. Let enum be a stream such that its elements cover the entire set
rule (which is required to be countable). Take fenum= flat (smap (stake enum) (stail nats)).
Thus, if enum= r1 · r2 · r3 · . . . , then fenum= r1 · r1 · r2 · r1 · r2 · r3 ·

Let s be a sequent. Using fenum, we build a derivation tree T0 labeled with s such that
all its infinite paths are saturated. Let fair be the subset of rule stream consisting of the fair
streams. Clearly, any suffix of an element in fair also belongs to fair. In particular, fenum and
all its suffixes belong to fair. Given ρ∈ fair and s∈ sequent, sdropWhile (λr. ¬ enabled r s) ρ
has the form SCons r ρ′, making r the first enabled rule in ρ. Such a rule exists because, by
Availability, at least one rule is enabled in s and, by fairness, all the rules occur in ρ. Since
enabled r s, we can pick a sequent set ss such that eff r s ss. We define mkTree : fair→
sequent→ dtree corecursively as mkTree ρ s = Node (s, r) (image (mkTree ρ′) ss).

We prove that, for all ρ ∈ fair and s, the derivation tree mkTree ρ s is well formed and
all its infinite paths are saturated. Wellformedness is obvious because at each point the con-
tinuation is built starting with the effect of a rule. For saturation, we show that if rule r is
enabled at sequent s and ipath (mkTree ρ s) steps, then r appears along steps (i.e., there ex-
ists a sequent s′ such that (s′, r) is in steps). This follows by induction on the position of
r in ρ, pos r ρ—formally, the length of the shortest list ρ0 such that ρ = ρ0 @ SCons r _,
where @ denotes concatenation. Let r′ be the first rule from ρ enabled at sequent s. If r = r′,

14 J. C. Blanchette et al.

then mkTree ρ s has label (s, r) already. Otherwise, ρ has the form ρ1 @ [r′]@ ρ′, with r
not in ρ1, hence pos r ρ′ < pos r ρ. From the definitions of ipath and mkTree, it follows
that ipath (mkTree ρ′ s′) (stail steps) holds for some s′ ∈ ss such that eff r s′ ss. By the in-
duction hypothesis, r appears along stail steps, hence along steps as desired. In particular,
T0 =mkTree fenum s is well formed and all its infinite paths are saturated.

Finally, if T0 is finite, it is the desired proof of s. Otherwise, by Lemma 5 (König)
it has an infinite path. This path is necessarily saturated; by Lemma 7, it is the desired
countermodel path. ut

Lemma 12 captures the abstract essence of arguments from the literature, although this is
sometimes hard to grasp under the thick forest of syntactic details and concrete strategies for
fair enumeration: A fair tree is constructed, which attempts a proof; in case of failure, the tree
exhibits a saturated escape path. By Herbrandness, we immediately obtain completeness:

Theorem 13 Assume the rule system that fulfills Availability, Persistence, and Herbrand-
ness. Then every sequent that is satisfied by all structures admits a proof:

∀s. |= s ⇒ (∃T. proof T s)

Proof Given s such that |= s, assume by absurdity that there exists no T such that proof T s.
By Lemma 12, we obtain steps such that countermodelPath s steps. Then, by Herbrandness,
we have herbrand s steps 6|= s, which contradicts |= s. ut

Remark 14 If we are not interested in witnessing the proof attempt closely, Lemma 12 can
be established more directly by building the fair path without going through an intermediate
fair tree. The key observation is that if a sequent s has no proof and eff r s ss, there must
exist a sequent s′ ∈ ss that has no proof. (Otherwise, we could compose the proofs of all s′

into a proof of s by applying rule r.) Let pick r s ss denote such an s′. We proceed directly to
the construction of a saturated escape path as a corecursive predicate mkPath : fair→ {s ∈
sequent. s has no proof} → step stream following the same idea as for the previous tree
construction (function mkTree): mkPath ρ s = SCons (s, r) (mkPath ρ′ (pick r s ss)), where
again SCons r ρ′ = sdropWhile (λr. ¬ enabled r s) ρ and ss is such that eff r s ss. Fairness of
mkPath ρ s follows by a similar argument as before for fairness of the tree.

3.10 Omitting the Availability Assumption

The abstract completeness result (Lemma 12) assumes Availability and Persistence. Among
these assumptions, Persistence is essential: It ensures that the constructed fair path is satu-
rated, meaning that every rule available at any point is eventually applied. Availability can be
added later to the system without affecting its behavior by introducing a special “idle” rule.

Lemma 15 A rule system R = (sequent, rule, eff) that fulfills Persistence can be trans-
formed into an equivalent rule system Ridle = (sequent, ruleidle, effidle) that fulfills both Per-
sistence and Availability, with ruleidle = rule ∪ {IDLE} and effidle behaving like eff on rule
and effidle IDLE s ss ⇐⇒ ss = {s}.

Proof Availability for the modified system follows from the continuous enabledness of
IDLE. Persistence follows from the Persistence of the original system together with the prop-
erty that IDLE is continuously enabled and does not alter the sequent. The modified system
is equivalent to the original one because IDLE does not alter the sequent. ut

Soundness and Completeness Proofs by Coinductive Methods 15

Now we can rephrase Theorem 13 in the context where we only assume Persistence and
a slight variation of the Herbrandness condition, where all the concepts refer as before to the
rule system R, except for countermodelPathidle which refers to Ridle:

Herbrandnessidle: ∀s steps. countermodelPathidle s steps⇒ herbrand s steps 6|= s

Theorem 16 Assume the rule system R fulfills Persistence and Herbrandnessidle. Then ev-
ery sequent that has a proof in R is satisfied by all structures.

Proof We first apply Lemma 12 to the system Ridle to obtain that every sequent admits either
a proof or a countermodel path, both in this system. And since R and Ridle are equivalent,
any proof of Ridle yields one of R. Conversely, any proof of Ridle can be transformed into a
proof of R by omitting all applications of IDLE. We thus proved that every sequent admits
a proof over R or a countermodel path over Ridle. It remains to apply Herbrandnessidle, just
like we did with Herbrandness for Theorem 16. ut

Remark 17 The addition of IDLE is inspired by, and similarly motivated as, that of idle
transitions to Kripke structures in the context of temporal logic, where it is technically con-
venient to consider only infinite paths.

4 Concrete Instances of Soundness and Completeness

The abstract soundness is based on the Local Soundness assumption, which is easy to verify
for all the considered instances—therefore, below we focus on completeness.

4.1 Classical First-Order Logic

The abstract completeness proof is parameterized by a rule system. This section concretizes
the result for the Gentzen system from Section 2.1 to derive the standard completeness
theorem. Example 2 recast it as a rule system; we must verify that it fulfills the Persistence
and Herbrandness conditions.

The Gentzen rules are syntax-directed in that they operate on formulas having specific
connectives or quantifiers at the top. This is what guarantees Persistence. For example, an
application of AXa (which affects only the atom a) leaves any potential enabledness of
ALLLx,ϕ,t (which affects only formulas with All at the top) unchanged, and vice versa; more-
over, AXa does not overlap with AXb for a 6= b. A minor subtlety concerns ALLRx,ϕ, which
requires the existence of a fresh y in order to be enabled. The Persistence proof goes through
because the sequents are finite, so we can always find a fresh variable in the countably infi-
nite set var. On the other hand, Availability does not hold for the proof system; for example,
the sequent p(x) B q(x) has no enabled rule. Hence, we need Theorem 16 and its IDLE rule.

To infer the standard completeness theorem from Theorem 16, it suffices to define a
suitable function herbrand. Let steps be a countermodel path for Γ B ∆ (i.e., a saturated
escape path with Γ B ∆ as the first sequent). Let Γ̃ be the union of the left-hand sides
of sequents occurring in σ, and let ∆̃ be the union of the corresponding right-hand sides.
Clearly, Γ⊆ Γ̃ and ∆⊆ ∆̃.

We define herbrand (Γ B ∆) steps to be S = (S, F, P), where

– S is the set of terms, term;
– for each n-ary f and p and each t1, . . . , tn ∈ S:

16 J. C. Blanchette et al.

– Ff (t1, . . . , tn) = f (t1, . . . , tn);
– Pp (t1, . . . , tn) ⇐⇒ p(t1, . . . , tn) ∈ Γ̃.

Lemma 18 herbrand (Γ B ∆) steps is a countermodel for Γ B ∆, in that there exists a val-
uation ξ : var→ S such that S 6|=ξ Γ B ∆.

Proof First, the pair (Γ̃, ∆̃) from the definition of herbrand can be shown to be well behaved
with respect to all the connectives and quantifiers in the following sense:

1. For all atoms a, Atm a /∈ Γ̃ ∩ ∆̃.
2. If Neg ϕ ∈ Γ̃, then ϕ ∈ ∆̃.
3. If Neg ϕ ∈ ∆̃, then ϕ ∈ Γ̃.
4. If Conj ϕ ψ ∈ Γ̃, then ϕ ∈ Γ̃ and ψ ∈ Γ̃.
5. If Conj ϕ ψ ∈ ∆̃, then ϕ ∈ ∆̃ or ψ ∈ ∆̃.
6. If All x ϕ ∈ Γ̃, then ϕ[t/x] ∈ Γ̃ for all t.
7. If All x ϕ ∈ ∆̃, there exists a variable y such that ϕ[y/x] ∈ ∆̃.

A pair (Γ̃, ∆̃) satisfying these properties is sometimes called a Hintikka set [1, 19]. These
properties follow from the saturation ofσwith respect to the corresponding rules. The proofs
are routine. For example:

1. If Atm a ∈ Γ̃ ∩ ∆̃, the rule AXa is enabled in σ and hence, by saturation, it is eventually
taken. This is impossible since this is a rule without premises, whose application would
prevent the continuation of the infinite sequence σ.

6. If All x ϕ ∈ Γ̃ and t is a term, ALLLx,ϕ,t is enabled in σ and hence eventually taken,
ensuring that ϕ[t/x] ∈ Γ̃.

Let ξ be the embedding of variables into terms. To prove S 6|=ξ ΓB ∆, it suffices to show
that ∀ϕ∈ Γ̃. S |=ξ ϕ and ∀ϕ∈ ∆̃. S 6|=ξ ϕ. These two facts follow together by induction on
the depth of ϕ. In the base case, if Atm a ∈ Γ̃, then S |=ξ Atm a follows directly from
the definition of S ; moreover, if Atm a ∈ ∆̃, then by property 1 Atm a 6∈ Γ̃, hence again
S 6|=ξ Atm a follows from the definition of S. The only nontrivial inductive case is All,
which requires Lemma 19. Assume All x ϕ ∈ Γ̃. By property 6, we have ϕ[t/x] ∈ Γ̃ for any t.
Hence, by the induction hypothesis, S |=ξ ϕ[t/x]. By Lemma 19, S |=ξ[x←t] ϕ for all t; that
is, S |=ξ All x ϕ. The second fact, concerning ∆̃, follows similarly from property 7. ut

Above, we used the substitution lemma, which relates the notions of satisfaction and
substitution:

Lemma 19 S |=ξ ϕ[t/x] iff S |=ξ[x← JtKS
ξ] ϕ.

We have thus obtained:

Corollary 20 A sequent is provable by a (finite) proof in the Gentzen system of classical
FOL iff it is satisfied by all FOL structures.

Remark 21 The rule ALLL stores, in the left context, a copy of the universal formula All x ϕ
when applied backward. This is crucial for concrete completeness since a fair enumeration
should try all the t instances of the universally quantified variable x, which requires Avail-
ability of All x ϕ even after its use. If we labeled ALLL as ALLLx,ϕ instead of ALLLx,ϕ,t,
thereby delegating the choice of t to the nondeterminism of eff, the system would still be per-
sistent as required by the abstract completeness proof, but Lemma 18 (and hence concrete
completeness) would not hold—property 6 from the lemma’s proof would fail.

Soundness and Completeness Proofs by Coinductive Methods 17

4.2 Further Instances

Theorem 16 is applicable to classical FOL Gentzen systems from the literature, in several
variants: with sequent components represented as lists, multisets or sets, one-sided or two-
sided, and so on. This includes the systems G′, GCNF′, G, and G= from Gallier [19] and
the systems G1, G2, G3, GS1, GS2, and GS3 from Troelstra and Schwichtenberg [47].
Persistence is easy to check. The syntax-independent part of the argument is provided by
Theorem 16, while an ad hoc step analogous to Lemma 18 is required to build a concrete
countermodel from a countermodel path to complete the proof.

Several FOL refutation systems based on tableaux or resolution are instances of the ab-
stract theorem, providing that we read the abstract notion of “proof” as “refutation” and
“countermodel” as “model.” Nondestructive tableaux [23]—including those presented in
Bell and Machover [1] and in Fitting [17]—are usually persistent when regarded as deriva-
tion systems. After an application of Theorem 16, the ad hoc argument for interpreting the
abstract model is similar to that for Gentzen systems (Lemma 18).

Regrettably, abstract completeness is not directly applicable beyond classical logic. It is
generally not clear how to extract a specific model from a nonstandard logic from an abstract
(proof-theoretic) model. Another issue is that standard sequent systems for nonclassical
variations of FOL such as modal or intuitionistic logics do not satisfy Persistence. A typical
right rule for the modal operator � (“must”) is as follows [47]:

� Γ B ♦ ∆, ϕ
MUSTR

� Γ B ♦ ∆,� ϕ

To be applicable, the rule requires that all the formulas in the context surrounding the
eigenformula have � or ♦ at the top. Other rules may remove these operators, or introduce
formulas that do not have them, thus disabling MUSTR.

Recent work targeted at simplifying completeness arguments [34] organizes modal log-
ics as labeled transition systems, for which Kripke completeness is derived. (The technique
also applies to the completeness of intuitionistic logic with respect to Kripke semantics.) In
the proposed systems, the above rule becomes

Γ, w R w′ B ∆, w′ : ϕ MUSTR′
(w′ fresh)Γ B ∆, w :� ϕ

The use of labels for worlds (w,w′) and the bookkeeping of the accessibility relation R
makes it possible to recast the rule so that either no facts (as above) or only resilient facts
are ever assumed about the surrounding context. The resulting proof system satisfies Per-
sistence, enabling Theorem 16. The Kripke countermodel construction is roughly as for
classical FOL Gentzen systems.

5 Abstract Infinite-Proof Soundness

In the previous sections, completeness is established by analyzing the interplay between the
existence of finite proof trees (representing valid proofs) and certain infinite proof trees (used
to produce countermodels).

In this section, we look into when can infinite proof trees be accepted as valid proofs.
In this process, we give a coinductive account of the abstract development of Brotherston

18 J. C. Blanchette et al.

ODD0
even(0) B odd(Suc(0))

Link L
SUBSTy,x

even(y) B odd(Suc(y))
ODDSuc

even(y) B odd(Suc(Suc(Suc(y))))
EVENsplit

L :: even(x) B odd(Suc(x))

Fig. 4 A cyclic proof tree

ODD0
even(0) B odd(Suc(0))

...

even(x) B odd(Suc(x))
SUBSTy,x

even(y) B odd(Suc(y))
ODDSuc

even(y) B odd(Suc(Suc(Suc(y))))
EVENsplit

even(x) B odd(Suc(x))

Fig. 5 The infinite proof tree corresponding to the cyclic proof tree of Figure 4

et al. [14], slightly more general since we work with arbitrary infinite proofs and not just
cyclic proofs.

We first recall some motivation and intuition about cyclic proofs, in the context of the
IFOL logic from Section 2.2. It is clear that the rules of the IFOL Gentzen are (locally)
sound for inductive structures. Hence, any finite proof tree built using these rules represents
a valid proof, in that its root sequent is known to be satisfied by all inductive structures. On
the other hand, for the language of Example 1 from Section 2.2, consider the cyclic tree of
Figure 4, where one of the leaves is not an axiom, but rather a link L “back” to the root of
the tree (decorated with L). A cyclic proof indicates that, when L is reached, the (backward)
proof continues with the sequent that L points to. Thus, the intended proof corresponding to
the cyclic tree from Figure 4 is the infinite tree from Figure 5. We first cover infinite proof
trees in general and then come back to cyclic proof trees.

5.1 Soundness of Infinite Proof Trees

As before, we fix the countable sets sequent and rule for sequents and rules, the class
structure, and the satisfaction relation |= : structure→ sequent→ bool, writing |= s for
∀S ∈ structure. S |= s. In addition, we fix the following:

– a set marker of items called markers;
– a marking function δ : {(s, r, s′) ∈ sequent× rule× sequent | ∃ss. eff s r ss ∧ s′ ∈ ss} →

(marker×bool×marker) set;
– an ordinal ord, with < and ≤ denoting its strict and nonstrict order relations;
– a height function σ : marker× structure→ ord.

The marking function associates a set of triples (M, b,M′) with every backward application
(s, r, s′) of every rule. In (s, r, s′), the rule r is thought of as being applied to s and then one
of the resulting sequents, s′, being chosen. In (M, b,M′), the Boolean value b being False
means “stay” and b being True means “decrease.” The “stay” and “decrease” directives refer
to how the hight function σ should evolve along this rule application: Given a sequent s, a
countermodel S for it and a rule r that yields a set of sequents ss when applied to s, there
should exist a sequent s′ ∈ ss and a countermodel S ′ of s′ such that, for all (M, b,M′) ∈
δ (s, r, s′), when moving from (M, S) to (M′, S ′):

Soundness and Completeness Proofs by Coinductive Methods 19

– the height should at least stay the same (or decrease) when b says “stay”;
– the height should decrease when b says “decrease.”

Formally, we postulate the following condition:

Descent: For all S and s such that S 6|= s and all r, ss such that eff s r ss, there exist
S ′ and s′ ∈ ss such that S ′ 6|= s′ and descent (s, S) r (s′, S ′).

Above, descent : sequent× structure→ rule→ sequent× structure→ bool is the following
predicate:

descent (s, S) r (s′, S ′) ⇐⇒
(∀M b M′. (M, b,M′) ∈ δ (s, r, s′) ⇒

(b = False ∧ σ (M′, S ′)≤ σ (M, S)) ∨ (b = True ∧ σ (M′, S ′) < σ (M, S)))

Remark 22 The Descent condition is a strengthening of the Local Soundness condition
from Section 3.5: Removing the “and descent (s, S) r (s′, S ′)” part yields the contrapositive
of Local Soundness. Essentially, Descent is a form of Local Soundness with the additional
requirement that the marking function’s directives must be respected.

Under the Descent assumption, one can identify certain “good” infinite proof trees,
which can be accepted as valid proofs along with the finite ones. First, we need the notion
of a stream of Booleans and a stream of markers following an infinite path. The predicate
follow : bool stream→marker stream→ step stream→ bool is defined coinductively:

(M, b, shead Ms) ∈ δ (s, r, fst (shead steps)) follow bs Ms steps
FOLLOW

follow (SCons b bs) (SCons M Ms) (SCons (s, r) steps)

Thus, follow bs Ms steps states that, for any consecutive steps (s, r), (s′, _) in steps, the
corresponding markers M,M′ in Ms and the Boolean corresponding to the first of these, b
in bs, have the property that (M, b,M′) ∈ δ (s, r, s′); in other words, the streams bs and Ms
represent choices of the sets of markers for steps.

We define a tree to be good if each of its infinite paths have some streams of Booleans
and markers that eventually follow it (i.e., follow a suffix of it), in such a way that the
Booleans indicate infinite decrease:

goodT⇐⇒ (∀steps. ipathT steps⇒ ev (λsteps′.∃bs Ms. follow bs Ms steps′∧ infDecr bs) steps)

where the infinite decrease of a Boolean stream simply means True (“decrease”) occurring
infinitely often:

infDecr= alw (ev (λ bs. shead bs = True))

A (potentially) infinite proof of a sequent, or iproof, is then defined as a good, well-formed
tree having that sequent at the root:

iproof T s ⇐⇒ wf T ∧ good T ∧ fst (lab T) = s

Since finite trees (have no infinite paths and hence) are trivially good, (finite) proofs are
particular cases of iproofs. Our goal is to show that iproofs are also sound:

Theorem 23 Assume the rule system fulfills Descent. Then every sequent that has an iproof
is satisfied by all structures:

∀s. (∃T. iproof T s) ⇒ |= s

20 J. C. Blanchette et al.

Proof Fix s and T such that iproof T s and assume by absurdity that 6|= s, meaning there
exists S such that S 6|= s. To obtain a contradiction, we proceed as follows:

1. Applying Lemma 6 (Section 3.6) for α= structure, I = λ(s, S). S 6|= s and P = descent
to the Descent assumption, we obtain a stream stepSs of step–structure pairs (i.e., of
sequent–rule–structure triples) ((s, r), S), such that, at each point in the stream, the struc-
ture S is a countermodel for the sequent s and descent holds for any two consecutive
elements. Formally, we have alwCmodDesc stepSs (“always countermodel and descend-
ing”), where alwCmodDesc is defined as

alw (λstepSs. let ((s, r), S) = shead stepSs and ((s′, _), S′) = shead (stail stepSs)
in S 6|= s ∧ descent (s, S) r (s′, S′))

and the step components of stepSs form an infinite path in T : ipath T (smap fst stepSs).
2. Using the goodness of T , we obtain the streams bs and Ms that follow a suffix steps′ of

smap fst stepSs:

∃steps′ steps′′ bs Ms. smap fst stepSs = steps′′@ steps′ ∧ follow bs Ms steps′ ∧ infDecr bs

where @ denotes concatenation of a list and a stream.
3. Taking the suffix stepSs′ of stepSs that corresponds to the suffix steps′ of its step com-

ponent smap fst stepSs (formally, defining stepSs′ to be stake (length steps′) stepSs), we
end up with the streams stepSs′, bs and Ms such that

– follow bs Ms (smap fst stepSs′);
– infDecr bs;
– alwCmodDesc stepSs′ (because alw is invariant under suffix).

4. Let zip denote the pair-zipping of two streams, defined by primitive corecursion as
zip (SCons x xs) (SCons y ys) = SCons (x, y) (zip xs ys). Taking ks = smapσ (zip (smap
fst stepSs′) Ms) (which is a stream of ord elements), we have that ks satisfies the follow-
ing properties:

– It is always nonstrictly decreasing: alw (λks′. shead ks′ ≥ shead (stail ks′)) ks.
– It is infinitely often strictly decreasing: alw (ev (λks′. shead (stail ks′)> shead ks′)) ks.

This follows easily by conduction using the gathered properties for stepSs′, bs, and Ms.
5. From ks, we obtain the substream ks′ that is always strictly decreasing:

alw (λks′. shead ks′ > shead (stail ks′)) ks

which is in contradiction with the well-foundness of the order < on the ordinal ord. ut

One detail not explained in the above proof is the construction of ks′, a stream of strictly
decreasing items, from ks, a stream of nonstrictly decreasing but always eventually strictly
decreasing items. Informally, if ks has the form k0 · k1 · . . . with k0 = k1 = · · ·= kn > kn+1 =
kn+2 = · · ·= kn+m > kn+m+1 = · · ·, then ks′ will be k0 ·kn+1 ·kn+m+1 · . . . ; that is, ks′ will only
contain the “jump” elements. Formally, this construction can be compactly described as
ks′ = bfilter (>, ks), where > : ord→ ord→ bool is the dual strict order on ord. The general-
purpose polymorphic “binary filter” combinator, bfilter : Dα→ α stream, has as domain the
subset Dα of (α→ bool)×α consisting of pairs (P, xs) such that, for every element x in xs,
there exists a later element y in xs such that P x y:

Dα = {(P, xs) | alw (λxs′. ev (λxs′′. P (shead xs′) (shead xs′′)) (stail xs′)) xs}

Soundness and Completeness Proofs by Coinductive Methods 21

The bfilter function is defined as follows, where for readability we write bfilterP instead of
bfilter (P, _):

bfilterP xs = (if P (shead xs) (shead (stail xs))
then SCons (shead xs) (bfilterP (stail xs))
else bfilterP (SCons (shead xs) (stail (stail xs)))

Thus, bfilterP collects from a stream all the pairs of elements proximally related by P and
forms a new stream with them. Note that its definition is neither purely recursive nor purely
corecursive. Whereas the call on the then branch is corecursive (showing how to produce
the first element in the result stream, shead xs), the call on the else branch does not exhibit
any explicit productivity. However, the overall function is well-defined (and indeed produc-
tive) because, thanks to the choice of the domain, at each point there will only be a finite
number of consecutive calls on the else branch, just until the encountered element will be in
relation P with shead xs. In summary, the recursive call on the else branch concurs with the
corecursive call on the then branch for the well-definedness of this function.

Thanks to recent infrastructure development [10], Isabelle is willing to accept this mixed
recursive–corecursive definition, in the face of evidence for the terminating recursiveness of
the else branch calls: If (P, xs) ∈ Dα, then in particular ev (λxs′′. P (shead xs) (shead xs′′))
holds for stail xs; hence, if we write xs′ for the input to the recursive call, SCons (shead xs)
(stail (stail xs)), we have that shead xs′ = shead xs and stail xs′ = stail (stail xs). Hence:

numP (shead xs′) (stail xs′) = numP (shead xs) (stail (stail xs)) < numP (shead xs) (stail xs)

where numP z ys is the number of elements that need to be consumed from ys before reaching
some y such that P z y. The use of such sophisticated corecursive machinery for this not so
complex example may seem excessive. But note that bfilter is a general-purpose combinator,
defined once and usable for arbitrary predicates P.

For the above example, namely, P = > and k0 = k1 = . . . = kn > kn+1 = kn+2 = . . . =
kn+m > kn+m+1 = . . . , the execution of bfilter proceeds as follows:

bfilterP (k0 · k1 · . . . · kn · kn+1 · kn+2 · . . . · kn+m · kn+m+1 · . . .)
= bfilterP (k0 · k2 · . . . · kn · kn+1 · kn+2 · . . . · kn+m · kn+m+1 · . . .)...
= bfilterP (k0 · kn+1 · kn+2 · . . . · kn+m · kn+m+1 · . . .)
= k0 ·bfilterP (kn+1 · kn+2 · . . . · kn+m · kn+m+1 · . . .)...
= k0 ·bfilterP (kn+1 · kn+m · kn+m+1 · . . .)
= k0 · kn+1 ·bfilterP (kn+m+1 · . . .)...

5.2 From Cyclic Trees to Infinite Trees

Having the general result for the soundness of infinite trees in place, let us come back to the
notion of cyclic tree, which formed our original motivation. In addition to the sets sequent
and rule, we assume a set link of links. The set of cyclic derivation trees is introduced as a
datatype:

datatype cdtree = Node α ((α cdtree) fset)
| Link link

22 J. C. Blanchette et al.

Thus, there are two differences between the derivation trees we used so far (dtree) and
the cyclic derivation trees: the latter are restricted to be finite and are allowed to have, in
addition to usual nodes, also links to other cyclic derivation trees. To animate the links, we
fix a function pointsTo : link→ cdtree (showing, for each link, where it points to), for which
we assume the following property:

Good Links: The target of pointsTo is never a link: ∀L L′. pointsTo L 6= Link L′.

Each cyclic derivation tree T yields a derivation tree treeOf T as follows: T is traversed
as if recursively producing treeOf T by the application of the same rules, and when reaching
a Link L one moves to the pointed cyclic tree pointsTo L. Because pointsTo L can be arbi-
trarily large (in particular, larger than T), the definition of treeOf : cdtree→ dtree cannot
proceed recursively on the domain, cdtree. However, it can naturally proceed corecursively
on the codomain, dtree:

treeOf (Node (s, r) Ts) = Node (s, r) (fimage treeOf Ts)
treeOf (Link L) = treeOf (pointsTo L)

Strictly speaking, the definition is not purely corecursive: In the Link case, it is not apparent
what is the first layer of the result tree. However, since treeOf (pointsTo L) is guaranteed to
not have the form Link L′, hence start with the Node constructor, we know that after exactly
two calls we reach the Node case—so Isabelle has no problem accepting this definition,
again as a particular case of recursion–corecursion mixture.

The root sequent of a cyclic derivation tree, seqOf : cdtree→ sequent, is defined as
expected, following the link when necessary:

seqOf (Node (s, r) Ts) = (s, r)
seqOf (Link L) = seqOf (pointsTo L)

Even though cyclic derivation trees are finite entities, they can exhibit infinite behavior
through the links. Therefore, we must define their wellformedness cwf : cdtree→ bool not
inductively, but coinductively, by the following rules:

eff r s (image seqOf Ts) ∀T ∈Ts. cwf T
CWF-NODE

cwf (Node (s, r) Ts)

cwf (pointsTo L)
CWF-LINK

cwf (Link L)

The CWF-NODE rule is essentially the same as for derivation trees, whereas CWF-LINK

asks the trees pointed by links to be well-formed as well.
Now we can define the notion of being a cyclic proof for a sequent:

cproof T s ⇐⇒ cwf T ∧ good (treeOf L) ∧ seqOf T = s

Goodness being a property stated in terms of infinite traces, it naturally belongs to the (in-
finite) derivation tree of a cyclic derivation tree. It is easy to see that the root sequence of
a cyclic tree T is the same as its generated derivation tree treeOf T , and to prove by induc-
tion that wellformedness of T implies wellformedness of treeOf T . With Theorem 23, this
immediately gives our desired soundness theorem for cyclic derivation trees:

Theorem 24 Assume the rule system fulfills Descent and the function pointsTo fulfills
Good Links. Then every sequent that has a cyclic proof is satisfied by all structures:

∀s. (∃T. cproof T s) ⇒ |= s

Soundness and Completeness Proofs by Coinductive Methods 23

6 Concrete Instances of Infinite-Proof Soundness

Here we consider instances of the abstract development establishing soundness of infinite
proofs. We discuss in detail our running example, FOL with inductive definitions. Then we
briefly mention other possible instances.

6.1 First-Order Logic with Inductive Predicates

We consider IFOL from Section 2.2 and its associated Gentzen system. The abstract struc-
tures (elements of the set structure) are not instantiated to mere concrete structures, but
rather to pairs (S , ξ) where S =

(
S, (Ff) f ∈ fsym, (Pp)p∈psym

)
is a structure and ξ : var→

S is a variable valuation. We instantiate the satisfaction relation, (S , ξ) |= ϕ, to S |=ξ ϕ.
To instantiate Theorems 23 and 24, we must define the notion of marker (forming the

set marker), the ordinal ord, and the functions δ : {(s, r, s′) ∈ sequent× rule× sequent |
∃ss. eff s r ss ∧ s′ ∈ ss} → (marker× bool×marker) set and σ : marker× structure→ ord
and verify the Descent property for them.

We take marker to be the set of inductive predicate atoms: {p(t) | p ∈ ipsym}. When
defining δ on (s, r, s′), we distinguish three cases:

– r is any rule not having the form SUBSTt,x or psplit. Then, assuming s = (Γ B ∆), we set

δ (s, r, s′) = {(M,False,M) | M ∈marker ∩ Γ}

– r has the form SUBSTt,x. Then s has the form Γ[t/x] B ∆[t/x], and we set

δ (s, r, s′) = {(M[t/x],False,M) | M ∈marker ∩ Γ}

– r has the form psplit for some p ∈ ipsym. Then s has the form Γ, p (x) B ∆ and s′ has the
form Γ[t/x], prems(χ′) B ∆[t/x] for some χ ∈ indp. We set

δ (s, r, s′) = {(M,False,M[t/x]) | M ∈marker ∩ Γ} ∪
{(p(x),True, ψ) | ψ ∈marker ∩ prems(χ′)}

We take ord to be nat, the set of natural numbers ordered by the natural order.2 Let
S =

(
S, (Ff) f ∈ fsym, (Pp)p∈psym

)
be a fixed inductive structure. We define the family of

interpretations (Pp,n : S ar p→ S)p∈ipsym,n∈nat recursively as follows:

– Pp,0 a ⇐⇒ False;
– Pp,n+1 a ⇐⇒ Pp,n a ∨ (∃χ ∈ indp. ∃ξ. a = ξ (varsOf(concl(χ))) ∧ Sn |=ξ prems(χ)),

where Sn =
(
S, (Ff) f ∈ fsym, (Pp,n)p∈psym

)
and varsOf(concl(χ)) is the tuple x appear-

ing in the conclusion p(x) of χ.

The above predicates are nothing but the finitary approximations of the predicates (Pp :
S ar p→ S)p∈ipsym. Thanks to the inductiveness of S , it is well-known that the approxima-
tions converge to their target:

Lemma 25 ∀p ∈ ipsym. ∀a ∈ S ar p. Pp a = (∃n. Pp,n a).

We are now ready to define σ (M, (S , ξ)). We distinguish two cases:

2 This is acceptable here, since we employ finitary Horn clauses and the language is countable. Different
assumptions may require larger ordinals.

24 J. C. Blanchette et al.

– Assume S |=ξ M, and assume M has the form p(t) with p ∈ ipsym. Then we have
Pp(JtKS

ξ). We set σ (M, (S , ξ)) to be the smallest n such that Pp,n(JtKS
ξ) (which exists

by Lemma 25).
– Assume S 6|=ξ M. Then the return result of σ (M, (S , ξ)) is irrelevant (we can put

anything here).

Finally, we verify the Descent condition. Let (S , ξ) and s be such that S 6|=ξ s, and let
r and ss be such that eff s r ss. We need to provide s′ ∈ ss and (S ′, ξ′) such that S ′ 6|=ξ′ s′

and descent (s, (S , ξ)) r (s′, (S ′, ξ′)) holds. We will actually take S ′ to be S , so we only
need to provide s′ and ξ′.

We split the discussion into cases, according to the definition of δ:

– r is any rule not having the form SUBSTt,x or psplit. We further distinguish some sub-
cases:

– r is AX. This is impossible, since AX is sound for all (inductive) structures, which
contradicts our hypothesis S 6|=ξ s.

– r is a single-premise rule involving no freshness side condition, i.e., is one of NEGL,
NEGR, CONJR, ALLL and pχ. Then we take s′ to be the single premise and ξ′ = ξ.

– r is CONJL. Then we take ξ′ = ξ and s′ to be one of the two premises, say, si, such
that S 6|=ξ si (which is known to exist by the soundness of CONJL).

– r is ALLR. Then s = (Γ B ∆, All x ϕ), and we take s′ to be the only premise of
r, namely, s′ = Γ B ∆, ϕ[y/x], where y is known to be fresh. Since S 6|=ξ All x ϕ,
we obtain a ∈ S such that S 6|=ξ[x←a] ϕ; by the freshness of y, this also implies
S 6|=ξ[y←a] ϕ[y/x]. We take ξ′ = ξ[y← a].

– r has the form SUBSTt,x. Then s has the form Γ[t/x] B ∆[t/x]. We take ξ′ = ξ[x← JtKS
ξ]

and s to be the only premise of r.
– r has the form psplit for some p ∈ ipsym. Then s has the form Γ, p (x) B ∆. Since

S |=ξ p (x), we have Pp (ξ x), and let m be the least number such that Pp,m (ξ x). By
the definition of Pp,_, we have that m has the form n+1 and there exist χ ∈ indp and the
valuation ξ′′ such that ξ x = ξ′′ x and Sn |=ξ′′ prems(χ′).3 We take s′ to be the premise
of r corresponding to χ, namely s′ = (Γ[t/x], prems(χ′) B ∆[t/x]). Finally, we define ξ′

as follows:

ξ′ z =


ξ z, if z appears free in Γ ∪ ∆

ξ′′ z, if z appears free in prems(χ′)
anything, otherwise

In all cases, it is routine to check (when necessary with the help of the substitution
Lemma 19) that S ′ 6|=ξ′ s′ and descent (s, (S , ξ)) r (s′, (S ′, ξ′)). When checking the latter
for r = psplit, we need to notice the following:

– For all we have M ∈marker ∩ Γ, JM[t/x]KS
ξ′ = JMKS

ξ .
– For all q (t) ∈marker ∩ prems(χ′), n is the smallest number such that Pq,n(JtKS

ξ′).

Corollary 26 Assume that, in the Genzten system of IFOL, a sequent Γ B ∆ either has an
iproof or has a cyclic proof and pointsTo fulfills Good Links. Then Γ B ∆ is satisfied by all
pairs (S , ξ): S |=ξ Γ B ∆. Hence, S |= Γ B ∆.

3 The definition of Pp,_ works with the original clauses χ ∈ indp, whereas here we apply it to the “copies”
χ′ of χ guaranteed to have their variables fresh for Γ and ∆, as stipulated in the psplit rule. This is unprob-
lematic, since it is easy to verify that the definition of Pp,_ is invariant under bijective renaming of variables
in the clauses χ.

Soundness and Completeness Proofs by Coinductive Methods 25

Example 27 The infinite tree T of Figure 5 is an iproof, i.e., is well-formed and satisfies the
goodness predicate. To see the latter, note that the only infinite path in this tree is steps =
((s1, r1) · (s2, r2) · (s3, r3))

ω, where

– s1 = (even(x) B odd(Suc(x))), r1 = EVENsplit;
– s2 = (even(y) B odd(Suc(Suc(Suc(y))))), r2 = ODDSuc;
– s3 = (even(y) B odd(Suc(y))), r3 = SUBSTy,x.

If we let bs = (True ·False ·False)ω and Ms = (even(x) · even(y) · even(y))ω, we have that
follow bs Ms steps. Indeed, bs and Ms “follow” steps from the beginning, since δ (s1, r1, s2)=
{(even(x),True, even(y))}, δ (s2, r2, s3) = {(even(y),False, even(y))}, and δ (s3, r3, s1) =
{(even(y),False, even(x))}.

Moreover, for the cyclic tree T ′ in Figure 4, taking pointsTo L to be T ′, we obtain that
T ′ is a well-formed cyclic proof and treeOf T ′ = T .

For accepting a cyclic or infinite proof in IFOL as a good (and hence valid) proof,
any infinite path should infinitely often apply the split rule to the (persistent) instance of the
same inductive predicate p.4 This can be seen from the fact that a triple (_,True, _), meaning
“decrease,” only appears in the definition of δ for the split rule. In the above example, the
predicate p that ensures goodness along the tree’s sole infinite path is even.

6.2 Other Instances

Variations of Gentzen systems for FOL, as discussed in Section 4.2, can in principle be ex-
tended to IFOL, and the abstract infinite-proof soundness result would apply. Other instances
include extensions of modal logic with inductive definitions. In such logics, the structures
can be viewed as tuples S =

(
(Sw)w∈W , (Ff ,w) f ∈ fsym,w∈W , (Pp,w)p∈psym,w∈W

)
, where W

is a set of “worlds,” perhaps endowed with additional structure (algebraic, order-theoretic,
etc.). The inductiveness condition for predicates can be stated similarly to that of IFOL, but
can also spread across different worlds. (The split rule can be adapted accordingly.)

Separation logic can be regarded as a variation of the above, where the structure carrier
Sw is fixed to some S and the worlds are heaps, i.e., partial functions from a fixed set of
locations to S. (In separation logic terminology, the worlds are the heaps, whereas the valu-
ations ξ are the stacks.) Two such instances are described by Brotherston et al. [14], one for
entailment [13] and one for termination proofs [12].

7 Formalization and Implementation

The definitions, lemmas, and theorems presented in Sections 3 and 5, pertaining to the pre-
sented abstract soundness and completeness results, have been formalized in the proof assis-
tant Isabelle/HOL. The instantiation step of Section 4.1 is formalized for a richer version of
FOL, with sorts and interpreted equality, as required by our motivating application (efficient
encodings of sorts in unsorted FOL [6]). The formal development is publicly available [7,9].

The necessary codatatypes and corecursive definitions are realized using a recently
introduced definitional package [5] for (co)datatypes with support for mutual and nested

4 It is known [14] that goodness is decidable for cyclic trees of logics for which rule application is decid-
able, such as IFOL.

26 J. C. Blanchette et al.

(co)recursion [46] and mixed recursive–corecursive function definitions [10]. The tree co-
datatype illustrates the support for corecursion through permutative data structures (with
non-free constructors) such as finite sets, a feature that is not available in any other proof
assistant. The formalization is close to this article’s presentation, with a few differences
originating from Isabelle’s lack of support for dependent types.

For generating code, we make the additional assumption that the effect relation is de-
terministic, hence corresponds to a partial function eff′ : rule→ sequent→ (sequent fset)
option, where the Isabelle datatype α option enriches a copy of αwith a special value None.5

From this function, we build the relational eff as the partial function’s graph. Isabelle’s code
generator [22] can then produce Haskell code for the computable part of our completeness
proof—the abstract prover mkTree, defined corecursively in the proof of Theorem 13:

data Stream a = SCons a (Stream a)

newtype FSet a = FSet [a]

data Tree a = Node a (FSet (Tree a))

fmap f (FSet xs) = FSet (map f xs)

sdropWhile p (SCons a σ) =

if p a then sdropWhile p σ else SCons a σ

mkTree eff ρ s =

Node (s, r) (fmap (mkTree eff ρ’) (fromJust (eff r s)))

where SCons r ρ’ = sdropWhile (\r -> not (isJust (eff r s))) ρ

Finite sets are represented as lists. The functions isJust : α option→ bool and fromJust :
α option→ α are the Haskell-style discriminator and selector for option. Since the Isabelle
formalization is parametric over rule systems (sequent, rule, eff), the code for mkTree explic-
itly takes eff as a parameter.

Although Isabelle’s code generator was not designed with codatatypes in mind, it is
general enough to handle them. Internally, it reduces Isabelle specifications to higher-order
rewrite systems [32] and generates functional code in Haskell, OCaml, Scala, or Standard
ML. Partial correctness is guaranteed regardless of the target language’s evaluation strat-
egy. However, for the guarantee to be non-vacuous for corecursive definitions, one needs a
language with a lazy evaluation strategy, such as Haskell.

The verified contract of the program reads as follows: Given an available and persistent
rule system (sequent, rule, eff), a fair rule enumeration ρ, and a sequent s representing the
formula to prove, mkTree eff ρ s either yields a finite derivation tree of s or produces an
infinite fair derivation tree whose infinite paths are all countermodel paths. These guarantees
involve only partial correctness of ground term evaluation.

The generated code is a generic countermodel-producing semidecision procedure pa-
rameterized by the the proof system. Moreover, the fair rule enumeration parameter ρ can
be instantiated to various choices that may perform better than the simple scheme described
in Section 3.

8 Related Work

This article joins a series of pearls aimed at reclaiming mathematical concepts and results
for coinductive methods, including streams [40, 44], regular expressions [41, 43], and au-

5 In the proof system from Example 2, eff is not deterministic due to the rule ALLR. It can be made
deterministic by refining the rule with a systematic choice of the fresh variable y.

Soundness and Completeness Proofs by Coinductive Methods 27

tomata [42]. Some developments pass the ultimate test of formalization, usually in Agda
and Coq, the codatatype-aware proof assistants par excellence: the sieve of Eratosthenes [3],
real number basics [15], and temporal logic for red–blue trees [33].

So why write yet formalized manifesto for coinduction and corecursion? First, because
we finally could—with the new codatatype package, Isabelle has caught up with its rivals
in this area, and has even superseded them in some respects: for example, the flexible and
sound mixture of recursion and corecusion allowed in function definitions is unique to Isa-
belle. Second, because, although codatatypes are a good match for the completeness and the
infinite-proof soundness theorems (as we hope to have shown), there seems to be no proof
in the literature that takes advantage of this.

There are many accounts of the completeness theorem for FOL and related logics, in-
cluding Petria’s very abstract account [37] within institution-independent model theory [16].
However, the vast majority of these accounts (including Petria’s) favor the more mathemat-
ical Henkin style, which obfuscates the rich structure of proof and failure. This preference
has a long history. It is positively motivated by the ability to support uncountable languages.
More crucially, it is negatively motivated by the lack of rigor perceived in the alternative:
“geometric” reasoning about infinite trees. Negri [34] gives a revealing account in the con-
text of modal logic, quoting reviews that were favorable to Kripke’s completeness result [29]
but critical of his informal argument based on infinite tableau trees.6 Kaplan [27] remarks
that “although the author extracts a great deal of information from his tableau constructions,
a completely rigorous development along these lines would be extremely tedious.”

A few textbooks venture in a proof-theoretic presentation of completeness, notably Gal-
lier’s [19]. Such a treatment highlights not only the structure, but also the algorithmic content
of the proofs. The price is usually a lack of rigor, in particular a gap between the definition
of derivation trees and its use in the completeness argument. This lack of rigor should not be
taken lightly, as it may lead to serious ambiguities or errors: In the context of a tableau com-
pleteness proof development, Hähnle [23] first performs an implicit transition from finite
to possibly infinite tableaux, and then claims that tableau chain suprema exist by wrongly
invoking Zorn’s lemma [23, Definition 3.16].7

Orthogonally, we wanted to isolate and reuse the abstract core of the argument involv-
ing potentially infinite derivation trees and countermodel paths. Except for syntactic details,
the different accounts are after the same goal, and they reach it in a variety of more or
less colorful, if not noisy, ways; most of them do acknowledge that their approach is sim-
ilar to previous ones, but cannot refer to a given abstract result that addresses this goal.
Consequently, they have to repeat a variation of the same argument. For example, Gallier’s
monograph [19] repeats the argument four times, for logics of increasing complexity: propo-
sitional logic, FOL with no function symbols or equality, FOL with function symbols but
no equality, and finally full FOL containing everything; Bell and Machover [1] employ a
different fair tree generation strategy, to the same effect; for a world-instrumented system
for modal logic, Negri [34] employs yet another strategy.

Unlike the infinite-proof soundness theorem (which represents a newer line of research),
the completeness theorem has been mechanized before in proof assistants. Schlöder and
Koepke, in Mizar [45], formalize a Henkin-style argument for possibly uncountable lan-
guages. Building on an early insight by Krivine [30] concerning the expressibility of the
completeness proof in intuitionistic second-order logic, Ilik [25] analyzes Henkin-style ar-

6 And Kripke’s degree of rigor in this early article is not far from today’s state of the art in proof theory;
see, e.g., Troelstra and Schwichtenberg [47].

7 This is the only error we found in this otherwise excellent chapter on tableaux.

28 J. C. Blanchette et al.

guments for classical and intuitionistic logic with respect to standard and Kripke models and
formalizes them in Coq (without employing codatatypes).

At least three proofs were developed using HOL-based systems. Harrison [24], in HOL
Light, and Berghofer [2], in Isabelle, formalize Henkin-style arguments. Ridge and Mar-
getson [31, 39], in Isabelle, employ proof trees constructed as graphs of nodes that carry
their levels as natural numbers. This last work has the merits of analyzing the computational
content of proofs in the style of Gallier [19] and discussing an OCaml implementation. Our
formalization relates to this work in a similar way to which our presentation relates to Gal-
lier’s: The newly introduced support for codatatypes and corecursion in Isabelle provides
suitable abstraction mechanisms for reasoning about infinite trees, avoiding boilerplate for
tree manipulation based on numeric indexing. Moreover, codatatypes are mapped naturally
to Haskell types, allowing Isabelle’s code generator to produce certified Haskell code. Fi-
nally, our proof is abstract and applies to several variants of FOL and beyond.

9 Conclusion

The completeness theorem is a fundamental result about classical logic. Its proof is pre-
sented in many variants in the literature. Few of these presentations emphasize the algorith-
mic content, and none of them uses codatatypes. Despite the variety of approaches proposed
in textbooks and formalizations, we found them lacking in rigor or readability. Gallier’s
pseudo-Pascal code is inspiring, but we prefer “pseudo-Haskell,” i.e., Isabelle/HOL with
codatatypes, to combine computational intuition and full mathematical rigor.

In our view, coinduction is the key to formulate an account that is both mathematically
rigorous and abundant in algorithmic content. This applies to both of our case studies: classic
completeness and infinite-proof soundness. The definition of the abstract prover mkTree is
stated rigorously, is accessible to functional programmers, and replaces pages of verbose
descriptions.

The advantages of machine-checked metatheory are well known from programming lan-
guage research, where new results are often formalized and proof assistants are used in the
classroom. This article reported on some steps we have taken to apply the same methods to
formal logic and automated reasoning.

Acknowledgment. Tobias Nipkow made this work possible. Mark Summerfield and the
anonymous reviewers suggested many textual improvements to earlier versions of this ar-
ticle. Blanchette was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
project Hardening the Hammer (grant NI 491/14-1). Popescu was partially supported by
the DFG project Security Type Systems and Deduction (grant NI 491/13-2) as part of
the program Reliably Secure Software Systems (RS3, priority program 1496). Traytel was
supported by the DFG program Program and Model Analysis (PUMA, doctorate program
1480). The authors are listed alphabetically.

References

1. Bell, J.L., Machover, M.: A Course in Mathematical Logic. North-Holland (1977)
2. Berghofer, S.: First-order logic according to Fitting. In: G. Klein, T. Nipkow, L. Paulson (eds.) Archive

of Formal Proofs. http://afp.sf.net/entries/FOL-Fitting.shtml (2007)
3. Bertot, Y.: Filters on coinductive streams, an application to Eratosthenes’ sieve. In: P. Urzyczyn (ed.)

TLCA 2005, LNCS, vol. 3461, pp. 102–115. Springer (2005)

http://afp.sf.net/entries/FOL-Fitting.shtml

Soundness and Completeness Proofs by Coinductive Methods 29

4. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic
types. In: N. Piterman, S. Smolka (eds.) TACAS 2013, LNCS, vol. 7795, pp. 493–507. Springer (2013)

5. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular
(co)datatypes for Isabelle/HOL. In: G. Klein, R. Gamboa (eds.) ITP 2014, LNCS. Springer (2014)

6. Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In: P. Fontaine, C. Ringeis-
sen, R.A. Schmidt (eds.) FroCoS 2013, LNCS, vol. 8152, pp. 245–260. Springer (2013)

7. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. In: G. Klein, T. Nipkow, L. Paul-
son (eds.) Archive of Formal Proofs. http://afp.sf.net/entries/Abstract_Completeness.shtml
(2014)

8. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness—A coinductive pearl. In:
S. Demri, D. Kapur, C. Weidenbach (eds.) IJCAR 2014, LNCS, vol. 8562, pp. 46–60. Springer (2014)

9. Blanchette, J.C., Popescu, A., Traytel, D.: Formal development associated with this paper. http://
people.inf.ethz.ch/trayteld/compl-journal-devel.tgz (2015)

10. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: A proof assistant per-
spective. In: K. Fisher, J.H. Reppy (eds.) ICFP 2015, pp. 192–204. ACM (2015)

11. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: B. Beckert (ed.)
TABLEAUX 2005, LNCS, vol. 3702, pp. 78–92. Springer (2005)

12. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in separation logic. In:
POPL, pp. 101–112 (2008)

13. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs in separation logic.
In: CADE, pp. 131–146 (2011)

14. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: R. Jhala, A. Igarashi
(eds.) APLAS, LNCS, vol. 7705, pp. 350–367. Springer (2012)

15. Ciaffaglione, A., Gianantonio, P.D.: A certified, corecursive implementation of exact real numbers.
Theor. Comput. Sci. 351(1), 39–51 (2006)

16. Diaconescu, R.: Institution-independent Model Theory. Birkhauser (2008)
17. Fitting, M.: First-Order Logic and Automated Theorem Proving, Second Edition. Graduate Texts in

Computer Science. Springer (1996)
18. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer (1986)
19. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Computer

Science and Technology. Harper & Row (1986)
20. Gödel, K.: über die vollständigkeit des logikkalküls. Ph.D. thesis, Universität Wien (1929)
21. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher

Order Logic. Cambridge University Press (1993)
22. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: M. Blume,

N. Kobayashi, G. Vidal (eds.) FLOPS 2010, LNCS, vol. 6009, pp. 103–117. Springer (2010)
23. Hähnle, R.: Tableaux and related methods. In: A. Robinson, A. Voronkov (eds.) Handbook of Automated

Reasoning, vol. I, pp. 100–178. Elsevier (2001)
24. Harrison, J.: Formalizing basic first order model theory. In: J. Grundy, M.C. Newey (eds.) TPHOLs ’98,

LNCS, vol. 1479, pp. 153–170. Springer (1998)
25. Ilik, D.: Constructive completeness proofs and delimited control. Ph.D. thesis, École Polytechnique

(2010)
26. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bull. Eur. Assoc. Theor. Comput.

Sci. 62, 222–259 (1997)
27. Kaplan, D.: Review of Kripke (1959) [29]. J. Symb. Log. 31, 120–122 (1966)
28. Kleene, S.C.: Mathematical Logic. John Wiley & Sons (1967)
29. Kripke, S.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)
30. Krivine, J.L.: Une preuve formelle et intuitionniste du théorème de complétude de la logique classique.

Bull. Symb. Log. 2(4), 405–421 (1996)
31. Margetson, J., Ridge, T.: Completeness theorem. In: G. Klein, T. Nipkow, L. Paulson (eds.) Archive of

Formal Proofs. http://afp.sf.net/entries/Completeness.shtml (2004)
32. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor. Comput. Sci. 192(1),

3–29 (1998)
33. Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar induction: Walking

through infinite trees with mixed induction and coinduction. In: H. Yang (ed.) APLAS 2011, LNCS, vol.
7078, pp. 353–368. Springer (2011)

34. Negri, S.: Kripke completeness revisited. In: G. Primiero, S. Rahman (eds.) Acts of Knowledge: History,
Philosophy and Logic: Essays Dedicated to Göran Sundholm, pp. 247–282. College Publications (2009)

35. Nipkow, T., Klein, G.: Concrete Semantics: A Proof Assistant Approach. Springer (2014). http://www.
in.tum.de/~nipkow/Concrete-Semantics

http://afp.sf.net/entries/Abstract_Completeness.shtml
http://people.inf.ethz.ch/trayteld/compl-journal-devel.tgz
http://people.inf.ethz.ch/trayteld/compl-journal-devel.tgz
http://afp.sf.net/entries/Completeness.shtml
http://www.in.tum.de/~nipkow/Concrete-Semantics
http://www.in.tum.de/~nipkow/Concrete-Semantics

30 J. C. Blanchette et al.

36. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS,
vol. 2283. Springer (2002)

37. Petria, M.: An institutional version of gödel’s completeness theorem. In: Algebra and Coalgebra in
Computer Science, Second International Conference, CALCO 2007, Bergen, Norway, August 20-24,
2007, Proceedings, pp. 409–424 (2007)

38. Pfenning, F.: Review of “Jean H. Gallier: Logic for Computer Science, Harper & Row, New York 1986”
[19]. J. Symb. Log. 54(1), 288–289 (1989)

39. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for first order
logic. In: J. Hurd, T.F. Melham (eds.) TPHOLs 2005, LNCS, vol. 3603, pp. 294–309. Springer (2005)

40. Roşu, G.: Equality of streams is a Π0
2-complete problem. In: J.H. Reppy, J.L. Lawall (eds.) ICFP ’06.

ACM (2006)
41. Roşu, G.: An effective algorithm for the membership problem for extended regular expressions. In:

H. Seidl (ed.) FoSSaCS 2007, LNCS, vol. 4423, pp. 332–345. Springer (2007)
42. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: D. Sangiorgi, R. de Simone

(eds.) CONCUR ’98, LNCS, vol. 1466, pp. 194–218. Springer (1998)
43. Rutten, J.J.M.M.: Regular expressions revisited: A coinductive approach to streams, automata, and power

series. In: R.C. Backhouse, J.N. Oliveira (eds.) MPC 2000, LNCS, vol. 1837, pp. 100–101. Springer
(2000)

44. Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr. Notes
Theor. Comput. Sci. 45, 358–423 (2001)

45. Schlöder, J.J., Koepke, P.: The Gödel completeness theorem for uncountable languages. Formalized
Mathematics 20(3), 199–203 (2012)

46. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for higher-order
logic: Category theory applied to theorem proving. In: LICS 2012, pp. 596–605. IEEE (2012)

47. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, Second Edition. Cambridge University Press
(2000)

	1 Introduction
	2 Preliminaries on First-Order Logic
	2.1 Classical First-Order Logic
	2.2 First-Order Logic with Inductive Predicates

	3 Abstract Soundness and Completeness
	3.1 Sequents and Structures
	3.2 Rule Systems
	3.3 Derivation Trees
	3.4 Proofs
	3.5 Soundness
	3.6 Infinite Paths and König's Lemma
	3.7 Escape Paths
	3.8 Countermodel Paths
	3.9 Completeness
	3.10 Omitting the Availability Assumption

	4 Concrete Instances of Soundness and Completeness
	4.1 Classical First-Order Logic
	4.2 Further Instances

	5 Abstract Infinite-Proof Soundness
	5.1 Soundness of Infinite Proof Trees
	5.2 From Cyclic Trees to Infinite Trees

	6 Concrete Instances of Infinite-Proof Soundness
	6.1 First-Order Logic with Inductive Predicates
	6.2 Other Instances

	7 Formalization and Implementation
	8 Related Work
	9 Conclusion

