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Relativizing statements in Higher-Order Logic (HOL) from types to sets is useful for improving productivity

when working with HOL-based interactive theorem provers such as HOL4, HOL Light and Isabelle/HOL. This

paper provides the first comprehensive definition and study of types-to-sets relativization in HOL, done in the

more general form of types-to-PERs (partial equivalence relations). We prove that, for a large practical fragment

of HOL which includes container types such as datatypes and codatatypes, types-to-PERs relativization is

admissible, in that the provability of the original, type-based statement implies the provability of its relativized,

PER-based counterpart. Our results also imply the admissibility of a previously proposed axiomatic extension

of HOL with local type definitions. We have implemented types-to-PERs relativization as an Isabelle tool that

performs relativization of HOL theorems on demand.

CCS Concepts: • Theory of computation→ Logic and verification;Higher order logic; Type structures.

Additional Key Words and Phrases: higher-order logic (HOL), proof theory, interactive theorem proving, type

definition, relativization, Isabelle/HOL, partial equivalence relation

1 INTRODUCTION
Interactive theorem provers, also known as proof assistants, are being increasingly deployed to

verify meta-theoretic properties of operating systems, programming languages, compilers and

hardware architectures, and to formalize mathematical theories. Major verification successes that

make the news, such as CompCert [Leroy 2009] and seL4 [Klein et al. 2010] in computer science and

the Four Color [Gonthier 2007] and Kepler’s theorems [Hales et al. 2015] in mathematics, are only

the tip of the iceberg. The iceberg itself consists of a large body of libraries of formalized results

developed by countless enthusiasts within the communities built around the theorem provers. The

goal of boosting the users’ productivity is therefore key to such successes. This is a multi-faceted

goal, whose achievement involves an understanding of how a prover’s logical foundation and

the abstraction layers built on top of that can be leveraged towards increased automation and

expressiveness, so overall decreased “bureaucracy”—without compromising reliability.

We can distinguish two kinds of logical foundations that dominate today’s interactive theorem

prover landscape. On the one hand, provers based on dependent type theory (DTT) such as Agda

[Bove et al. 2009], Coq [Bertot and Castéran 2004], Lean [de Moura et al. 2015] and Matita [Asperti

et al. 2011] rely on sophisticated type systems, featuring inductive and sometimes also coinductive

datatypes, to manage both the data of interest and the proofs themselves. Developments in these

provers often emphasize constructiveness and the computational content of the proofs.

On the other hand, provers based on higher-order logic (HOL) such as HOL4 [Gordon andMelham

1993; Slind and Norrish 2008], HOL Light [Harrison 1996], Isabelle/HOL [Nipkow and Klein 2014;

Nipkow et al. 2002], ProofPower-HOL [Arthan and Jones 2005] and HOL Zero [Adams 2010], rely

on simple type theory enhanced with rank-1 polymorphism, and a minimalistic set of logical axioms.

Unlike in DTT, in HOL there are no built-in datatypes. Instead, new types are introduced from the

underlying simple types by carving out subsets determined by predicates—a mechanism similar
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to comprehension/separation in set theory. For this reason, HOL is sometimes referred to as “typed

set theory”. Another difference from DTT is that HOL is a classic rather than intuitionistic logic

and relies essentially on the Hilbert choice operator and the corresponding choice axiom.
1

Both kinds of logical foundations have comparative pros and cons, some of which are discussed

by Geuvers [2009]. The highly structured foundation of DTT systems, which natively supports the

definition of inductive datatypes, facilitates the study of important meta-theoretic properties such

as strong normalization and parametricity [Bernardy et al. 2012; Reynolds 1983], the latter enabling

so-called “theorems for free” [Wadler 1989]. By contrast, in HOL everything (including all inductive

datatypes) must be bootstrapped from its set-theoretic-like foundation: Thanks to the powerful

yet unwieldy combination of HOL’s comprehension-based type definitions and Hilbert choice, one

has the freedom to perform both structured and highly unstructured constructions. This paper

will be concerned with identifying some “structure” in HOL, in order to practically enable and

foundationally justify a certain kind of theorems for free that help streamline the proof development.

Background: Set-Based versus Type-Based Developments in HOL. In a recent line of work,

types-to-sets relativization was proposed as a way of increasing user productivity in HOL. The

starting point was the observation that HOL developments that involve structures of various kinds

(algebraic, topological etc.) highly benefit from a lightweight approach: making the assumption that

the carriers of these structures are unspecified types. For example, a group can be modeled as a triple

(𝛼, times, e), consisting of a multiplication operation times : 𝛼 ⇒ 𝛼 ⇒ 𝛼 and a neutral element e : 𝛼
on an unspecified carrier modeled as a type variable 𝛼 , subject to assumptions reflecting the group

axioms. Likewise, a topological space can be modeled as a pair (𝛼, 𝑇 ) where the type variable 𝛼
represents the set of points and𝑇 : 𝛼 set set represents the set of open sets, again subject to suitable

assumptions.
2
Then the statements one proves about groups or topological spaces are (implicitly)

quantified universally over the type variable 𝛼 . This approach is of course not restricted to the usage

of a single type variable. For example, we use two type variables, say 𝛼 and 𝛽 , when discussing group

homomorphisms, which are functions 𝑓 : 𝛼 ⇒ 𝛽 subject to suitable assumptions. Formulating and

proving statements this way allows one to take advantage of HOL’s underlying simple type system.

However, when needing to instantiate the results to particular concrete groups or topological

spaces, one faces the problem that these concrete structures are usually defined not on entire types,

but on certain subsets of types. This problem appears not only at the very bottom of the concreteness

chain, but also at intermediary layers. For example, the group of permutations on a given type 𝛼

has as carrier not the whole type 𝛼 ⇒ 𝛼 but a subset of it, namely the set {𝑓 : 𝛼 ⇒ 𝛼 | 𝑓 bijective}.
Therefore, many HOL formalizations are performed not type-based as above, but set-based.

Namely, the carriers of the structures of interest are modeled not as unspecified types 𝛼 , but as

unspecified subsets of unspecified types, 𝐴 : 𝛼 set. For example, groups are modeled as quadruples

(𝛼, 𝐴, times, e) where 𝐴 : 𝛼 set. Now, the group axioms must be formulated relative to 𝐴, i.e., for all

elements of type𝛼 in the set𝐴. In addition, one requires that𝐴 is closed under e and times, i.e., e is in𝐴
and times preserves membership in𝐴. Also all proved facts about groups are formulated relative to𝐴.

For example, whenever we quantify over 𝑥 : 𝛼 we assume that 𝑥 is in𝐴. If multiple type variables are

involved, as in the case of group homomorphisms 𝑓 : 𝛼 ⇒ 𝛽 , one uses multiple carrier sets, e.g., 𝐴 :

𝛼 set and 𝐵 : 𝛽 set, and makes the corresponding assumptions, e.g., that 𝑓 sends elements of𝐴 to el-

ements of 𝐵. The set-based approach is more general than the type-based one, but comes with a high

1
There are major interactive theorem provers that do not fall squarely in either of the mentioned categories. For example,

PVS [Owre et al. 1992] has dependent types but also subtypes based on set comprehension. Moreover, ACL2 [Kaufmann

et al. 2000] is based on a first-order theory of arithmetics, and Mizar [Grabowski et al. 2010] on a first-order set theory.

2
In HOL, for any type 𝜎 , the “powerset” type 𝜎 set is either an abbreviation for, or a copy of, the type of predicates, i.e.,

functions from 𝜎 to bool. Section 2.2 gives details.
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price in terms of bureaucracy: Additional assumptions about membership must be maintained and

discharged when appropriate, which makes the statements heavier and the proofs less automatic.
3

Kunčar and Popescu [2019] started to address this problem under the motto “prove easily and

still be flexible”—the idea being that users should be able to develop their results in a lightweight

type-based fashion, and then receive the set-based version of the theorems for free whenever needed.

This intuitive goal turned out to be challenging from a formal perspective, for two main reasons:

(1) Inferring the set-based from the type-based theorem cannot be done using HOL’s axioms.

In other words, set-based relativization cannot be performed via a derived rule in HOL.

(2) Even formulating (let alone proving) the set-based counterpart of a type-based theorem is not

possible without a suitable infrastructure that “anticipates” this formulation. For example,

a theorem about groups may universally quantify the elements in 𝛼 𝜅 where 𝛼 models the

group’s carrier (as before) and𝜅 is some type constructor, such as set or list. For the set-based
counterpart, we need a way to lift the carrier set, 𝐴 : 𝛼 set, to a corresponding subset of 𝛼 𝜅 .

Instead of tackling these foundational problems, Kunčar and Popescu focused on practical

progress from the users’ perspective. They bypassed problem (1) by adding a new rule to HOL that

facilitates the types-to-sets relativization in certain cases: Local Typedef. And they bypassed problem

(2) by restricting their scope to type constructors 𝜅 for which natural set-lifting functions are known

to exist, which include container types such as lists and trees. Some case studies have been performed

in Isabelle/HOL [Divasón et al. 2018; Divasón and Thiemann 2022; Immler and Zhan 2019], validating

the usefulness of the Local Typedef rule for simplifying formal developments. Tool support for

automating the application of these rules has also been recently implemented [Milehins 2022].

While postulating new rules that extend HOL’s axiomatic basis (like the Local Typedef rule

mentioned above) may seem like an easy way out, it constitutes a foundational compromise—

regarded with reluctance by the HOL community of developers and users, who take very seriously

Bertrand Russell’s aphorism [Russell 1919]: “The method of ‘postulating’ what we want has many

advantages; they are the same as the advantages of theft over honest toil.” Indeed, one of the

reasons why HOL-based provers are today’s some of the most reliable verification tools is the

smallness of their axiomatic kernel. And the HOL logic in its current form has been successfully

used across different provers (with minor variations of the same rules and axioms) ever since

Gordon’s introduction of the first HOL system more than 30 years ago [Gordon 1991]. Yet, the

naturalness of Local Typedef—which simply allows to define types from sets just like with standard

HOL type definitions, but in local proof contexts—could make us wonder whether Gordon did not

overlook some important mechanisms when introducing his enduring axiomatization of HOL.

This Paper’s Contributions. Here, we tackle the aforementioned foundational challenges

raised by types-to-sets relativization. First, we generalize types-to-sets to types-to-PERs relativiza-

tion, where “PER” means “partial equivalence relation”. This allows us to systematically apply

relativization to higher-order types in a manner that ensures the desired/expected properties.

We address challenge (2) by delimiting a fragment of HOL, given by what we call widely-typed
definitional theories, where relativization can be defined. Essentially, wide typedness means that the

3
An alternative to set-based approach is to introduce type definitions for sets of interest when using type-based results—e.g.,

instead of workingwith the set of bijections on𝛼 , define a new type of bijections and copy the group operations (function com-

position and identity) from 𝛼 ⇒ 𝛼 to this new type. This alternative has several drawbacks. First, it moves the burden from

the service (the formal library) to the client (the library user) who has to domore work to use a result. Second, native operators

from the old type (e.g., function application)must be replacedwithmore bureaucratic copies. Finally, one loses the flexibility of

handling overlapping sets on the same type, e.g., to work with both a group of bijections (taking advantage of a group library)

and the monoid of all functions (taking advantage of a monoid library) one must explicitly convert between different types.
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newly introduced types are large enough relatively to the size of the defining predicate’s relativiza-

tion. The widely-typed fragment seems to include all practical HOL developments, and currently all

developments we are aware of—though artificial non-widely-typed examples can be constructed.

We address challenge (1) by proving that, for the widely-typed fragment, types-to-PERs (in

particular, types-to-sets) relativization is admissible, i.e., provided the type-based statement is

provable, its PER-based (in particular, set-based) counterpart is also provable. Thus, relativization

can be accepted as a shortcut rule to boost user productivity without extending HOL’s axiomatic base.
We also contribute to the understanding of parametricity in HOL, where both Hilbert choice and

comprehension-based type definitions a priori are non-parametric. We show that our relativization

scheme achieves parametricity with respect to PERs. Finally, we show that the Local Typedef rule

is also admissible for the widely-typed fragment. So, after all, this rule was not really overlooked

by Gordon, since its admissibility reveals it as an implicit part of the original HOL axiomatization.

This Paper’s Structure. We start by recalling the HOL foundations: type system, deduction

system, and definitional mechanisms for constants and types (Section 2). Then we discuss, quasi-

informally and based on examples, the goal of types-to-sets relativization in the form of a wish list of

desirable properties (Section 3). These include Admissibility, but also some natural well-behavedness

properties including PER-Parametricity, Recoverability and Connective & Quantifier Suitability. Af-

ter that, we move to the technical presentation of the relativization process (Section 4), by defining

operators for relativizing types and terms and formulating the main theorems asserting the desirable

properties of these operators. As a consequence of Admissibility (of relativization) and Recoverabil-

ity, we show that in the widely-typed fragment, the Local Typedef rule is also admissible (Section 5).

An adaptation of our results can also handle the extension of classic HOL with a mechanism for

the ad hoc overloading of constant instance definitions, as featured in Isabelle/HOL (Section 6).

Finally, we analyze the relativization’s scope—namely, the outreach of our identified widely-

typed fragment (Section 7). We show that, notwithstanding their low-level definitions in HOL,

all container types, including the inductive and coinductive datatypes, fall within this fragment.

As further empirical evidence, we show that the type definitions performed in a large subset of

Isabelle/HOL’s distribution are all widely-typed. We do this with the help of a publicly available

custom tool [Popescu and Traytel 2022] that automates the relativization and prompts the user

to prove wide typedness when necessary. An appendix referenced throughout the paper provides

more details on this paper’s results, proofs, and additional results.

2 HOL PRELIMINARIES
While its ideas go back a long way (to the work of Church [1940] and beyond), Higher-Order Logic

(HOL) as used in the theorem proving community contains a unique blend of features proposed by

Gordon at the end of the eighties, inspired by practical verification needs: Its type system is the rank-

one polymorphic extension of simple types, generated using the function-space constructor from

two base types, bool and ind; its terms have built-in equality (from which all the usual connectives

and quantifiers are derived); deduction, operating on terms of type bool called formulas, is regulated

by the built-in axioms of Equality, (Hilbert) Choice and Infinity (for the type ind).
In addition to this purely logical layer, users can perform constant and type declarations and

definitions. Type definitions proceed by indicating a predicate on an existing type and carving out

the new type from the subset satisfying the predicate. For accepting a type definition, the system

requires a proof that the subset is nonempty. This is because HOL types are required to be nonempty—
a major design decision, with practical and theoretical ramifications [Gordon and Melham 1993;

Paulson 1988]. No new axioms are accepted (more precisely, they are strongly discouraged), besides

the aforementioned definitions. This minimalistic, definitional approach offers good protection

against the accidental introduction of inconsistency (the possibility to prove False).
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2.1 Syntax
All throughout this paper, we fix an infinite set TVar , of type-variables, ranged by 𝛼, 𝛽 and an infinite

set Var , of (term) variable, ranged by 𝑥, 𝑦, 𝑧 or by other symbols, as suitable for the context (e.g.,𝐴 for

a set or 𝑝 for a predicate). A type structure is a pair (K, arOf ) where K is a set of symbols, ranged by

𝜅 , called type constructors, containing three special symbols: bool, ind and⇒ (representing the type

of booleans, an infinite type of individuals, and the function type constructor) and arOf : K → N
associates arities to the type constructors, such that arOf (bool) = arOf (ind) = 0 and arOf (⇒) = 2.

The types associated to (K, arOf ), ranged by 𝜎, 𝜏 , are defined as: 𝜎 ::= 𝛼 | (𝜎1, . . . , 𝜎arOf (𝜅 ) ) 𝜅.
Thus, a type is either a type-variable or an 𝑛-ary type constructor 𝜅 postfix-applied to a number of

types corresponding to its arity. We write Type (K,arOf ) for the set of types associated to (K, arOf ).
A signature is a tuple Σ = (K, arOf , Const, tpOf ), where (K, arOf ) is a type structure, Const,

ranged over by 𝑐 , is a set of symbols called constants, containing two special symbols: = and choice
(aimed at representing equality and Hilbert choice of some element from a type, respectively), and

tpOf : Const → Type (K,arOf ) is a function associating a type to every constant, such that:

tpOf (=) = 𝛼 ⇒ 𝛼 ⇒ bool tpOf (choice) = (𝛼 ⇒ bool) ⇒ 𝛼

Convention 1. For the rest of this paper, we fix a signature Σ = (K, arOf , Const, tpOf ). We

usually write TypeΣ, or simply Type, instead of Type (K,arOf ) .

Let TV(𝜎) be the set of type 𝜎 ’s type-variables. A type 𝜎 is ground, ormonomorphic, if TV(𝜎) = ∅,
and polymorphic otherwise. Let GType be the set of ground types. The support of 𝜌 : TVar → Type is
the set of type-variables where 𝜌 is not the identity: supp(𝜌) = {𝛼 | 𝜌 (𝛼) ≠ 𝛼}. A type-substitution
is a function 𝜌 : TVar → Type with finite support. The application of 𝜌 to a type 𝜎 , written 𝜎 [𝜌], is
defined recursively by 𝛼 [𝜌] = 𝜌 (𝛼) and ((𝜎1, . . . , 𝜎𝑚)𝜅) [𝜌] = (𝜎1 [𝜌], . . . , 𝜎𝑚 [𝜌])𝜅. If 𝛼1, . . . , 𝛼𝑚
are all different, we write 𝜏1/𝛼1, . . . , 𝜏𝑛/𝛼𝑚 for the type-substitution that sends 𝛼𝑖 to 𝜏𝑖 and each 𝛽 ∉

{𝛼1, . . . , 𝛼𝑚} to 𝛽 . Type 𝜎 is an instance of 𝜏 via 𝜌 , written 𝜎 ≤𝜌 𝜏 , if 𝜏 [𝜌] = 𝜎 . Type 𝜎 is an instance
of 𝜏 , written 𝜎 ≤ 𝜏 , if there exists 𝜌 ∈ TSubst such that 𝜎 ≤𝜌 𝜏 . Given 𝜌1, 𝜌2 ∈ TSubst, we write 𝜌1 ·𝜌2
for their composition: (𝜌1 ·𝜌2) (𝛼) = (𝜌1 (𝛼)) [𝜌2]. For all types 𝜎 , it holds that 𝜎 [𝜌1 ·𝜌2] = 𝜎 [𝜌1] [𝜌2].
A typed variable is a pair of a variable 𝑥 and a type 𝜎 , written 𝑥𝜎 . We let VarT denote the set

of typed variables. A constant instance is a pair of a constant and a type, written 𝑐𝜎 , such that

𝜎 ≤ tpOf (𝑐). Let CInst denote the set of constant instances. We extend the notion of being an

instance (≤) from types to constant instances, by defining 𝑐𝜏 ≤ 𝑑𝜎 to mean that 𝑐 = 𝑑 and 𝜏 ≤ 𝜎 .

The signature’s terms, ranged over by 𝑠, 𝑡 , are defined by the grammar 𝑡 ::= 𝑥𝜎 | 𝑐𝜎 | 𝑡1 𝑡2 | 𝜆𝑥𝜎 . 𝑡 .
Thus, a term is either a variable, or a constant instance, or an application, or an abstraction. As

usual, we identify terms modulo alpha-equivalence. We let TermΣ, or simply Term, ranged by 𝑠 and

𝑡 , denote the set of terms. Typing relates terms and types, written 𝑡 : 𝜎 and defined inductively:

𝑥𝜎 ∈ VarT
𝑥𝜎 : 𝜎

𝑐𝜎 ∈ CInst
𝑐𝜎 : 𝜎

𝑡1 : 𝜎 ⇒ 𝜏 𝑡2 : 𝜎

𝑡1 𝑡2 : 𝜏

𝑡 : 𝜏

𝜆𝑥𝜎 . 𝑡 : 𝜎 ⇒ 𝜏

A term 𝑡 is called typable if there exists a type 𝜎 such that 𝑡 : 𝜎 . If it exists, this type is necessarily

unique. Let TTerm denote the set of well-typed terms and FTV(𝑡) the set of 𝑡 ’s free typed variables.

For example, FTV(𝜆𝑥𝜎 .𝑥𝜎 = 𝑦𝜎 ) = {𝑦𝜎 }. The term 𝑡 is closed if FTV(𝑡) = ∅. Let 𝑡 [𝑠/𝑥𝜎 ] be the term
obtained from 𝑡 by capture-free substituting the term 𝑠 for all free occurrences of 𝑥𝜎 . Let TV(𝑡) be
the set of type-variables occurring in (any type that occurs in) 𝑡 . A term is ground, or monomorphic,
if TV(𝑡) = ∅, and polymorphic otherwise. We can apply a type-substitution 𝜌 to a term 𝑡 , written

𝑡 [𝜌], by applying it to the types of all variables and constant instances occurring in 𝑡 .

The support of 𝜃 : VarT → TTerm is the set of typed variables 𝑥𝜎 where 𝜃 is not the identity:

supp(𝜃 ) = {𝑥𝜎 ∈ VarT | 𝜃 (𝑥𝜎 ) ≠ 𝑥𝜎 }. A term-substitution is a function 𝛿 : VarT→ TTerm of finite

support such that 𝛿 (𝑥𝜎 ) : 𝜎 for all 𝑥𝜎 ∈ VarT. The application of 𝛿 to the term 𝑡 , written 𝑡 [𝛿], pro-
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ceeds by replacing all free variables 𝑥𝜎 of 𝑡 with 𝛿 (𝑥𝜎 ) in a capture-avoiding fashion. Given distinct

typed variables 𝑥1𝜎1 , . . ., 𝑥𝑛𝜎𝑛 and terms 𝑡1, . . . , 𝑡𝑛 such that 𝑡𝑖 : 𝜎𝑖 , we write 𝑡1/𝑥1𝜎1 , . . . , 𝑡𝑛/𝑥𝑛𝜎𝑛
for the term-substitution that sends each 𝑥𝑖𝜎𝑖 to 𝑡𝑖 and all the other typed variables to themselves.

For example, if 𝑡 : 𝜎 and 𝑥𝜎 ∉ FTV(𝑡), then (𝜆𝑥𝜎 . 𝑥𝜎 = 𝑦𝜎 ) [𝑡/𝑦𝜎 ] = (𝜆𝑥𝜎 . 𝑥𝜎 = 𝑡).
A formula is a term of type bool. We let FmlaΣ, or simply Fmla, ranged by 𝜑 and 𝜒 , denote the

set of formulas. A unary predicate is a term of type 𝜎 ⇒ bool for some type 𝜎 . Similarly, a relation
(i.e., binary predicate) is a term of type 𝜎1 ⇒ 𝜎2 ⇒ bool for some types 𝜎1 and 𝜎2, etc.

2.2 More Notations and Abbreviations
We will use a plethora of notations and abbreviations that will make the presentation more readable.

We urge the reader to consult this section whenever in doubt about the meaning of some symbols.

The formula connectives (e.g., ∧, ¬ and −→) and quantifiers (∀ and ∃) are defined from the HOL

primitives. For example, for any type 𝜎 , we write ∀𝑥𝜎 . 𝑡 for all𝜎 (𝜆𝑥𝜎 . 𝑡), where all𝜎 is the term

𝜆𝑝𝜎⇒bool . 𝑝 = (𝜆𝑥𝜎 . true). Appendix A.1 givesmore details. Given a finite family of formulas (𝜑𝑖 )𝑖∈𝐼 ,
we write

∧
𝑖∈𝐼 𝜑𝑖 for the conjunction of the formulas in the family; and

∨
𝑖∈𝐼 𝜑𝑖 for their disjunction.

To avoid confusion with later object-logic definitions, we treat connectives, quantifiers and other

concepts introduced below as abbreviations (i.e., meta-level definitions of certain HOL terms).

Usually, HOL introduces sets as an abbreviation for predicates, which is what we will assume

for most of this paper. Namely, we use the following notations for powerset (powertype), set

membership and set comprehension: We let 𝜎 set be an abbreviation for 𝜎 ⇒ bool. Assuming 𝑡1 : 𝜎

and 𝑡2 : 𝜎 set, we let 𝑡1 ∈∈ 𝑡2 be abbreviation for 𝑡2 𝑡1. Assuming 𝜑 is a formula, we let {|𝑥𝜎 . 𝜑 |} be
an abbreviation for 𝜆𝑥𝜎 . 𝜑 . Some HOL-based provers do it slightly differently but fundamentally

equivalently, namely by defining a standalone type of sets that is copy of that of predicates.

We sometimes omit the types if they can be inferred—e.g, we write 𝜆𝑥𝜎 . 𝑥 instead of 𝜆𝑥𝜎 . 𝑥𝜎 . We

will use infix notation, and most of the times omit the type instance, for equality, e.g., 𝑡1 = 𝑡2 and

membership, e.g., 𝑡 ∈∈ 𝐴. Given terms 𝑏 : bool, 𝑡1 : 𝜎 and 𝑡2 : 𝜎 , the if-then-else expression, written

if 𝑏 then 𝑡1 else 𝑡2, is the term choice (𝜆𝑥𝜎 . (𝑏 −→ 𝑥𝜎 = 𝑡1) ∧ (¬ 𝑏 −→ 𝑥𝜎 = 𝑡2)). Its behavior is
the expected one: It equals 𝑡1 if 𝑏 is true and equals 𝑡2 if 𝑏 is false. We will write:

• 𝑡1 ≠ 𝑡2 for ¬ 𝑡1 = 𝑡2;

• Some 𝑦𝜏 . 𝜑 for choice (𝜆𝑦𝜏 . 𝜑);
• Some 𝑦𝜏 ∈∈ 𝐴 for Some 𝑦𝜏 . 𝑦 ∈∈ 𝐴;
• ∀𝑥𝜎 ∈∈ 𝐴. 𝜑 for ∀𝑥𝜎 . 𝑥 ∈∈ 𝐴 −→ 𝜑 ;

• ∃𝑥𝜎 ∈∈ 𝐴. 𝜑 for ∃𝑥𝜎 . 𝑥 ∈∈ 𝐴 ∧ 𝜑 ;

• ∅𝜎 for {|𝑥𝜎 . false |};
• 𝜎 rel (read “the type of relations on 𝜎”) for 𝜎 ⇒ 𝜎 ⇒ bool;
• univ𝜎 (read “the universe set for 𝜎”) for {|𝑥𝜎 . true |};
• ∧

Δ for the conjunction of all formulas in Δ (provided Δ
is a finite set of formulas).

2.3 Partial Equivalence Relations (PERs)
Let per abbreviate the following predicate of type 𝛼 rel⇒ bool: 𝜆𝑟𝛼 rel . (∀𝑥𝛼 , 𝑦𝛼 . 𝑟 𝑥 𝑦 −→ 𝑟 𝑦 𝑥) ∧
(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . 𝑟 𝑥 𝑦∧𝑟 𝑦 𝑧 −→ 𝑟 𝑥 𝑧). Thus, per 𝑟 says that 𝑟 is a partial equivalence relation (PER for

short), i.e., a relation that is symmetric and transitive. If 𝑟 is a PER on 𝜎 , we will refer to the set {𝑥𝜎 |
𝑟 𝑥 𝑥}, which is the same as the set {𝑥𝜎 | ∃𝑦𝜎 . 𝑟 𝑥 𝑦}, as the domain of 𝑟 . Note that 𝑟 is an equivalence
relation on its domain. We let per≠∅ , read “non-empty partial equivalence relation”, abbreviate the

predicate 𝜆𝑟𝛼 rel . per 𝑟 ∧ (∃𝑥𝛼 . 𝑟 𝑥 𝑥). In the above formulation, non-emptiness of 𝑟 refers to the

existence of a an element that is related to itself, i.e., to the non-emptiness of 𝑟 ’s domain. But since 𝑟

is also a PER, this is equivalent to saying that there exists a pair of related elements: ∃𝑥𝛼 , 𝑦𝛼 . 𝑟 𝑥 𝑦.

Given a PER 𝑟 : 𝜎 rel and a predicate 𝑡 : 𝜎 ⇒ bool, the restriction of 𝑟 to 𝑡 , written 𝑟↾𝑡 , is defined as
𝜆𝑥𝜎 , 𝑦𝜎 . 𝑡 𝑥 ∧𝑡 𝑦∧𝑟 𝑥 𝑦. Given two types 𝜏 and 𝜎 and PERs on these types, 𝑝 : 𝜏 rel and 𝑞 : 𝜎 rel, we
are interested in 𝜎 ⇒ 𝜏 that are bijections between the domains of 𝑝 and 𝑞 up to the induced equali-

ties. To capture this, we define the bijUpto predicate of type 𝜎 rel⇒ 𝜏 rel⇒ (𝜎 ⇒ 𝜏) ⇒ bool to be
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𝜆𝑝𝜏 rel, 𝑞𝜎 rel, 𝑓𝜎⇒𝜏 . (∀𝑥𝜏 , 𝑥 ′𝜏 . 𝑝 𝑥 𝑥 ′ −→ 𝑞 (𝑓 𝑥) (𝑓 𝑥 ′)) ∧
(∀𝑥𝜏 , 𝑥 ′𝜏 . 𝑝 𝑥 𝑥 ∧ 𝑝 𝑥 ′ 𝑥 ′ ∧ 𝑞 (𝑓 𝑥) (𝑓 𝑥 ′) −→ 𝑝 𝑥 𝑥 ′) ∧
(∀𝑦𝜎 . 𝑞 𝑦 𝑦 ←→ (∃𝑥𝜏 . 𝑝 𝑥 𝑥 ∧ 𝑞 𝑦 (𝑓 𝑥)))

We read bijUpto 𝑓 𝑝 𝑞 as “𝑓 is a bijection-up-to between 𝑝 and 𝑞”. The three conjuncts that make

up the notion of bijection-up-to state the following: (1) 𝑓 is a “function up to” between 𝑝 and 𝑞, i.e.,

it preserves the relations, (2) 𝑓 is an “injection up to” between 𝑝 and 𝑞, i.e., for any two elements in

the domain of 𝑝 , if their images through 𝑓 are 𝑞-related, then they are themselves 𝑝-related, and (3)

𝑓 is a “surjection up to” between 𝑝 and 𝑞, i.e., for any element in the domain of 𝑞, there exists an

element in the domain of 𝑝 whose image through 𝑓 is 𝑞-related to it. A bijection-up-to between

PERs 𝑝 and 𝑞 induces a bijection between the equivalence classes on their domains.

2.4 Theories, Axioms and Deduction
We call theory (over Σ) any set of closed (Σ-)formulas. The HOL axioms, forming the set Ax, consist
of: (1) the Equality axioms; (2) the Infinity axiom (stating that there exists an injective but non-

surjective function between ind and itself, which makes the type ind infinite); (3) the Choice axiom,

which states that the Hilbert choice operator returns an element satisfying its argument predicate

(if nonempty): 𝑝𝛼⇒bool 𝑥 −→ 𝑝 (choice 𝑝). (Appendix A.1 gives more details.) HOL is classical,

since the principle of excluded middle follows from Ax. A context Γ is a finite set of formulas. The

type-variable 𝛼 is fresh for Γ when it does not appear in (any formula in) Γ; similarly, 𝑥𝜎 is fresh for

Γ when 𝑥𝜎 does not appear free in Γ. We define deduction as a ternary relation ⊢ between theories

𝐷 , contexts Γ and formulas 𝜑 , written 𝐷 ; Γ ⊢ 𝜑 .

𝐷 ; Γ ⊢ 𝜑
(Fact)

[𝜑 ∈ Ax ∪ 𝐷]
𝐷 ; Γ ⊢ 𝜑

𝐷 ; Γ ⊢ 𝜑 [𝜎/𝛼]
(T-Inst)

[𝛼 fresh for Γ] 𝐷 ; Γ ⊢ (𝜆𝑥𝜎 . 𝑡) 𝑠 = 𝑡 [𝑠/𝑥𝜎 ]
(Beta)

𝐷 ; Γ ⊢ 𝜑
(Assum)

[𝜑 ∈ Γ]
𝐷 ; Γ ⊢ 𝜑

𝐷 ; Γ ⊢ 𝜑 [𝑡/𝑥𝜎 ]
(Inst)

[𝑥𝜎 fresh for Γ]
𝐷 ; Γ ⊢ 𝑓 𝑥𝜎 = 𝑔 𝑥𝜎

𝐷 ; Γ ⊢ 𝑓 = 𝑔

(Ext)

[𝑥𝜎 fresh for Γ]
𝐷 ; Γ ∪ {𝜑} ⊢ 𝜒
𝐷 ; Γ ⊢ 𝜑 −→ 𝜒

(ImpI)

𝐷 ; Γ ⊢ 𝜑 −→ 𝜒 𝐷 ; Γ ⊢ 𝜑
𝐷 ; Γ ⊢ 𝜒 (MP)

The axioms and the deduction rules we gave here are (a variant of) the standard ones for HOL

[Gordon and Melham 1993; Harrison 2009]. Different provers implementing Higher-Order Logic,

such as HOL4, HOL Light, HOL-ProofPower, HOL Zero and Isabelle/HOL, use slightly different

sets of logical primitives and slightly different rules and axioms. However, these provers implement

essentially the same logic, up to logical equivalence.

We write 𝐷 ⊢ 𝜑 instead of 𝐷 ; ∅ ⊢ 𝜑 and ⊢ 𝜑 instead of ∅; ∅ ⊢ 𝜑 (i.e., we omit empty contexts and

theories). The HOL axioms are not part of the theory 𝐷 , but are wired together with 𝐷 in the (Fact)

axiom. So ⊢ 𝜑 indicates that 𝜑 is provable from the HOL axioms only. (See also Appendix A.2.)

2.5 HOL Definitions
Besides deduction, another main component of the HOL logic is a mechanism for introducing new

constants and types by spelling out their definitions. The built-in type constructors are bool, ind,
and⇒. The built-in constants are = and choice. Since the built-in items have an already specified

behavior (by the HOL axioms), only non-built-in items can be defined.

Definition 2. Given a non-built-in constant 𝑐 of type 𝜎 , and a closed term 𝑡 : 𝜎 , we let 𝑐𝜎 ≡ 𝑡
denote the formula 𝑐𝜎 = 𝑡 . We call 𝑐𝜎 ≡ 𝑡 a constant definition provided TV(𝑡) ⊆ TV(𝑐𝜎 ).

Note that we introduced constant instance definitions, which is a slightly more general concept

than the standard one of constant definition used traditionally in HOL [Gordon and Melham 1993].
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Namely, we allow defining an instance of a constant that is less general than its type. This is to

also accommodate the Isabelle/HOL definitional mechanisms, where this flexibility enables ad hoc

overloading and, based on this, Haskell-style type classes [Nipkow and Snelting 1991].

For example, one can introduce the constant total of type 𝛼 rel ⇒ bool, expressing that a relation
on 𝛼 is (left-)total, using the constant definition total 𝛼 rel ⇒ bool ≡ 𝜆 𝑟 . ∀𝑥𝛼 . ∃𝑦𝛼 . 𝑟 𝑥 𝑦.

Definition 3. Given types 𝜏 and 𝜎 and a closed term 𝑡 : 𝜎 ⇒ bool, we let 𝜏 ≡ 𝑡 denote the

formula ∃rep𝜏⇒𝜎 . typedef𝜏,𝜎,𝑡,rep where typedef𝜏,𝜎,𝑡,rep denotes the formula

(∀𝑥𝜏 , 𝑥 ′𝜏 . rep 𝑥 = rep 𝑥 ′ −→ 𝑥 = 𝑥 ′) ∧ (∀𝑦𝜎 . 𝑡 𝑦 ←→ (∃𝑥𝜏 . 𝑦 = rep 𝑥))

We call 𝜏 ≡ 𝑡 a type definition, provided 𝜏 has the form (𝛼1, . . . , 𝛼𝑚)𝜅 such that 𝜅 is a non-built-in

type constructor, the 𝛼𝑖 ’s are all distinct type-variables and TV(𝑡) ⊆ {𝛼1, . . . , 𝛼𝑚}. (Hence, we have
TV(𝑡) ⊆ TV(𝜏), which also implies TV(𝜎) ⊆ TV(𝜏).)

A type definition expresses the following: The new type (𝛼1, . . . , 𝛼𝑚)𝜅 is embedded in its host

type 𝜎 via some one-to-one function rep (the first conjunct of the formula), and the image of this

embedding consists of the elements of 𝜎 for which 𝑡 holds (the second conjunct). Since types in

HOL are required to be nonempty, the definition is only accepted if the user provides a proof that

∃𝑥𝜎 . 𝑡 𝑥 holds.
4
Thus, to perform a type definition, one must give a nonemptiness proof.

For example, the type definition 𝛼 totalRel ≡ total introduces the type of total relations on 𝛼 .

This requires proving that ∃ 𝑟𝛼 rel . total 𝑟 , which is true because, e.g., the equality relation is total.

A HOL development, i.e., a session of interaction with the HOL logic from a user’s perspective,

intertwines type and constant definitions and (statements and proofs of) theorems. Since theorems

are consequences of definitions, we do not model them explicitly, but focus on definitions.

2.6 Signature Extensions and the Initial Signature
In the remainder of this paper, when necessary for disambiguation, we will indicate the signature

Σ as a subscript when denoting sets and relations associated to it: TypeΣ, TermΣ, CInstΣ, ⊢Σ, etc.
Given a signature Σ = (K, arOf , Const, tpOf ) and an item 𝑢, we write 𝑢 ∈ Σ to mean that 𝑢 ∈ K

or 𝑢 ∈ Const. Given signatures Σ = (K, arOf , Const, tpOf ) and Σ′ = (K ′, arOf ′, Const′, tpOf ′), we
say Σ is included in Σ′, or Σ′ extends Σ, written Σ ⊆ Σ′, when K ⊆ K ′, Const ⊆ Const′ and the

functions arOf ′ and tpOf ′ are extensions of arOf and tpOf , respectively. We write 𝑢 ∈ Σ′ ∖ Σ to

mean 𝑢 ∈ Σ′ and 𝑢 ∉ Σ. If 𝑐 ∉ Const and 𝜎 ∈ TypeΣ, we write Σ ∪ {(𝑐, 𝜎)} for the extension of Σ
with a new constant 𝑐 of type 𝜎 . Similarly, if 𝜅 ∉ K , we write Σ∪{(𝜅, 𝑛)} for the extension of Σ with

a new type constructor 𝜅 of arity 𝑛. We write Σinit for the initial signature, containing only built-in

type constructors and constants. Note that, by definition, any signature extends the initial signature.

2.7 HOL Definitional Theories
Let Σ = (K, arOf , Const, tpOf ) be a signature and let 𝐷 be a finite theory over Σ.

Definition 4. 𝐷 is said to be a definitional theory if 𝐷 = {def
1
, . . . , def𝑛}, where each def𝑖 is a

(type or constant) definition of the form 𝑢𝑖 ≡ 𝑡𝑖 , and there exist the signatures Σ0, Σ1, . . . , Σ𝑛 such

that Σ0 = Σinit, Σ𝑛 = Σ and the following hold for all 𝑖 ∈ {1, . . . , 𝑛}:
(1) 𝑡𝑖 ∈ TermΣ𝑖−1 and Σ𝑖 is the extension of Σ𝑖−1 with a fresh item defined by def𝑖 , namely:

(1.1) If 𝑢𝑖 has the form (𝛼1, . . . , 𝛼𝑚)𝜅, then 𝜅 ∉ Σ𝑖−1 and Σ𝑖 = Σ𝑖−1 ∪ {(𝜅,𝑚)}
(1.2) If 𝑢𝑖 has the form 𝑐𝜎 , then 𝑐 ∉ Σ𝑖 and Σ𝑖 = Σ𝑖−1 ∪ {(𝑐, 𝜎)}

4
Disallowing empty types in HOL is necessary, if we accept that Hilbert choice has the polymorphic type (𝛼 ⇒ bool) ⇒ 𝛼 . In

this case, choice (𝜎 ⇒ bool) ⇒ 𝜎 (𝜆𝑥𝜎 . true) is an inhabitant of 𝜎 for any type 𝜎 . Paulson [1988] discusses this design decision.
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(2) If def𝑖 is a type definition, i.e., 𝑢𝑖 is a type and 𝑡𝑖 : 𝜎 ⇒ bool, then {def
1
, . . . , def𝑖−1} ⊢Σ𝑖−1

∃𝑥𝜎 . 𝑡𝑖 𝑥

These conditions express that the theory 𝐷 consists of intertwined type and constant definitions

def𝑖 that are introduced in a well-founded manner, yielding a chain of signature extensions Σinit =

Σ0 ⊆ Σ1 ⊆ Σ2 . . . ⊆ Σ𝑛 = Σ that start from the initial signature Σinit and end with Σ. Each Σ𝑖 extends
Σ𝑖−1 with 𝑢𝑖 , the unique item being defined by def𝑖 , i.e., as 𝑢𝑖 ≡ 𝑡𝑖 . As shown by condition (2), in the

case of type definitions, we also require proofs of non-emptiness of the defining predicate 𝑡 (from the

definitions available so far). Note that we do not allow declared (but undefined) types and constants.

But Section 6 discusses a modification of our results to cope with such declared-only entities.

2.8 Definitional Dependency Relation
Since HOL with definitions is well-known to be consistent [Pitts 1993], one would expect that

definitions cannot introduce infinite (including cyclic) chains of dependencies. Next, we will make

this rigorous, following Kunčar and Popescu [2018].

We let Type•Σ be the set of Σ-types that have a non-built-in type constructor at the top, and CInst•Σ
be the set of instances of non-built-in constants. Given any term 𝑡 , we let types• (𝑡) be the set of all
types from Type•Σ appearing in 𝑡 and cinsts• (𝑡) be the set of all constant instances from CInst•Σ ap-

pearing in 𝑡 . The definitions are given below. The types• operator is overloaded for types and terms.

types• (𝛼) = {𝛼} types• (bool) = types• (ind) = ∅ types• (𝜎1 ⇒ 𝜎2) = types• (𝜎1) ∪ types• (𝜎2)
types• ((𝜎1, . . . , 𝜎𝑛)𝜅) = {(𝜎1, . . . , 𝜎𝑛)𝜅} ∪ types• (𝜎1) . . . ∪ . . . types• (𝜎𝑛) if 𝜅 ∉ {⇒, bool, ind}
types• (𝑥𝜎 ) = types• (𝑐𝜎 ) = types• (𝜎) types• (𝑡1 𝑡2) = types• (𝑡1) ∪ types• (𝑡2)
types• (𝜆𝑥𝜎 . 𝑡) = types• (𝜎) ∪ types• (𝑡)

cinsts• (𝑥𝜎 ) = ∅ cinsts• (𝑐𝜎 ) =
{
{𝑐𝜎 } if 𝑐𝜎 ∈ CInst•
∅ otherwise

cinsts• (𝑡1 𝑡2) = cinsts• (𝑡1) ∪ cinsts• (𝑡2)
cinsts• (𝜆𝑥𝜎 . 𝑡) = cinsts• (𝑡)

Definition 5. Let 𝐷 be a HOL definitional theory. The dependency relation⇝ associated to 𝐷

on Type•Σ ∪CInst•Σ is defined as follows: 𝑢 ⇝ 𝑣 means that there exists in 𝐷 a definition of the form

𝑢 ≡ 𝑡 such that 𝑣 ∈ cinsts• (𝑡) ∪ types• (𝑡).

We write⇝↓ for the (type-)substitutive closure of⇝, defined as follows: 𝑢 ⇝↓ 𝑣 means that

there exist 𝑢′, 𝑣 ′ and a type substitution 𝜌 such that 𝑢 = 𝑢′ [𝜌], 𝑣 = 𝑣 ′ [𝜌] and 𝑢′ ⇝ 𝑣 ′.

Prop 6. [Kunčar and Popescu 2018] Let 𝐷 be a HOL definitional theory. Then⇝↓ is terminating.

3 DISCUSSION
Next, we discuss the goal of relativizing HOL statements and its challenges, using examples to which

wewill refer all throughout the paper (Section 3.1).We synthesize some properties one should reason-

ably expect from relativization (Section 3.2), which become targets for our technical development.

3.1 Some Working Examples
Let us consider in more detail the example from the introduction—of modeling in HOL the notion

of a group. In the lightweight, type-based approach, we define the polymorphic predicate group :

(𝛼 ⇒ 𝛼 ⇒ 𝛼) ⇒ 𝛼 ⇒ bool with group times e stating that (𝛼, times, e) forms a group, i.e., times
is associative with neutral element e, and any element has an inverse:

(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧)) ∧
(∀𝑥𝛼 . times 𝑥 e = 𝑥 ∧ times e 𝑥 = 𝑥) ∧
(∀𝑥𝛼 . ∃𝑦𝛼 . times 𝑥 𝑦 = 𝑒 ∧ times 𝑦 𝑥 = 𝑒)
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After defining what a group is, we can prove properties about it. Let us pick three examples: the

first-order property of left-cancellation

(1)

group times e −→
(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . times 𝑥 𝑦 = times 𝑥 𝑧 −→ 𝑦 = 𝑧)

the second-order property of left-inverse function uniqueness

(2)

group times e −→
(∀inv𝛼⇒𝛼 , inv′𝛼⇒𝛼 . (∀𝑥𝛼 . times (inv 𝑥) 𝑥 = e) ∧ (∀𝑥𝛼 . times (inv′ 𝑥) 𝑥 = e) −→ inv = inv′)

and a property involving a defined type (here, that of lists)

(3)

group times e −→
(∀xs𝛼 list, ys𝛼 list . fold times e (append xs ys) = times (fold times e xs) (fold times e ys))

where append : 𝛼 list ⇒ 𝛼 list ⇒ 𝛼 list and fold : (𝛽 ⇒ 𝛼 ⇒ 𝛽) ⇒ 𝛽 ⇒ 𝛼 list ⇒ 𝛽 are the

polymorphic operators for appending two lists and respectively left-folding a list with a function.

Let us now see what the above becomes under the more bureaucratic (yet more flexible) set-based

approach. We work in a context that fixes a set 𝐴 : 𝛼 set and assumes that 𝐴 is closed under the

considered operations: closed2 𝐴 times, defined as ∀𝑥𝛼 , 𝑦𝛼 . 𝑥 ∈∈ 𝐴 ∧ 𝑦 ∈∈ 𝐴 −→ times 𝑥 𝑦 ∈∈ 𝐴, and
closed0 𝐴 e, defined as e ∈∈ 𝐴. The group notion is now expressed as grouprlt 𝐴 times e, defined as

(∀𝑥𝛼 ∈∈ 𝐴, 𝑦𝛼 ∈∈ 𝐴, 𝑧𝛼 ∈∈ 𝐴. times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧)) ∧
(∀𝑥𝛼 ∈∈ 𝐴. times 𝑥 e = 𝑥 ∧ times e 𝑥 = 𝑥) ∧
(∀𝑥𝛼 ∈∈ 𝐴. ∃𝑦𝛼 ∈∈ 𝐴. times 𝑥 𝑦 = 𝑒 ∧ times 𝑦 𝑥 = 𝑒)

Henceforth, we work relative to the carrier set 𝐴. In this carrier-relative world, left-cancellation

becomes, as one might expect:

(1’)

closed2 𝐴 times ∧ closed0 𝐴 e −→ grouprlt 𝐴 e times −→
(∀𝑥𝛼 ∈∈ 𝐴, 𝑦𝛼 ∈∈ 𝐴, 𝑧𝛼 ∈∈ 𝐴. times 𝑥 𝑦 = times 𝑥 𝑧 −→ 𝑦 = 𝑧)

Above, the relativization process was conceptually straightforward, in that we simply used rela-

tivized quantifiers. As we move to making relativized statements of a higher order, we need more

invasive modifications. For example, left-inverse function uniqueness becomes:

(2’)

closed2 𝐴 times ∧ closed0 𝐴 e −→ grouprlt 𝐴 e times −→
(∀inv𝛼⇒𝛼∈∈ 𝐴⇒ 𝐴, inv′𝛼⇒𝛼∈∈ 𝐴⇒ 𝐴.

(∀𝑥𝛼 ∈∈ 𝐴. times (inv 𝑥) 𝑥 = e) ∧ (∀𝑥𝛼 ∈∈ 𝐴. times (inv′ 𝑥) 𝑥 = e) −→ inv =𝐴 inv′)

Highlighted are two less trivial changes to the original statement. First, the two functions inv and

inv′, which by their types send elements of 𝛼 to elements of 𝛼 , must be assumed to also belong

to the set of functions that send elements of 𝐴 to elements of 𝐴, i.e., of functions under which 𝐴 is

closed (which we denote by 𝐴⇒ 𝐴, by analogy with the function-space type constructor). But this

is not enough! Another modification is that we cannot conclude the strict equality of inv and inv′,
but only their equality on the elements of 𝐴, written =𝐴. So we see that, for items of a compound

polymorphic type such as 𝛼 ⇒ 𝛼 , when relativizing the statements we must consider both a subset
of the type, here 𝐴⇒ 𝐴, as well as a more abstract notion of equality on it, here =𝐴.

5

5
Admittedly, saying that we must consider both subsets and abstract equalities may sound too strong. An alternative that

avoids resorting to abstract equalities with the price of complicating the treatment of functions, and ultimately failing to

properly cover container types, is discussed in Appendix D.
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This relativization infrastructure comes naturally for the built-in type of functions, but how about

the other types, obtained via HOL type definitions? To use them in relativized statements, they must

provide similar infrastructure. The third example statement involves lists, and its relativized form is

(3’)

closed2 𝐴 times ∧ closed0 𝐴 e −→ grouprlt 𝐴 e times −→
(∀xs𝛼 list∈∈ list (𝐴), ys𝛼 list∈∈ list (𝐴) .

fold times e (append xs ys) = times (fold times e xs) (fold times e ys))

Above, we overloaded the list notation to also denote the internalization to sets of the list type
constructor, namely the operator of type 𝛼 set ⇒ 𝛼 list set that takes any set 𝐴 to the set of lists

xs such that all the elements occurring in xs are in 𝐴.

Unlike in statement (2’) where we needed a custom equality for functions, in statement (3’), for

lists, we used bare equality. This is because we only had to deal with bare equality, which when

lifted becomes again bare equality. But in general, when relativizing statements involving 𝜎 list for
some type 𝜎 (which could be, for instance, 𝛼 ⇒ 𝛼), we would need to lift to 𝜎 list whatever custom
equality we reached for 𝜎 ; in the case of lists, the natural lifting occurs componentwise.

Overall, we need a way to lift along type constructors both sets and “abstract equalities”. Both

these concepts are particular cases of PERs: an equivalence relation is obviously a PER, and a set 𝐴

induces the PER eqOf 𝐴, read “the equality of𝐴” (holding for two elements when they are equal and

belong to𝐴; not to be confusedwith=𝐴, used earlier for the equality of two functionswhen applied to

𝐴’s elements). This suggests focusing on PER-based relativization as a generalization of set-based rel-

ativization. And if we also take into account that the liftings of equivalence relations along function

spaces are not always equivalences but are always PERs, we are compelled to follow this suggestion.

3.2 What WeWant from Relativization
We are ready to formulate our wish list for relativization. First, let’s identify the relevant translations:

• We want to produce, from any HOL formula, or more generally from any HOL term 𝑡 , a

relativized counterpart RLT(𝑡) that has the same type as 𝑡—so that, in particular, if 𝑡 is a

formula then RLT(𝑡) is also a formula. In the recursive process of producing the relativized

term, we must relativize all the constants occurring in the original term.

• Equality stood out as requiring special treatment, in that equality on a type 𝜎 should

be mapped to a PER on 𝜎 . And the relativization of equality on compound types such

as 𝜎 list and 𝜎 ⇒ 𝜏 depends on that of their components (𝜎 , or 𝜎 and 𝜏). Therefore,

whereas relativization initially proceeds structurally recursive on terms, when equality is

encountered we must switch to structural recursion on types. So to separate concerns, we

can speak about the relational interpretation of a type 𝜎 , denoted RIN(𝜎), which will be a

PER on 𝜎 . The relativization of equality on 𝜎 , RLT(=𝜎 rel), will be taken to be RIN(𝜎).
Themain result that we are after is an Admissibility theorem: If the original type-based statements

𝜑 are provable in HOL, then their relativized versions, RLT(𝜑), are also provable in HOL under

suitable relativization assumptions—let us denote these assumptions by Δ𝜑
. This allows us, for our

working examples from Section 3.1, to conclude (1’), (2’) or (3’) as soon as we have proved (1), (2)

or (3), while staying within the boundaries of HOL’s axiomatic base. In these examples, 𝜑 is the

original statement (x) (where x is 1, 2 or 3), Δ𝜑
is the first line of (x’) (assuming closedness w.r.t.

𝐴) and RLT(𝜑) is the statement on the remaining lines. We will actually formulate Admissibility

a bit more generally: We don’t need to start with sets 𝐴 : 𝛼 set, but can start with PERs 𝑅 : 𝛼 rel,
obtaining the theorem for sets as a particular case by taking 𝑅 to be eqOf (𝐴).

While being the main goal, Admissibility is certainly not our only goal. We want relativization to

“make sense”, i.e., to satisfy some expected/desired properties. Importantly, it should satisfy what
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we will refer to as Connective & Quantifier Suitability, i.e., behave as expected for the connectives

and quantifiers. These are not primitive in HOL but are defined using 𝜆-abstraction and equality;

for example, ∀𝑥𝜎 . 𝜑 is defined as (𝜆𝑥𝜎 . 𝜑) = (𝜆𝑥𝜎 . true). As it turns out, our choice to interpret

equality on 𝜎 as the PER RIN(𝜎) frees us from having to do anything special when relativizing

𝜆-abstraction, so we can simply set RLT(𝜆𝑥𝜎 . 𝜑) to be 𝜆𝑥𝜎 . RLT(𝜑). Indeed, for the case of universal
quantification, RLT(∀𝑥𝜎 . 𝜑) then becomes RIN(𝜎 ⇒ 𝜎) (𝜆𝑥𝜎 . RLT(𝜑)) (𝜆𝑥𝜎 . true), which means

∀𝑥𝜎 , 𝑦𝜎 . RIN(𝜎) 𝑥 𝑦 −→ RLT(𝜑) with 𝑦𝜎 fresh for 𝜑 . Since RIN(𝜎) will be (guaranteed to be) a

PER, the last formula is equivalent to ∀𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 −→ RLT(𝜑). And since RIN(𝜎) 𝑥 𝑥 says

that 𝑥 is in the domain of RIN(𝜎), this is precisely what one wants from the relativization of ∀.
Similarly, we obtain RLT(∃𝑥𝜎 . 𝜑) provably equal to ∃𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ RLT(𝜑).

Another natural property we wish to have is Recoverability: Instantiating the relational parame-

ters of a relativized term RLT(𝑡) to be the equality relations should provide a term that is provably

equal to the original term 𝑡 . In particular, a relativized statement should be a generalization of the

original statement, meaning that the converse of Admissibility should also hold.

The relational interpretation RIN is of course an incarnation of the types-as-relations interpreta-

tion paradigm [Reynolds 1983]. In fact, already implicit in the above discussion is that we want the

relativized terms to belong to the domain of their types’ relational interpretation: Given 𝑡 : 𝜎 , we

want that RIN(𝜎) RLT(𝑡) RLT(𝑡) is provable (in HOL) assuming a suitable relativization context,

which fixes a PER variable for each type variable in 𝑡 . This is a restricted form of parametricity,

namely parametricity with respect to PERs. So relativization will essentially be a mechanism for

turning terms and constants into counterparts that are parametric with respect to PERs. The items

that are already parametric, such as fold and append in statement (3), will therefore not be affected

by relativization: They persist unchanged in the relativized statement (3’).

Lists, as well as many container types (such as sets, bags, trees of various kinds, etc.), can be

naturally interpreted relationally [Hoogendijk and de Moor 2000; Traytel et al. 2012; Wadler 1989].

But what about types defined in HOL in general, via comprehension with predicates? We need to

identify conditions under which a well-behaved relational interpretation, one that in particular

brings well-behaved (including admissible) relativization, is possible for defined types.

Even for container types, which have a well-understood natural relational interpretation, a HOL-

specific problem arises: In HOL, these types are not built-in, but are also defined via comprehension.

This “humble”, low-level origin can be forgotten by the users (and is usually hidden from the

average users) after the high-level properties of container types (injectiveness and exhaustiveness

of the constructors, induction and recursion principles, etc.) have been established. But for proving

Admissibility we obviously cannot afford to forget it! So it is desirable that our notion of HOL

relativization, which will be proved to be admissible, is compatible with the standard relational

interpretation of container types—we call this property Compatibility. It would ensure that the

expected relativization of formulas involving container types is itself admissible in HOL.

4 PER RELATIVIZATION IN HOL
This section will develop systematically the ideas explored in Section 3.2. We start by defining the

syntactic operators that perform relativization, namely the relational interpretation operator RIN
on types and the relativization operator RLT on terms (§4.1). Special care is required for the Hilbert

choice constant and the defined types. For Hilbert choice, we must ensure that the relativized

version is consistent with the original version (i.e., satisfies Recoverability) even outside its intended

domain, where the argument predicate holds. For defined types, it turns out that a well-behaved

relational interpretation is only possible for them if a certain favorable condition holds. Defined

types 𝜏 are, as discussed, copies of subsets of existing types 𝜎 given by predicates 𝑡 : 𝜎 ⇒ bool. The
relational interpretation of 𝜎 , RIN(𝜎), and 𝑡 ’s relativization, RLT(𝑡), should therefore both play a
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role in defining 𝜏 ’s relational interpretation. The two are connected by the property that, due to 𝑡 ’s

PER-parametricity, RLT(𝑡) is compatible with RIN(𝜎), meaning that it can be regarded as operating

on equivalence classes of RIN(𝜎). This suggests taking RIN(𝜏) to be a copy on 𝜏 of the restriction

of RIN(𝜎) to elements where RLT(𝑡) is true—which only works provided 𝜏 is wide enough! Thus,

to be able to extend the relational interpretation to defined types, we will need that their definitions

satisfy a “wide typedness” property. Then we prove that the relativization operators satisfy most

of Section 3.2’s desired properties, including Admissibility, Connective & Quantifier Suitability, Re-

coverability and PER-Parametricity (§4.2). (The only desirable property that we do not prove at this

stage is Compatibility, which wewill address later, in Section 7.) Finally, we look back at our working

examples from Section 3.1 and show that our PER relativization handles them correctly (§4.3).

4.1 The Relativization Operators
4.1.1 Supply of Fresh Relational Variables, and Relativization Contexts. For every type-variable

𝛼 , we fix a variable 𝑅𝛼 ∈ Var . We assume that the variables 𝑅𝛼
are mutually distinct (for any two

distinct type-variables) and do not occur in the input terms to the operators we define. Usually,

we will use these to form typed variables of type 𝛼 rel, written 𝑅𝛼
𝛼 rel; but we will occasionally also

perform type-substitutions on them, obtaining typed variables such as 𝑅𝛼
𝜎 rel. We will use these

relation-variables to provide context for relativization, as described next.

Definition 7. For a type 𝜎 , let Δ𝜎
denote the context consisting of an assumption per≠∅ 𝑅

𝛼
𝛼 rel for

each 𝛼 ∈ TV(𝜎). For any term 𝑡 , let Δ𝑡
denote the context consisting of the following assumptions:

(1) per≠∅ 𝑅
𝛼
𝛼 rel for each 𝛼 ∈ TV(𝑡) (2) RIN(𝜎) 𝑥𝜎 𝑥𝜎 for each 𝑥𝜎 ∈ FTV(𝑡)

For any context Γ, let ΔΓ
be

⋃
𝜑∈Γ Δ

𝜑
. We call Δ𝜎

, Δ𝑡
, and ΔΓ

the relativization context of 𝜎 , 𝑡 , and
Γ, respectively.

Note that, taking TV(Γ) and FTV(Γ) to be the unions of the corresponding operators applied to

all formulas in Γ, we have that ΔΓ
consists of the following assumptions:

(1) per≠∅ 𝑅
𝛼
𝛼 rel for each 𝛼 ∈ TV(Γ) (2) RIN(𝜎) 𝑥𝜎 𝑥𝜎 for each 𝑥𝜎 ∈ FTV(Γ)

Let Σ = (K, arOf , Const, tpOf ) be a signature and 𝐷 a definitional theory for this signature. All

the concepts of this section are defined relative to Σ and 𝐷 .

We let the term frel denote the following term of type 𝛼 rel⇒ 𝛽 rel⇒ (𝛼 ⇒ 𝛽) rel:
𝜆𝑃𝛼 rel, 𝑄𝛽 rel, 𝜆𝑓𝛼⇒𝛽 , 𝜆𝑓

′
𝛼⇒𝛽

. ∀𝑥𝛼 , 𝑥 ′𝛼 . 𝑃 𝑥 𝑥 ′ −→ 𝑄 (𝑓 𝑥) (𝑓 ′ 𝑥 ′)
Thus, frel 𝑃 𝑄 is the lifting of the relations 𝑃 on 𝛼 and 𝑄 on 𝛽 to the function space 𝛼 ⇒ 𝛽 .

Reflecting this intuition, we will usually write 𝑃 ⇒ 𝑄 instead of frel 𝑃 𝑄 .

4.1.2 Defining the Relativization Operators Everywhere but on the Defined Types.

Definition 8. We define the operators RIN : Type→ Term, where RIN(𝜎) is called the relational
interpretation of the type 𝜎 , and RLT : Term→ Term, where RLT(𝑡) is called the relativization of

the term 𝑡 , recursively by the following clauses:

RIN(𝛼) = 𝑅𝛼
𝛼 rel RIN(𝜎 ⇒ 𝜏) = RIN(𝜎) ⇒ RIN(𝜏)

RIN(bool) = (=bool rel) RIN(ind) = (=ind rel) RLT(=𝜎⇒𝜎⇒bool) = RIN(𝜎)
RLT(𝑥𝜎 ) = 𝑥𝜎 RLT(𝑡1 𝑡2) = RLT(𝑡1) RLT(𝑡2) RLT(𝜆𝑥𝜎 . 𝑡) = 𝜆𝑥𝜎 . RLT(𝑡)
RLT(choice (𝜎⇒bool)⇒𝜎 ) = 𝜆𝑝𝜎⇒bool . if (∃𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑝 𝑥)

then (Some 𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑝 𝑥)
else (Some 𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ (RIN(𝜎) ≠ (=𝜎 rel)))

RLT(𝑐𝜏 ) = RLT(𝑡 ′ [𝜌]) if 𝑐 is a non-built-in constant, 𝑐𝜏 ′ ≡ 𝑡 ′ is in 𝐷 and 𝜏 ≤𝜌 𝜏 ′
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Note that, in the definitional clause for defined constants 𝑐𝜏 , since TV(𝑡 ′) ⊆ TV(𝑐𝜏 ′ ), the definition
of RLT does not depend on the choice of 𝜌 such that 𝜏 = 𝜏 ′ [𝜌].
The clauses of the above definition are mostly the expected ones, in light of our previously

discussed design decisions. The clause for the choice operator is the only one requiring additional

explanations. Recall that the choice function applied to a predicate 𝑝𝜎⇒bool returns an element of 𝜎

satisfying 𝑝 provided such an element exists, and a completely arbitrary element otherwise. Conse-

quently, it is natural to think that the relativization should return an element in RIN(𝜎)’s domain

satisfying 𝑝 provided such an element exists, and an arbitrary element of RIN(𝜎)’s domain other-

wise. This explains the if-then-else structure of the clause and “almost works”, in that it is compatible

with our wish-list properties discussed in Section 3.2 except for Recoverability: We want that, taking

RIN(𝜎) to be the equality on 𝜎 , the relativized choice function becomes provably equal to the (orig-

inal) choice function—but this would not be true for the trivial case of the input predicate 𝑝 being

vacuously false, where we would get a mismatch between Some 𝑥𝜎 . false and Some 𝑥𝜎 . RIN(𝜎) 𝑥 𝑥

(whose equality is not provable in HOL). This is a degenerate and somewhat pathological case—of

using choice outside its intended domain—but nevertheless we must deal with it (unless we settle for

well-behavedness of our relativization only in cases of meaningful application of choice, which is not

ideal). It turns out we can restore Recoverability while maintaining the other properties (including

PER-parametricity of relativized choice): The highlighted addition of the conjunct RIN(𝜎) ≠ (=𝜎 rel)
(saying that RIN(𝜎) is not the equality relation) fixes this problem. Indeed, when RIN(𝜎) is not the
equality relation the result stays the same; andwhen it is the equality relation, it again stays the same

except for when the predicate is vacuously false, in which case it returns a choice of false, as desired.

4.1.3 Defining the Relativization Operators on the Defined Types. Assume the type 𝜏 is defined

from the type 𝜎 via the predicate 𝑡 : 𝜎 ⇒ bool. This means that 𝐷 contains the type definition 𝜏 ≡ 𝑡 ,
which states that there exists a bijection rep between 𝜏 ’s elements and the elements of 𝜎 satisfying 𝑡 .

To define RIN(𝜏), the relational interpretation of 𝜏 , what we have at our disposal is the relational

interpretation of 𝜎 , RIN(𝜎), and the relativization of 𝑡 , RLT(𝑡), which is a predicate on 𝜎 . Thus, given
that 𝜏 is essentially a “copy” of (the collection of elements satisfying) 𝑡 from 𝜎 , it would be natural

to define RIN(𝜏) as some sort of copy of RIN(𝜎)↾RLT(𝑡 ) , the restriction of the PER RIN(𝜎) to RLT(𝑡).
In fact, this would not only be natural, but also mandatory given the properties we wish to prove for

our relativization functions, in particular Admissibility: Since 𝜏 ≡ 𝑡 is provable (from 𝐷 , via (Fact)),

we wish that RLT(𝜏 ≡ 𝑡) is also provable. And, if we factor in Connective & Quantifier Suitability,

the latter says that there exists a bijection-up-to between RIN(𝜏) and RIN(𝜎)↾RLT(𝑡 ) . In conclusion,

we want that RIN(𝜏) and RIN(𝜎)↾RLT(𝑡 ) are not necessarily isomorphic, but isomorphic up to their

respective PER-induced “equalities”, i.e., we want ∃𝑓𝜏⇒𝜎 . bijUpto 𝑓 RIN(𝜏) RIN(𝜎)↾RLT(𝑡 ) to hold.

• • • •
• × • •
• × × •
• × • •
• • • •

Fig. 1. A type 𝜎 , the
PER relation RIN(𝜎) :
𝛼 rel, and the predicate
RLT(𝑡) : 𝜎 → bool.

Fig. 1 is a graphical illustration of this situation. The elements of type

𝜎 are shown as either bullets or crosses. The bullets are the elements in

the domain of RIN(𝜎), and the separating lines show their partitioning into

PER-classes (two elements are in the same class when they are related by

RIN(𝜎)). The crosses are elements outside the domain of RIN(𝜎). Among

the bullets, the red ones are those that satisfy the predicate RLT(𝑡). Note
that each PER-class has either all or none of its elements satisfying RLT(𝑡),
i.e., in the picture its elements are either all red or all black. This is by

Admissibility: From the tautological property that 𝑡 is compatible with the

equality on 𝜎 , we must have that RLT(𝑡) is compatible with RIN(𝜎).
To produce such a suitable RIN(𝜏), one may be tempted to make an isomorphic copy of

RIN(𝜎)↾RLT(𝑡 ) using some representation function rep (whose existence is guaranteed by 𝜏 ≡ 𝑡 ).

However, this is in general not possible, because the predicates 𝑡 and RLT(𝑡) are not guaranteed to
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be related in any semantically meaningful way. In particular it is not generally the case that 𝑡 𝑥

implies RLT(𝑡) 𝑥 or vice versa; in fact, the sets of elements of 𝜎 satisfying these two predicates

may even be disjoint. For example, in Fig. 1, 𝑡 may well correspond to any collection of elements

whatsoever—e.g., one red bullet, one black bullet and one cross. In short, the bijection rep between

𝜏 and 𝜎 provided by 𝜏 ≡ 𝑡 cannot be used to copy RIN(𝜎)↾RLT(𝑡 ) from 𝜎 to 𝜏 .

So how shall we define RIN(𝜏) then? The answer is that it does not matter, as long as some sanity
properties hold, namely:

• RIN(𝜏) is a PER which becomes actual equality on 𝜏 if the relations 𝑅𝛼
are assumed to be

equalities on 𝛼 for all type variables in 𝛼

• ∃𝑓𝜏⇒𝜎 . bijUpto 𝑓 RIN(𝜏) RIN(𝜎)↾RLT(𝑡 ) holds
This conclusion may be slightly perplexing, but it makes perfect sense once we reflect on what

relativization is supposed to provide: By the nature of relativization, the relativized terms will only

be considered in connection with domains and induced notions of equality given by the relational

interpretations. This means that, when defining RIN for 𝜏 (just like for any other type), any two

choices of PERwill be equally acceptable if they are “isomorphic-up-to”, i.e., connected by a bijection-

up-to. And, as we have seen, we are forced to choose something in the isomorphic-up-to class of

RIN(𝜎)↾RLT(𝑡 ) . For the Fig. 1 example, RIN(𝜎)↾RLT(𝑡 ) has three PER-classes (the ones containing red
bullets), and therefore any definition of RIN(𝜏) as a PER with three equivalence classes would do.

This having been said, for particular defined types 𝜏 , some choices of PERs can be more natural

than others. And an important, somewhat empirical question is whether such natural choices are

indeed isomorphic-up-to with RIN(𝜎)↾RLT(𝑡 ) . We will study this question in depth in Section 7.

But here, abstractly, we want to allow ourselves the freedom to make any choice within the

isomorphic-up-to constraint. That is, provided at least one choice exists! The following example

shows that this may not always be the case:

Example 9. Consider the type definition 𝛼 𝜅 ≡ 𝑡 for 𝑡 : 𝜎 ⇒ bool, 𝜎 is ind ⇒ 𝛼 and 𝑡 states of

its argument 𝑢 : 𝜎 that 𝑢 is either surjective or is equal to 𝜆𝑖. Some 𝑎𝛼 . true, i.e., 𝑡 is

𝜆 𝑢𝜎 . (∀𝑎. ∃𝑖 . 𝑢 𝑖 = 𝑎) ∨ 𝑢 = (𝜆𝑖. Some 𝑎𝛼 . true)
For a contradiction, let us assume that RIN can be defined for 𝛼 𝜅 so that the discussed prop-

erties hold, in particular, under the assumption that 𝑅𝛼
𝛼 rel is a PER, we have that RIN(𝛼 𝜅) is a

PER and ∃𝑓𝜏⇒𝜎 . bijUpto 𝑓 RIN(𝛼 𝜅) RIN(𝜎)↾RLT(𝑡 ) holds. Let us fix a non-empty set 𝐴 : 𝛼 set
and take 𝑅𝛼

𝛼 rel to be eqOf (𝐴). Then RIN(𝜎) is the relation (=ind rel) ⇒ eqOf (𝐴), which is the

same as 𝜆 𝑢, 𝑢′ . ∀𝑖, 𝑖′ . 𝑖 = 𝑖′ −→ eqOf (𝐴) (𝑢 𝑖) (𝑢′ 𝑖′), which is furthermore the same as

𝜆 𝑢, 𝑢′ . ∀𝑖 . 𝑢 𝑖 = 𝑢′ 𝑖 ∧ 𝑢 𝑖 ∈∈ 𝐴, which is finally the same as 𝜆 𝑢, 𝑢′ . 𝑢 = 𝑢′ ∧ ∀𝑖 . 𝑢 𝑖 ∈∈ 𝐴.
Moreover, we have that RLT(𝑡) is 𝜆 𝑢𝜎 . (∀𝑎 ∈∈ 𝐴. ∃𝑖 . 𝑢 𝑖 = 𝑎) ∨ 𝑢 = (𝜆 𝑖. Some 𝑎𝛼 . eqOf (𝐴) 𝑎 𝑎)

which is the same as 𝜆 𝑢𝜎 . (∀𝑎 ∈∈ 𝐴. ∃𝑖 . 𝑢 𝑖 = 𝑎) ∨ 𝑢 = (𝜆 𝑖. Some 𝑎𝛼 . 𝑎 ∈∈ 𝐴).
Putting together the above two characterizations of RIN(𝜎) and RLT(𝑡) (for the case when 𝑅𝛼

𝛼 rel
is eqOf (𝐴)), we obtain that RIN(𝜎)↾RLT(𝑡 ) is the relation

𝜆 𝑢𝜎 , 𝑢
′
𝜎 . 𝑢 = 𝑢′ ∧ ∀𝑖 . 𝑢 𝑖 ∈∈ 𝐴 ∧ ((∀𝑎 ∈∈ 𝐴. ∃𝑖 . 𝑢 𝑖 = 𝑎) ∨ 𝑢 = (𝜆 𝑖. Some 𝑎𝛼 . 𝑎 ∈∈ 𝐴))

which is the same as

𝜆 𝑢𝜎 , 𝑢
′
𝜎 . 𝑢 = 𝑢′ ∧ image 𝑢 = 𝐴 ∨ 𝑢 = (𝜆 𝑖. Some 𝑎𝛼 . 𝑎 ∈∈ 𝐴)

where image 𝑢 denotes the image of 𝑢, namely {𝑢 𝑖 | 𝑖 : ind}.
Thus, the PER-classes of RIN(𝜎)↾RLT(𝑡 ) correspond bijectively to the set of all functions 𝑢 : 𝜎

that are either 𝜆𝑖. Some 𝑎𝛼 . 𝑎 ∈∈ 𝐴 or have their image equal to 𝐴.

Now, let us further instantiate 𝛼 to a large enough type, say ind ⇒ bool, and take 𝐴 : (ind ⇒
bool) set to consist of two elements, say, the functions 𝜆𝑖. true and 𝜆𝑖. false (while still assuming
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𝑅𝛼
(ind⇒ bool) rel to be eqOf (𝐴)). Since there are no surjective functions between ind and ind ⇒

bool, it follows that the corresponding instance of 𝑡 is satisfied by only one element, namely

𝜆𝑖. Some 𝑎ind⇒ bool . true, which means that the corresponding instance of 𝜏 , namely (ind ⇒ bool) 𝜅 ,
is a singleton. On the other hand, there exist many functions 𝑢 : ind ⇒ (ind ⇒ bool) whose image

is equal to 𝐴, meaning that the corresponding instance of RIN(𝜎)↾RLT(𝑡 ) is not a singleton.
So, for the indicated instances, we have that 𝛼 𝜅 is a singleton whereas RIN(𝜎)↾RLT(𝑡 ) is not. We

have thus reached a contradiction. Thus, 𝛼 𝜅 cannot have a suitable relational interpretation. □

As we can see, the reason why a suitable choice for RIN(𝜏) may not exist is that 𝜏 is not wide
enough, in other words, the extension {𝑥𝜎 | 𝑡 𝑥} of the defining predicate 𝑡 is not wide enough (for

certain instances). Let us make this precise. For any type 𝜎 , predicates 𝑡 : 𝜎 ⇒ bool and 𝑠 : 𝜎 ⇒ bool,
and PER 𝑟 : 𝜎 rel, we let 𝑡 ≥ 𝑠/𝑟 denote the formula ∃𝑓𝜎⇒𝜎 . ∀𝑦𝜎 . 𝑠 𝑦 −→ ∃𝑥𝜎 . 𝑡 𝑥 ∧ 𝑟 (𝑓 𝑥) 𝑦.
Thus, 𝑡 ≥ 𝑠/𝑟 says that the extension of (i.e., set of items satisfying) the predicate 𝑡 is at least as large

as the set of 𝑟 -classes of 𝑠 , i.e., as the extension of 𝑠 quotiented by 𝑟 . This cardinality relationship is

witnessed by the function 𝑓 , which is a surjection between the extension of 𝑡 and that of 𝑠 up to 𝑟 .

Definition 10. A type definition in 𝐷 of the form 𝜏 ≡ 𝑡 where 𝑡 : 𝜎 ⇒ bool is called wide if

𝐷 ; Δ𝜏 ⊢ 𝑡 ≥ RLT(𝑡)/RIN(𝜎)

Wide type definitions allow us to obtain a PER on the defined type 𝜏 satisfying the desirable

properties. In fact, it is easy to see that the converse of the above also holds: If we can find a

PER 𝑃 that generalizes equality in such a way that there exists a bijection-up-to between 𝑃 and

RIN(𝜎)↾RLT(𝑡 ) , then the domain of 𝑃 , in particular 𝜏 , hence the extension of 𝑡 , must be at least as

large as RLT(𝑡) quotiented by RIN(𝜎).
We conclude that wide type definitions are what we want and need for hoping to interpret defined

types relationally while retaining the main results about relativization (those from Section 4.2).

As for the particular PER that acts as a relational interpretation of defined types, we prefer to not

commit to any choice of such a PER, but parameterize our definition by an unspecified choice.

Definition 11. Given a type definition in 𝐷 of the from 𝜏 ≡ 𝑡 where 𝑡 : 𝜎 ⇒ bool and 𝜏 has the

form (𝛼1, . . . , 𝛼𝑚)𝜅 , a relational witness for it is a ground term relwit𝜅 of type 𝛼1 rel⇒ . . . 𝛼𝑚 rel⇒
(𝛼1, . . . , 𝛼𝑚)𝜅 rel such that

𝐷 ⊢ (∧Δ𝜏 −→ per (relwit𝜅 𝑅𝛼1

𝛼1 rel
. . . 𝑅

𝛼𝑚
𝛼𝑚 rel)) ∧

relwit𝜅 (=𝛼1 rel) . . . (=𝛼𝑚 rel) = (=𝜏 rel) ∧
(∧Δ𝜏 −→ ∃𝑓𝜏⇒𝜎 . bijUpto 𝑓 (relwit𝜅 𝑅𝛼1

𝛼1 rel
. . . 𝑅

𝛼𝑚
𝛼𝑚 rel) RIN(𝜎)↾RLT(𝑡 ) )

Note that we have Δ𝑡 ⊆ Δ𝜏
and Δ𝜏

consists of the assumptions per≠∅ 𝑅
𝛼1

𝛼1 rel
, . . . , per≠∅ 𝑅

𝛼𝑚
𝛼𝑚 rel.

A wide type definition always has a relational witness given by the choice operator, to which we

will refer as the default relational witness:

Prop 12. Given a wide type definition 𝜏 ≡ 𝑡 in 𝐷 where 𝑡 : 𝜎 ⇒ bool and 𝜏 has the form

(𝛼1, . . . , 𝛼𝑚)𝜅, the following is a relational witness for it:
Some 𝑃𝛼1 rel⇒ . . .⇒ 𝛼𝑚 rel⇒ 𝜏 rel . ∀𝑅𝛼1

𝛼1 rel
, . . . , 𝑅

𝛼𝑚
𝛼𝑚 rel .

(∧Δ𝜏 −→ per (𝑃 𝑅
𝛼1

𝛼1 rel
. . . 𝑅

𝛼𝑚
𝛼𝑚 rel)) ∧

𝑃 (=𝛼1 rel) . . . (=𝛼𝑚 rel) = (=𝜏 rel) ∧
(∧Δ𝜏 −→ ∃𝑓𝜏⇒𝜎 . bijUpto 𝑓 (𝑃 𝑅

𝛼1

𝛼1 rel
. . . 𝑅

𝛼𝑚
𝛼𝑚 rel) RIN(𝜎)↾RLT(𝑡 ) )

Our results will apply to definitional theories whose types are wide, and which optionally come

with relational witnesses for some of their type definitions—for those with no provided relational

witnesses, we can use the default witnesses.
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Definition 13. A definitional theory 𝐷 is said to be widely-typed if all its type definitions

(𝛼1, . . . , 𝛼𝑚)𝜅 ≡ 𝑡 in 𝐷 are wide and come with (possibly default) relational witnesses relwit𝜅 .

Now we are on solid ground for extending the relational interpretation to defined types:

Definition 14. Assuming 𝐷 is widely-typed, we extend Def. 8 with a clause for defined types as

follows. Assume (𝛼1, . . . , 𝛼𝑚)𝜅 ≡ 𝑡 is a type definition in 𝐷 , and let (𝜎1, . . . , 𝜎𝑚)𝜅 be an instance

of (𝛼1, . . . , 𝛼𝑚)𝜅. We define

RIN((𝜎1, . . . , 𝜎𝑚)𝜅) = relwit𝜅 [𝜎1/𝛼1, . . . , 𝜎𝑚/𝛼𝑚] RIN(𝜎1) . . . RIN(𝜎𝑚)

The definitions of RLT and RIN are mutually recursive. The reason why these definitions are

correct, i.e., terminating (thus defining two total functions) is that they combine structural recursion

and well-founded recursion along the definitional dependency relation—Appendix B gives details.

4.2 Properties of Relativization
For the following results, we work in the same setting as in Section 4.1—namely with a fresh supply

of relation-variables 𝑅𝛼
, assumed (in relativization contexts) to denote nonempty PERs.

The next proposition states that the relational interpretations (which essentially “lift” those basic

PERs to entire types 𝜎) are also PERs.

Prop 15. For all types 𝜎 , we have 𝐷 ; Δ𝜎 ⊢ per RIN(𝜎).

Relativization behaves as desired with respect to the connectives and quantifiers:

Theorem 16. (Connective & Quantifier Suitability) The following hold for all formulas 𝜑

and𝜓 and typed variables 𝑥𝜎 :

(1) 𝐷 ⊢ RLT(true) = true and 𝐷 ⊢ RLT(false) = false,
(2) 𝐷 ⊢ RLT(¬ 𝜑) = ¬ RLT(𝜑), 𝐷 ⊢ RLT(𝜑 ∧𝜓 ) = (RLT(𝜑) ∧ RLT(𝜑)),
𝐷 ⊢ RLT(𝜑 ∨𝜓 ) = (RLT(𝜑) ∨ RLT(𝜑)), and 𝐷 ⊢ RLT(𝜑 −→ 𝜓 ) = (RLT(𝜑) −→ RLT(𝜑)),
(3) 𝐷 ; Δ𝜎 ⊢ RLT(∀𝑥𝜎 . 𝜑) = (∀𝑥𝜎 . RIN(𝜎) 𝑥𝜎 𝑥𝜎 −→ RLT(𝜑)), and
(4) 𝐷 ; Δ𝜎 ⊢ RLT(∃𝑥𝜎 . 𝜑) = (∃𝑥𝜎 . RIN(𝜎) 𝑥𝜎 𝑥𝜎 ∧ RLT(𝜑)).

The relational interpretation RIN(𝜎) can recover the notion of equality on the original type,

=𝜎 rel, by substituting equality for the relational variables associated to type-variables of the 𝜎 ; and,

in a similar way, relativization RLT(𝑡) can recover the original term 𝑡 :

Theorem 17. (Recoverability) The following hold for all types 𝜎 , typable terms 𝑡 and term-

substitutions 𝛿 such that supp(𝛿) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TVar} and 𝛿 (𝑅

𝛼
𝛼 rel) = (=𝛼 rel) for all 𝛼 ∈ TV(𝜎):

(1) 𝐷 ⊢ RIN(𝜎) [𝛿] = (=𝜎 rel) and (2) 𝐷 ⊢ RLT(𝑡) [𝛿] = 𝑡 .

The relational interpretation of a type is non-empty:

Prop 18. (Nonemptiness) For all types 𝜎 , we have 𝐷 ; Δ𝜎 ⊢ ∃ 𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 .

Hence (thanks to Prop. 15), we also have 𝐷 ; Δ𝜎 ⊢ per≠∅ RIN(𝜎).

We also have a restricted form of parametricity: Relativized terms are related to themselves via

the relational interpretation of their type. Since the starting relations (on the type variables) are

assumed to be PERs, we call this PER-parametricity.

Theorem 19. (PER-Parametricity) For all types 𝜎 and terms 𝑡 , if 𝑡 : 𝜎 , then

𝐷 ; Δ𝑡 ⊢ RIN(𝜎) RLT(𝑡) RLT(𝑡).



18 Andrei Popescu and Dmitriy Traytel

Here is more context about PER-parametricity. This is a restriction of the concept of parametricity

from relations between two types to relations on a single type that are additionally assumed to be

PERs. While expressing general parametricity requires a richer infrastructure (see Appendix C),

PER-parametricity can be immediately expressed using our infrastructure: A term 𝑡 of type 𝜎 is

called PER-parametric when 𝐷 ; Δ𝑡 ⊢ RIN(𝜎) 𝑡 𝑡 . So the above result states that the relativized

terms RLT(𝑡) are PER-parametric—in an apparently stronger form, using a smaller relativiza-

tion context, Δ𝑡
, instead of ΔRLT(𝑡 )

. Indeed, Δ𝑡
is smaller because 𝑡 has fewer free variables than

RLT(𝑡), which additionally contains some relational variables 𝑅𝛼
𝛼 rel for 𝛼 ∈ TV(𝜎) (see Prop. 48(4)

from Appendix E). But this alternative statement of the PER-parametricity of RLT(𝑡) is actually
equivalent to the original. Indeed, ΔRLT(𝑡 )

only differs from Δ𝑡
in some assumptions of the form

RIN(𝛼 rel rel) 𝑅𝛼
𝛼 rel 𝑅

𝛼
𝛼 rel , which follow from the assumptions that 𝑅𝛼

𝛼 rel are PERs. In short, we

have ⊢ (∧ Δ𝑡 ) ←→ (∧ ΔRLT(𝑡 ) ) ), meaning that using Δ𝑡
has the same effect as using ΔRLT(𝑡 )

.

In preparation for our main result, we also need a substitutivity property for contexts. Given a

context Γ and a type-substitution 𝜌 , Γ [𝜌] is defined (as one would expect) to be {𝜑 [𝜌] | 𝜑 ∈ Γ}; and
similarly for term-substitutions. Moreover, given two contexts Γ and Γ′, we write 𝐷 ; Γ ⊢ Γ′ to ex-

press that𝐷 ; Γ ⊢ 𝜑 ′ for all𝜑 ′ ∈ Γ. Finally, for a type-substitution 𝜌 such that supp(𝜌) = {𝛼1, . . . , 𝛼𝑛},
we define its associated term-substitution 𝜌# to be RIN(𝜌 (𝛼1))/𝑅𝛼1

𝜌 (𝛼1 ) rel, . . . , RIN(𝜌 (𝛼𝑛))/𝑅
𝛼𝑛
𝜌 (𝛼𝑛 ) rel.

Prop 20. (Context Substitutivity) For all contexts Γ and type-substitutions 𝜌 , we have

𝐷, ΔΓ[𝜌 ] ⊢ ΔΓ [𝜌] [𝜌#].

Our main theorem states that, provided a formula is deducible, its relativization is also deducible

in the relativized context. Given a context Γ, we write RLT(Γ) for {RLT(𝜓 ) | 𝜓 ∈ Γ}.

Theorem 21. (Admissibility) For all contexts Γ and formulas 𝜑 , if 𝐷 ; Γ ⊢ 𝜑 , then

𝐷 ; ΔΓ∪{𝜑 }, RLT(Γ) ⊢ RLT(𝜑).

Thanks to the Recoverability theorem, the converse of Admissibility also holds, in the strong

form stating that the relativized formula is a more general statement than the original formula:

Theorem 22. (Generality) For all formulas 𝜑 , we have that

𝐷 ⊢ (∀𝛼∈TV(𝜑 )𝑅𝛼
𝛼 rel . (

∧
Δ𝜑 ) −→ RLT(𝜑)) −→ 𝜑 .

In particular, 𝐷 ⊢ (∧Δ𝜑 ) −→ RLT(𝜑) implies 𝐷 ⊢ 𝜑 .

Above, ∀𝛼∈TV(𝜑 )𝑅𝛼
𝛼 rel is a sequence of universal quantifications, one over 𝑅

𝛼
𝛼 rel for each 𝛼 ∈ TV(𝜑).

Appendix F gives detailed proofs of the above theorems. They proceed either by structural

induction on terms and types or by well-founded induction on the dependency relation induced by

constant and type definitions. The proof of Admissibility makes use of most of the other results.

4.3 Working Examples Revisited
Let us now look at some of the working examples from Section 3.1 in light of our PER-relativization

process. So group denotes the term 𝜆 times𝛼⇒𝛼⇒𝛼 , e𝛼 . 𝜓 , where𝜓 is the following formula:

(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧)) ∧
(∀𝑥𝛼 . times 𝑥 e = 𝑥 ∧ times e 𝑥 = 𝑥) ∧
(∀𝑥𝛼 . ∃𝑦𝛼 . times 𝑥 𝑦 = 𝑒 ∧ times 𝑦 𝑥 = 𝑒)

Thus, 𝛼 is a type variable and group has type (𝛼 ⇒ 𝛼 ⇒ 𝛼) ⇒ 𝛼 ⇒ bool.
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Let us now apply the definitions and results on relativization from the previous sections. In the

theory, we wrote 𝑅𝛼
for the unique variable associated to the type variables 𝛼—here, we will write

𝑅 instead of 𝑅𝛼
. Using the definition of RLT for 𝜆-expressions, we have that RLT(group) is the

term 𝜆times𝛼⇒𝛼⇒𝛼 , e𝛼 . RLT(𝜓 ). Moreover, using the Connective & Quantifier Suitability property

together with the definition of relativization of equality (namely RLT (=𝜎⇒𝜎⇒bool) = RIN(𝜎)) and
the definition of relational interpretation for type variables (namely RIN(𝛼) = 𝑅𝛼

), we have that

RLT(𝜓 ) (and also RLT(group times e)) is HOL-provably equivalent to the following formula:

(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . 𝑅 𝑥 𝑥 ∧ 𝑅 𝑦 𝑦 ∧ 𝑅 𝑧 𝑧 −→ 𝑅 (times (times 𝑥 𝑦) 𝑧) (times 𝑥 (times 𝑦 𝑧))) ∧
(∀𝑥𝛼 . 𝑅 𝑥 𝑥 −→ 𝑅 (times 𝑥 e) 𝑥 ∧ 𝑅 (times e 𝑥) 𝑥) ∧
(∀𝑥𝛼 . 𝑅 𝑥 𝑥 −→ ∃𝑦𝛼 . 𝑅 𝑦 𝑦 ∧ 𝑅 (times 𝑥 𝑦) 𝑒 ∧ 𝑅 (times 𝑦 𝑥) 𝑒)

The case of set relativization (which is the one discussed in Section 3.1) can be obtained as a

particular case of our PER-relativization, considering set variables 𝐴 : 𝛼 set and instantiating the

relational variable 𝑅 to be eqOf (𝐴). Indeed, it is easy to see that

⊢ ∀𝐴, times, e. RLT(group) 𝐴 times e ←→ 𝜓 ′

(i.e., the shown statement is HOL-provable), where𝜓 ′ is the set-relativized term from Section 3.1:

(∀𝑥𝛼 ∈∈ 𝐴, 𝑦𝛼 ∈∈ 𝐴, 𝑧𝛼 ∈∈ 𝐴. times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧)) ∧
(∀𝑥𝛼 ∈∈ 𝐴. times 𝑥 e = 𝑥 ∧ times e 𝑥 = 𝑥) ∧
(∀𝑥𝛼 ∈∈ 𝐴. ∃𝑦𝛼 ∈∈ 𝐴. times 𝑥 𝑦 = 𝑒 ∧ times 𝑦 𝑥 = 𝑒)

Let us now revisit one of the theorems about groups discussed in Section 3.1, namely left-

cancellation (example (1)). Formally, say 𝐷 is a definitional theory (any would work here, including

the empty one). We have 𝐷 ⊢ 𝜑 where 𝜑 is the formula

group times e −→ (∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . times 𝑥 𝑦 = times 𝑥 𝑧 −→ 𝑦 = 𝑧)
Then, using again the Connective & Quantifier Suitability property together with the definitions of

relativization and relational interpretation, we have that RLT(𝜑) is HOL-provably equal to

RLT(group) 𝑅 e times −→
(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . 𝑅 𝑥 𝑥 ∧ 𝑅 𝑦 𝑦 ∧ 𝑅 𝑧 𝑧 −→ 𝑅 (times 𝑥 𝑦) (times 𝑥 𝑧) −→ 𝑅 𝑦 𝑧)

The Admissibility theorem applied to this case (where the context Γ is empty) gives us

𝐷 ; Δ{𝜑 } ⊢ RLT(𝜑)
where the relativization context Δ{𝜑 } consists of the following, factoring in the fact that RIN(𝛼 ⇒
𝛼 ⇒ 𝛼) is 𝑅 ⇒ 𝑅 ⇒ 𝑅:

• the assumption per≠∅ 𝑅 (corresponding to the only type variable in 𝜑 , namely 𝛼)

• the assumptions (𝑅 ⇒ 𝑅 ⇒ 𝑅) times times and 𝑅 e e (corresponding to the two free

variables in 𝜑 , namely times and e)
In other words, Admissibility gives us:

𝐷 ; per≠∅ 𝑅, (𝑅 ⇒ 𝑅 ⇒ 𝑅) times times, 𝑅 e e ⊢ RLT(𝜑)
or, converting this to a context-free version:

𝐷 ⊢ per≠∅ 𝑅 ∧ (𝑅 ⇒ 𝑅 ⇒ 𝑅) times times ∧ 𝑅 e e −→ RLT(𝜑)
Expanding RLT(𝜑), we obtain:

𝐷 ⊢ per≠∅ 𝑅 ∧ (𝑅 ⇒ 𝑅 ⇒ 𝑅) times times ∧ 𝑅 e e −→ RLT(group) 𝑅 e times −→
(∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . 𝑅 𝑥 𝑥 ∧ 𝑅 𝑦 𝑦 ∧ 𝑅 𝑧 𝑧 −→ 𝑅 (times 𝑥 𝑦) (times 𝑥 𝑧) −→ 𝑅 𝑦 𝑧)
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The set-based relativized statement (labeled (1’) in Section 3.1) is a consequence of the above PER-

based statement, by considering sets𝐴 and taking 𝑅 to be eqOf (𝐴). In this case, (𝑅 ⇒ 𝑅 ⇒ 𝑅) times
and 𝑅 e e become equivalent to what in Section 3.1 we denoted by closed2 𝐴 times and closed0 𝐴 e.

To keep the terms small, consider the first conjunct𝜓1 of the formula𝜓 introduced above; namely

∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧). Then RLT(𝜓1) is the corresponding subfor-
mula of𝜓 ′: ∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . 𝑅 𝑥 𝑥 ∧ 𝑅 𝑦 𝑦 ∧ 𝑅 𝑧 𝑧 −→ 𝑅 (times (times 𝑥 𝑦) 𝑧) (times 𝑥 (times 𝑦 𝑧)).

Applying the Recoverability theorem to the term group and the term-substitution 𝜌 that sends 𝑅

to =𝛼 rel, we obtain 𝐷 ⊢ RLT(𝜓1) [𝜌] = 𝜓1, which is

𝐷 ⊢ (∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . 𝑥 = 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑧 = 𝑧 −→ times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧))
= (∀𝑥𝛼 , 𝑦𝛼 , 𝑧𝛼 . times (times 𝑥 𝑦) 𝑧 = times 𝑥 (times 𝑦 𝑧))

Recoverability is a special case of the aforementioned process of instantiating the PERs to sets, taking

the instantiating sets to be the entire types. This discussion also illustrates why a relativized formula

such as RLT(𝜓 ) or RLT(𝜓1) represents a more general statement than𝜓 or𝜓1 (precisely because the

latter can be obtained from the former by instantiating 𝑅 with =𝛼 ), which is what Generality asserts.

5 ADMISSIBILITY OF LOCAL TYPE DEFINITIONS
As mentioned in the introduction, Local Typedef, a rule for enabling local definitions, has been

proposed as an extension of HOL’s axiomatic basis in order to enable relativization.

The Local Typedef (LT) rule is the following:

𝐷 ; Γ ⊢ 𝐴 ≠ ∅ 𝐷 ; Γ ⊢ (∃rep𝛽⇒𝜎 . typedef𝛽,𝜎,𝐴,rep) −→ 𝜑

𝐷 ; Γ ⊢ 𝜑
(LT)

[𝛽 fresh for Γ, 𝐴, 𝜑]

It provides the local assumption that there is a type 𝛽 isomorphic to a nonempty set𝐴. The condition

that 𝛽 is fresh for𝐴 prevents the introduction of a dependent type (since𝐴may have term variables).

The Local Typedef rule expresses in a roundabout fashion the property that, for every nonempty

set 𝐴, there exists a type 𝛽 that is equipollent to it, in that there exists a bijection between them. In

a more expressive logic, where existential quantification over types is allowed, this could be a mere

axiom: ∀𝐴𝛼 set . 𝐴 ≠ ∅ −→ ∃ 𝛽. ∃rep𝛽⇒𝛼 . typedef𝛽,𝛼,𝐴,rep. Indeed, one can see that applying the

Local Typedef rule has the same effect as using this axiom in conjunctionwith the following standard

elimination rules (in this order): ∀ elimination for type variables, −→ elimination, ∀ elimination for

term variables, and ∃ elimination for type variables. Kunčar and Popescu [2019] give more details.

We have shown that relativization, which was something that Local Typedef helped to achieve,

is admissible. Now we can affirm to the admissibility of Local Typedef itself, which has been open:

Theorem 23. The Local Typedef rule is admissible for widely-typed definitional theories. More

precisely, let 𝐷 be a widely-typed definitional theory, Γ a context, 𝜎 a type, 𝐴 a term of type

𝜎 set, 𝜑 a formula, and 𝛽 a type-variable that is fresh for Γ, 𝐴, 𝜑 . Assume 𝐷 ; Γ ⊢ 𝐴 ≠ ∅ and
𝐷 ; Γ ⊢ (∃rep𝛽⇒𝜎 . typedef𝛽,𝜎,𝐴,rep) −→ 𝜑 . Then 𝐷 ; Γ ⊢ 𝜑 .

This is proved by first applying the Admissibility theorem to

𝐷 ; Γ ⊢ (∃rep𝛽⇒𝜎 . typedef𝛽,𝜎,𝐴,rep) −→ 𝜑

and then performing the following substitutions:

• =𝛼 rel for 𝑅
𝛼
𝛼 rel for all type variables in Γ, 𝐴, 𝜓 (which are known not to contain 𝛽)

• 𝜎 for 𝛽 , which in particular will turn 𝑅
𝛽

𝛽 rel into 𝑅
𝛽

𝜎 rel

• the equality on 𝐴 for 𝑅
𝛽

𝜎 rel
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Thanks to the freshness assumptions, and using the Recoverability theorem, we obtain that the

relativized and substituted version of the above is equivalent to

𝐷 ; Γ ⊢ (∃rep𝜎⇒𝜎 . 𝜒) −→ 𝜑

where 𝜒 states that rep is an endo-bijection on 𝐴. Since ∃rep𝜎⇒𝜎 . 𝜒 is a tautology (taking rep to be

𝜆𝑥𝜎 . 𝑥), we can drop it. We obtain 𝐷 ; Γ ⊢ 𝜑 , as desired. (Appendix F gives a detailed proof.)

In conclusion, for the widely-typed definitional theories, relativization allowed us to eliminate the

typedef assumption from the Local Typedef rule, thus trivializing it—which shows its admissibility.

We do not yet have a counterexample showing that Local Typedef fails to be admissible for a

definitional theory that is not widely-typed. It may well be the case that a partial relativization

version of our admissibility result for PER-relativization, which avoids (i.e., leaves untouched) a

selection of the type variables, could still do the job and prove the admissibility of Local Typedef

under milder conditions. We will investigate this in the future.

6 RELATIVIZATION FOR EXTENSIONS AND VARIATIONS OF HOL
In this section, we sketch a way to extend our results to allow declared-only constants (and

consequently defined types depending on them) (§ 6.1), and also overloaded definitions of instances

of defined constants, as featured by Isabelle/HOL (§6.2).

We first extend the notion of a definitional theory to incorporate constant declarations.

Definition 24. 𝐷 is said to be an extended definitional theory if𝐷 = {def
1
, . . . , def𝑛}, where each

def𝑖 is a (type or constant) definition of the form 𝑢𝑖 ≡ 𝑡𝑖 , and there exist the signatures Σ1, . . . , Σ𝑛

and Σ0, Σ1, . . . , Σ𝑛 such that Σ0 = Σinit, Σ𝑛 = Σ and the following hold for all 𝑖 ∈ {1, . . . , 𝑛}:
(1) 𝑡𝑖 ∈ TermΣ𝑖 and Σ𝑖 is the extension of Σ𝑖−1 with a fresh item defined by def𝑖 , namely:

(1.1) If 𝑢𝑖 has the form (𝛼1, . . . , 𝛼𝑚)𝜅, then 𝜅 ∉ Σ𝑖−1 and Σ𝑖 = Σ𝑖−1 ∪ {(𝜅,𝑚)}
(1.2) If 𝑢𝑖 has the form 𝑐𝜎 , then 𝑐 ∉ Σ𝑖 and Σ𝑖 = Σ𝑖 ∪ {(𝑐, 𝜎)}

(2) If def𝑖 is a type definition, meaning𝑢𝑖 is a type and 𝑡𝑖 : 𝜎 ⇒ bool, then {def
1
, . . . , def𝑖−1} ⊢Σ𝑖−1

∃𝑥𝜎 . 𝑡𝑖 𝑥
(3) Σ𝑖 is an extension of Σ𝑖−1 with a (possibly empty collection of) constants.

Note that the difference from Definition 4 of definitional theories are the intermediate signa-

tures Σ𝑖 that introduce declarations, whereas Σ𝑖 continue to introduce definitions. The notion of

dependency relation associated to a definitional theory remains the same for extended definitional

theories. In what follows, we fix an extended definitional theory 𝐷 = {def
1
, . . . , def𝑛}.

6.1 Relativizing Declared-Only Constants
To relativize a constant that is declared-only (i.e., such that 𝐷 does not contain a definition for it) we

only have two options to contemplate. First, we can think of relativizing them into themselves, but

then properties such as PER-Parametricity cannot be proved to hold. The other option, which is the

one we will follow, dwells on the idea that any instance of a declared-only constant really behaves

like a variable—so we can relativize the constant to a variable, and assume the corresponding

instance of PER-Parametricity in the relativization context.

For every constant 𝑐 in Σ that is declared-only, let us fix a variable 𝑧𝑐 ∈ Var . Similarly to the

relational variables 𝑅𝛼
, we will assume that the variables 𝑧𝑐 are mutually distinct (for any two

distinct constants) and do not occur in the terms we consider as input to the operators on types and

terms that we will define. We will also assume, of course, that they are distinct from the variables

𝑅𝛼
. We will use these to form typed variables of type 𝜏 , written 𝑧𝑐𝜏 , where 𝜏 is an instance of 𝜎 such

that 𝐷 does not contain a definition with lefthand side 𝑐𝜏 . We plan to use these variables to replace

any undefined instances of constants during the relativization process.
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To produce the right variables 𝑧𝑐 in the relativization context of a term 𝑡 , we need to know

which are those declared-only constants that will be reached in the process of relativizing 𝑡 . These

are exactly those on which 𝑡 depends definitionally. And since, due to type definitions, the type

relational interpretation also depends on term relativization, we need to consider the definitional

dependencies of types as well. To this end, we define:

• for any type 𝜎 , its set of dependencies Deps(𝜎) to be

{𝑢 ∈ Type•Σ ∪ CInst•Σ | there exists 𝑣 ∈ types• (𝜎) such that 𝑣 ⇝↓∗ 𝑢}
• similarly, for any term 𝑡 , its set of dependencies Deps(𝑡) to be

{𝑢 ∈ Type•Σ ∪ CInst•Σ | there exists 𝑣 ∈ types• (𝑡) ∪ cinsts• (𝑡) such that 𝑣 ⇝↓∗ 𝑢}
where⇝↓∗ is the transitive closure of⇝↓ (the substitutive closure of the definitional dependency
relation, introduced in Section 2.8).

If 𝑢 is either a type or a term, we define its set of declared-only dependencies DeclaredOnlyDeps(𝑢)
to be {𝑐𝜏 ∈ Deps(𝑢) | 𝑐 is a declared-only constant}. The definition also extends to contexts Γ, tak-
ing DeclaredOnlyDeps(Γ) to be

⋃
𝜑∈Γ DeclaredOnlyDeps(𝜑). Thus, the declared-only dependencies

are those items on which our given item depends and which have no further dependencies, i.e., are

leaves in the direct-dependency tree.

Definition 25. We extend Def. 7 of the relativization contexts Δ𝑢
where 𝑢 is either a type, or a

term, or a context, to also include assumptions RIN(𝜏) 𝑧𝑐𝜏 𝑧𝑐𝜏 for all 𝑐𝜏 ∈ DeclaredOnlyDeps(𝑢).
Definition 26. We extend Def. 8 with a clause for declared-only constants as follows. Assume 𝑐

is a declared-only constant of type 𝜎 such that 𝜏 ≤ 𝜎 . We define RIN(𝑐𝜏 ) = 𝑧𝑐𝜏 .

These extended definitions remain correct:

Prop 27. The functions RIN and RLT are well-defined as total functions in Type → Term and

Term→ Term. (In other words, Prop. 41 from Appendix B still holds in this more general context.)

The notion of widely-typed definitional theory remains the same. In what follows, we assume 𝐷

to be a widely-typed definitional theory. With these preparations, we can generalize Section 4’s

results to HOL enriched with-declared-only constants. First, the preliminary results:

Prop 28. All the results from Appendix E (namely, Props. 46–49) still hold in this more general

context (for any widely-typed definitional theory 𝐷), provided Points (3) and (4) of Prop. 48 are

amended as highlighted below:

(3) FTV(RIN(𝜎)) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TV(𝜎)} ∪ {𝑧

𝜎
𝑐 | 𝑐𝜎 ∈ DeclaredOnlyDeps(𝜎)}

(4) FTV(𝑡) ⊆ FTV(RLT(𝑡)) ⊆ FTV(𝑡) ∪ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TV(𝑡)} ∪ {𝑧

𝜎
𝑐 | 𝑐𝜎 ∈ DeclaredOnlyDeps(𝑡)}

Then the main results:

Theorem 29. Then all the results from Section 4.2, including Connective & Quantifier Suitability,

Recoverability, Nonemptiness, PER-Parametricity, Admissibility and Generality, still hold in this

more general context (for any widely-typed definitional theory 𝐷), provided that:

• For both points in the Recoverability theorem, say letting 𝑢 denote either 𝜎 or 𝑡 , we amend

one assumption as highlighted below:

supp(𝛿) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TVar} ∪ {𝑧

𝜏
𝑐 | 𝑐𝜏 ∈ DeclaredOnlyDeps(𝑢)}

and add the assumption that 𝛿 (𝑧𝜏𝑐 ) = 𝑐𝜏 for all 𝑐𝜏 ∈ DeclaredOnlyDeps(𝑢).
• One of the conclusions of the Generality theorem is amended as highlighted below:

𝐷 ⊢ (∀𝛼∈TV(𝜑 )𝑅𝛼
𝛼 rel . ∀𝑐𝜎 ∈DeclaredOnlyDeps (𝜑 )𝑧

𝑐
𝜎 . (

∧
Δ𝜑 ) −→ RLT(𝜑)) −→ 𝜑 .

Note also that now Δ𝜑
contains more assumptions, so

∧
Δ𝜑

, which is used in both the context-free

version of Admissibility and in Generality, now denotes:

(∧𝛼∈TV(𝜑 ) per≠∅ 𝑅
𝛼
𝛼 rel) ∧ (

∧
𝑥𝜎 ∈FTV(𝜑 ) RIN(𝜎) 𝑥𝜎 𝑥𝜎 )∧ (

∧
𝑐𝜎 ∈DeclaredOnlyDeps (𝜑 ) RIN(𝜎) 𝑧𝑐𝜎 𝑧𝑐𝜎 )
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6.2 Relativization for Overloaded Constants
Definition 30. Given a non-built-in constant 𝑐 , a type 𝜎 ≤ tpOf (𝑐) and a closed term 𝑡 : 𝜎 , we

let 𝑐𝜎 ≡ 𝑡 denote 𝑐𝜎 = 𝑡 . We call 𝑐𝜎 ≡ 𝑡 a constant-instance definition provided TV(𝑡) ⊆ TV(𝑐𝜎 ).

Definition 31. An Isabelle/HOL definitional theory is a set 𝐷 of type and constant-instance

definitions over Σ such that:

• It satisfies all the conditions of Def. 24, except that it is not required that, in condition (1.2),

𝑐 be fresh, i.e., it is not required that 𝑐 ∉ Σ𝑖

• It is orthogonal: For all constants 𝑐 , if 𝑐𝜎 and 𝑐𝜏 appear in two definitions in 𝐷 , then neither

𝜎 is an instance of 𝜏 nor 𝜏 is an instance of 𝜎 (i.e., 𝜎 ≰ 𝜏 ∧ 𝜏 ≰ 𝜎).

• Its induced dependency relation⇝𝑛 is terminating

The difference from Def. 24 is that now condition (1.2) does not require that the new defined

item 𝑐𝜎 be fresh; rather, 𝑐𝜎 can be an instance of a previously declared constant, say, 𝑐𝜏 where

𝜎 ≤ 𝜏 . This type of flexibility, called ad hoc overloading, is allowed in Isabelle/HOL. There, for

example, one can declare a polymorphic constant, such as + : 𝛼 → 𝛼 → 𝛼 , and later define different,

non-overlapping instances of it, such as +nat or +real .
But allowing ad hoc overloading has its price, which is factored in the above definition as the

last two conditions. Orthogonality expresses that the ad hoc overloaded instances do not overlap.

This, together with the termination of the dependency relation, are able to ensure consistency even

in the absence of freshness [Kunčar 2015; Kunčar and Popescu 2015].

We fix an Isabelle/HOL definitional theory 𝐷 . A constant-instance 𝑐𝜎 is said to be declared-only
if it is not an instance of a constant-instance that is defined in 𝐷 .

Definition 32. We adapt Def. 8’s and Def. 26’s clauses for defined and declared-only constants

to the more general setting as follows. Assume 𝑐𝜎 is a constant-instance. We have two cases:

• If there exist 𝜏 , 𝑡 and 𝜌 such that 𝜎 ≤ 𝜏 is 𝑐𝜏 ≡ 𝑡 is a constant-instance definition in 𝐷 , we

take RLT(𝑐𝜎 ) = RLT(𝑡 [𝜌]).
• Otherwise, i.e., if the 𝑐𝜎 is declared-only, we take RIN(𝑐𝜎 ) = 𝑧𝑐𝜎 .

(Everything else in the definitions of RIN and RLT from Sections 4 and 6 stays the same.)

Theorem 33. Theorem 29 also holds for Isabelle/HOL definitional theories.

7 THE SCOPE OF RELATIVIZATION
In this section we explore the scope of our PER relativization scheme in connection with practical

HOL developments. First, we look at a specific kind of defined types—the container types, including

inductive and coinductive datatypes—which form the vast majority of types defined in HOL, and

conclude that the categorical infrastructure developed in HOL to support these types is compatible

with PER relativization (§7.1). Armed with the Compatibility result, we show how to handle Sec-

tion 3.1’s example involving container types, using Admissibility in conjunction with Compatibility

and PER-Parametricity (§7.2). Then we describe our experience with relativizing a large fragment

of the Isabelle/HOL distribution (§7.4), with the help of a tool we have implemented in Isabelle’s

meta-programming language (§7.3). Our empirical formal experiments support the thesis that the

prerequisite for our results, namely wide typedness, holds quite pervasively in HOL developments.

7.1 Relativization versus Container Types in HOL
As already noted, unlike the dependent type theories used in theorem proving, HOL does not have

inductive datatypes (usually simply called datatypes) and coinductive datatypes (also known as

codatatypes) as primitives. Instead, these are defined using the (nonrecursive) HOL constant and
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type definition mechanisms via some elaborate constructions, which are automated by specific tools.

Melham [1989] was the first to formalize such a construction for datatypes (and implemented it in

the HOL prover), and a similar construction was formalized by Berghofer and Wenzel [1999] (and

implemented in Isabelle/HOL). The first construction of codatatypes in the HOL logic was described

by Traytel et al. [2012] (also implemented in Isabelle/HOL [Blanchette et al. 2014]). In what follows,

we will focus on Traytel et al.’s construction, which generalizes the previous constructions, and

offers a uniform view of (co)datatypes via the concept of bounded natural functor (BNF).

BNFs are a variant of container types [Abbott et al. 2005; Hoogendijk and de Moor 2000] that

are well-behaved in HOL, in that they permit the construction in HOL of their initial algebras

(yielding datatypes) and final coalgebras (yielding codatatypes). An 𝑛-ary BNF consists of a tuple

(F , Fmap, Frel, Fset1, . . . , Fset𝑛, Fbd) where:

• F is an 𝑛-ary type constructor (more precisely a type depending on 𝑛 variables),

• Fmap is a functorial action on functions for F , i.e., a mapper (making (F, Fmap) a functor
on the category of types and functions),

• Frel is a functorial action on relations, i.e., a relator (making (F , Frel) a functor on the

category of types and relations),

• Fset𝑖 are natural transformations from F to the powerset functor (giving a concept of support,
i.e., the set of elements “appearing in” an element of F ),
• Fbd is a cardinal bound on the size of the support.

These different components are further related in specific ways: namely, the relator is the extension

of the mapper and is determined by the mapper and the setter, and a congruence rule relates the

mapper to the support (saying that two functions are mapped to the same result if their actions on

the support is the same). Traytel et al. [2012] gives full details.

Datatypes and codatatypes emerge as the initial algebras and final coalgebras of BNFs. Let

us consider a binary BNF (F, Fmap, Frel, Fset1, Fset2, Fbd), where F is a binary type constructor

(𝛼1, 𝛼2)F , the relator Frel has type (𝛼1 ⇒ 𝛼 ′
1
⇒ bool) ⇒ (𝛼2 ⇒ 𝛼 ′

2
⇒ bool) ⇒ ((𝛼1, 𝛼2)F ⇒

(𝛼 ′
1
, 𝛼 ′

2
)F ⇒ bool), etc. Its initial algebra on the second variable gives rise to a unary BNF

(IF , IFmap, IFrel, IFset1, IFbd). Thus, IF is a unary type constructor 𝛼1 IF , the relator IFrel has type
(𝛼1 ⇒ 𝛼 ′

1
⇒ bool) ⇒ (𝛼1 IF ⇒ 𝛼 ′

1
IF ⇒ bool), etc.

The components of the initial algebra BNF are defined from those of the original BNF. The

most laborious part is the construction of the type constructor 𝛼1 IF and the constructor con-

stant ctor : (𝛼1, (𝛼1, 𝛼1 IF)F) ⇒ 𝛼1 IF , which we describe next. Given a set 𝐴 : 𝛼2 set and
a function 𝑠 : (𝛼1, 𝛼2)F ⇒ 𝛼2, the pair (𝐴, 𝑠) is said to be an F-algebra on 𝛼2 with param-
eters from 𝛼1, or an algebra on 𝛼2 for short (when 𝛼1 is fixed), if 𝐴 is closed under 𝑠 , in that

∀𝑥 : (𝛼1, 𝛼2)F . Fset2 𝑥 ⊆ 𝐴 −→ 𝑠 𝑥 ∈∈ 𝐴. The components 𝐴 and 𝑠 are called the algebra’s carrier
and operation, respectively. Let us writeAlg for the set of all algebras on 𝛼2. One chooses a monomor-

phic type 𝜎2 that is large enough to accommodate all algebras (on all types) up to isomorphism—this

is possible thanks to the cardinal bound Fbd. The product of all algebras on 𝜎2 is defined in a standard
way, as an algebra (𝑃, 𝑝) whose carrier 𝑃 is the set product

∏
(𝐴,𝑠 ) ∈∈ Alg 𝐴, and whose operation 𝑝 is

defined using the algebraic structure of the components and the universal property of set products.

Note that the elements of

∏
(𝐴,𝑠 ) ∈∈ Alg 𝐴 are functions from algebras on 𝜎2 to (elements of) 𝜎2. There-

fore, (𝑃, 𝑝) is an algebra on the type (𝜎2 set×((𝛼1, 𝜎2)F ⇒ 𝜎2)) ⇒ 𝜎2; let us denote this type by 𝛼1𝑇 .

Then, by fixpoint induction, one defines𝑀 ⊆ 𝑃 , the smallest subset of 𝑃 that is closed under 𝑝 ,

i.e., such that (𝑀, 𝑝) forms an algebra on 𝛼1𝑇 . This last algebra is proved to be initial. Finally, 𝛼1 IF
is defined using a HOL type definition with base type 𝛼1𝑇 and predicate 𝜆𝑥. 𝑥 ∈∈𝑀 , and ctor is
defined as a copy of 𝑝 from 𝛼1 𝑇 to 𝛼1 IF ; in other words, the initial algebra (𝑀, 𝑝) is turned into an
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algebra operating on an entire type, the newly introduced type 𝛼1 IF . Other components have easier

definitions. Notably, IFrel is defined inductively (as a least fixpoint) by the rule
Frel 𝑅 (IFrel 𝑅) 𝑥 𝑦

IFrel 𝑅 (ctor 𝑥 ) (ctor 𝑦) .

The construction of final coalgebras for BNFs, yielding codatatypes, proceeds essentially dually.

Again for the case of binary BNFs F , it gives a BNF (JF , JFmap, JFrel, JFset
1
, JFbd), where the type

constructor 𝛼1 JF and a destructor constant dtor : 𝛼1 JF ⇒ (𝛼1, (𝛼1, 𝛼1 JF)F) are produced by the

following route: (1) taking the quotient F-coalgebra to the largest F-bisimulation of the sum of all

F-coalgebras on a large enough type 𝜎2 (a construction also described by Rutten [2000]), and then (2)
using aHOL type definition for copying this quotient coalgebra to a coalgebra on an entire type. Here,

the base type 𝛼1𝑇 (from which the type 𝛼1 JF is carved out) is ((𝜎2 set × (𝜎2 ⇒ (𝛼1, 𝜎2)F)) ×𝜎2)set
because (𝜎2 set × (𝜎2 ⇒ (𝛼1, 𝜎2)F)) × 𝜎2 is the underlying type of the sum of all F-coalgebras on
𝜎2, and the additional set type constructor at the top comes from considering the quotient.

Example 34. Let (𝛼1, 𝛼2)F be unit+𝛼1×𝛼2. Then 𝛼1 IF is 𝛼1list, the type of lists over 𝛼1, and ctor :
unit +𝛼1 ×𝛼1list ⇒ 𝛼1list is the sum-case combination of Nil (for unit) and Cons. Moreover, IFmap
is the usual list-map and IFrel is the usual list relator listrel—with listrel 𝑅 relating two lists if they

have equal length and their elements are pointwise 𝑅-related. On the other hand, 𝛼1 JF is 𝛼1 lazyList,
the type of “lazy” (i.e., possibly infinite) lists over 𝛼1, and dtor : 𝛼1lazyList ⇒ unit +𝛼1×𝛼1 lazyList
produces the element of unit for the empty list and the pair of applied head and tail otherwise. □

In Isabelle/HOL (and similarly in other HOL-based provers), a tool extracts the high-level opera-

tions, such as Nil and Cons above, and proves their properties. The user does not see the intricate

low-level types 𝛼1𝑇 from the construction process, but only the final product: the datatype 𝛼1 IF
or codatatype 𝛼1 JF , and a standalone collection of constants and properties on this (co)datatype.

(However, these low-level aspects are relevant in regards to this paper’s goals—as we explain below.)

In addition to being closed under the initial algebra and final coalgebra constructions, the

BNFs include the type constructors of sum, product, projection and constant type—in that these

type constructors form BNFs with their standard mappers and relators. Let us call these basic
BNFs. Consequently, starting from basic BNFs and iterating the initial algebra and final coalgebra

constructions, one obtains a rich collection of (possibly nested) (co)datatypes which we will simply

refer to as container types. Thus, in this paper, the container types are defined to be all the type

constructors that can be obtained through the aforementioned iterative process.

The BNF-based construction gives the expected relators for all container types, not just for

lists. Therefore, it is important that our PER-relativization be compatible with the container types’

relators. Let us make precise what we mean by Compatibility, again restricting ourselves to unary

container types to ease the notation. Any container type 𝛼 F , which in particular has a unary BNF

structure (F, Fmap, Frel, Fset1, Fbd), is defined via a HOL type definition (like all non-primitive

types in HOL)—and indeed, above we have sketched how this type definition looks like in case

F emerges as the initial algebra or final coalgebra of another BNF. Now, remember that, in order

for our results to apply, yielding well-behaved and admissible PER-relativization, we require a

relational witness relwitF of type 𝛼 rel ⇒ (𝛼 F)rel, i.e., (𝛼 ⇒ 𝛼 ⇒ bool) ⇒ (𝛼 F ⇒ 𝛼 F ⇒ bool),
which makes the type definition wide. This has almost the same type as Frel, but less general in
that it only considers relations between a type and itself, not between different types like Frel does;
and is only required to behave well on PERs, not on arbitrary relations. Compatibility means that

the restriction of Frel can play the role of relwitF . And indeed we can prove that this is the case:

Theorem 35. (Compatibility) Every container type F has a wide type definition in HOL, in

such a way that relwitF is the restriction of its BNF-based relator Frel.

The proof of this theorem proceeds as follows: First we prove that the basic container types have

wide type definitions. Then, for each container type F , we assume that F had a type definition within
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a widely typed definitional theory, and prove that the type definitions of its datatype and codatatype

container types IF and JF are also wide. This involves showing that there exists a bijection-up-to

between the entire type 𝛼 IF endowed with the relation Frel 𝑅𝛼 and the subset RLT({𝑥 . 𝑥 ∈∈𝑀})
of the base type 𝛼 𝑇 endowed with the relation RIN(𝛼 𝑇 ), where 𝑀 is the minimal F-algebra
described above. (And similarly for the codatatype 𝛼 JF .) The delicate proof of this crucial step—
from the wideness of a BNF’s type definition to that of its (co)datatype BNF—has been formalized

in Isabelle/HOL and is provided as supplementary material.

The existence of such bijections-up-to for (co)datatypes shows that, as far as PERs are concerned,

simply (A) copying the relator from a low-level base type according to an (essentially) set-theoretic

construction of a (co)datatype, is as good as (B) defining the relator using a high-level (co)inductive

definition principle. This is somewhat surprising, since alternative (A) is an instance of a general-

purpose scheme working for any type with a wide definition in HOL, whereas alternative (B) uses

domain-specific knowledge from category theory.

7.2 More Revisiting of the Working Examples
We are now ready to look at statement (3) from Section 3.1. Applying the Recoverability theorem

(and again writing 𝑅 instead of 𝑅𝛼
), we obtain

(3”)

(𝑅 ⇒ 𝑅 ⇒ 𝑅) times times ∧ 𝑅 e e −→ RLT(group times e) −→
(∀xs𝛼 list, ys𝛼 list . RIN(𝛼 list) xs xs ∧ RIN(𝛼 list) ys ys −→

𝑅 (RLT(fold) times e (RLT(append) xs ys))
(RLT(times) (RLT(fold) times e xs) (RLT(fold) times e ys)))

where RLT(group times e) was already discussed in Section 4.3.

According to the Compatibility theorem, the relational interpretation of 𝛼 list is given by the list

relator (discussed in Example 34), i.e., RIN(𝛼 list) is listrel 𝑅 (in the relativization context, where

𝑅 is fixed). Moreover, all the high-level operators on lists, including the constructors, as well as

append and fold, are parametric, in particular PER-parametric. Hence, as a consequence of the

PER-Parametricity theorem (see Prop. 45 in Appendix C), they are PER-related to their relativized

counterparts. In particular, we have RIN (𝛼 list ⇒ 𝛼 list ⇒ 𝛼 list) append RLT(append), i.e.,
(listrel 𝑅 ⇒ listrel 𝑅 ⇒ listrel 𝑅) append RLT(append) (and similarly for fold). Hence, thanks to
the properties of PERs and the fact that the relational interpretations are all PERs, we can replace

in (3”) the relativized versions of append and fold with the originals, obtaining:

(3”)

(𝑅 ⇒ 𝑅 ⇒ 𝑅) times times ∧ 𝑅 e e −→ RLT(group times e) −→
(∀xs𝛼 list, ys𝛼 list . listrel 𝑅 xs xs ∧ listrel 𝑅 ys ys −→

𝑅 (fold times e (append xs ys))
(times (fold times e xs) (fold times e ys)))

Finally, taking 𝑅 to be eqOf 𝐴 gives us the expected set-based relativization:

(3’)

closed2 𝐴 times ∧ closed0 𝐴 e −→ grouprlt 𝐴 e times −→
(∀xs𝛼 list ∈∈ list (𝐴), ys𝛼 list ∈∈ list (𝐴).

fold times e (append xs ys) = times (fold times e xs) (fold times e ys))
This is because, as explained in Section 4.3, closedness of an item under the set 𝐴 is equivalent the

the item being self-related via (the lifting of) the PER eqOf 𝐴. Similarly, membership of an item xs
to list (𝐴) is equivalent to listrel (eqOf 𝐴) xs xs; this happens to be a generic property connecting

the support and the relator of any BNF.

In conclusion, Compatibility and PER-Parametricity yield a particularly simple (while still HOL-

admissible) relativization of statements involving container types.
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7.3 Relativization Tool
We have implemented our PER relativization scheme in Isabelle/HOL, as a tool in Isabelle/ML

[Wenzel 2022] that automatically produces the relativization of HOL theorems on demand.
6
It

proceeds recursively on terms and types as prescribed in our Def. 8, while preserving the definitional

abstraction layer—in that new constants are defined for each relativized defined constant and type.

More specifically, whenever relativization encounters a defined type (e.g., those introduced

using the typedef command of Isabelle/HOL), it looks up its relational witness in the database of

widely-typed types and fails if none exists. After encountering the failure, the user may register the

type as widely-typed by providing the relational witness and exhibiting the desired bijection-up-to

(and proving their properties). We automate the registration and the proofs (without any user

involvement) for type copies of widely-typed types 𝜎 , i.e., types defined using the 𝜆𝑥𝜎 . true predicate.
The relativized versions of given theorems are introduced as axioms, relying on Admissibility

(Theorem 21) as a meta-justification. Theorem 21 allows for an axiom-free implementation of rel-

ativization in principle. Yet, we would need to analyze the proofs of non-relativized theorems to go

axiom-free. By default Isabelle does not record proofs. There is a facility for enabling proof terms due

to Berghofer and Nipkow [2000]. A future axiom-free implementation of relativization could take ad-

vantage of that work: either by a comprehensive translation of the proof terms following our proof of

Admissibility, or by only looking at the facts used in the proof term and performing proof reconstruc-

tion in the style of Sledgehammer [Paulson and Blanchette 2010], hopefully even reusing the existing

Sledgehammer infrastructure. In spite of aggressive compression techniques employed by Berghofer

and Nipkow, proof terms are currently severely hampering Isabelle’s performance and, thus, cannot

be used in day-to-day developments. In the future, we envision the lightweight (axiomatic) rela-

tivization as the default combined with full proofs as an extra check that can be left to run overnight.

Our tool automatically registers datatypes and codatatypes as widely-typed, by axiomatizing the

required properties. As with Admissibility, this is a compromise—this time based on Compatibility

(Theorem 35) as meta-justification. We formalized in Isabelle the main step involved in the Com-

patibility theorem, proving that, if a BNF has a wide type definition, then its initial algebra (least

fixed point) and final coalgebra (greatest fixed point) also have wide type definitions. In the future

it will be possible to turn our proofs into Isabelle/ML tactics that are applied dynamically to any

user-defined (co)datatype, and thus remove our reliance on the Compatibility meta-justification.

7.4 Formal Empirical Study: Relativization in the Wild
So far, we have applied our tool to relativize large chunks of the Isabelle/HOL distribution (the HOL

session [Isabelle Community 2022a]) and of the standard HOL library theories (the HOL-Library

session [Isabelle Community 2022b])—comprising over 186 000 lines of definitions and proofs. In

addition to (co)datatypes, this code base contains some types defined directly using HOL type

definitions. These include the basic BNFs discussed in Section 7.1, as well as others, shown in Fig. 2.

In some cases, these types have been previously proved to be BNFs, hence they had relators. In

others, the types are not BNFs, but they had previously defined relator-like relation lifting operators

that were proved to preserve equality and commute with relation composition.

Not only were we able to prove that the definitions of these types are wide, but in all cases where

the types had previously defined relation-lifting operators (BNF relators or otherwise), we proved

wide typedness taking the relational witness to be the relation-lifting operator. (In the cases where

no relation-lifting operators were available, we proved wide typedness plugging in the default

relational witness described in Prop. 12.) The proofs were occasionally delicate, requiring the

6
Both the tool and the formal experiments performed with its help, in particular our relativized HOL theories including the

proofs of wide typedness, are provided as supplementary material.
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𝛼 fset∗ finite sets over 𝛼

𝛼 cset∗ countable sets over 𝛼

𝛼 multiset∗ multisets (bags) over 𝛼

(𝛼, 𝛽) fmap∗
partial functions

of finite support

between 𝛼 and 𝛽

𝛼 biject bijections on 𝛼

𝛼 dlist∗ non-repetitive lists over 𝛼

(𝛼, 𝛽) alist∗ association lists with

values in 𝛼 and keys in 𝛽

(𝛼, 𝛽) node the pre-datatype universe by

Berghofer and Wenzel [1999]

𝛼 filter∗
filters on the

powerset of 𝛼

𝛼 poly
polynomials with

𝛼-coefficients

𝛼 fls
formal Laurent series

with 𝛼-coefficients

(𝛼, 𝛽) comm∗
commutative

𝛼-operators

with values in 𝛽

𝛼 comparator
comparison

functions on 𝛼

𝛼 bit0, 𝛼 bit1
finite types used for

binary representation

Fig. 2. Types in the Isabelle/HOL distribution proved to have wide type definitions. A star (∗) on their names
means that they already had a relation-lifting operator defined.

understanding of some mathematical subtleties about the concepts represented by these types. This

was not surprising, since, similarly to the case of containers, we had to relate via bijections-up-to

some custom relation-lifting operators with our general-purpose ones.

In conclusion, our experiments so far support the empirical conjecture that defined types in

HOL developments tend to be widely-typed, with the following addendum: The relation lifting

operators that have been custom-defined for the types tend to work as their relational witnesses,

and therefore fit into our relativization scheme.

8 MORE RELATEDWORK
The works proximally related to ours are that of Kunčar and Popescu [2019] who proposed a form

of types-to-sets relativization supported by an axiomatic extension of HOL (the Local Typedef rule),

and the follow-ups by Immler and Zhan [2019] and Milehins [2022] who further improved the

automation of the relativization process. In addition to extending the axiomatic basis, these works

apply relativization in an ad hoc manner, for a fragment of HOL that is both restricted and not clearly

specified: It merely works for types that have relators via which the necessary transfer theorems

can be proved. Our current work (largely) removes both restrictions: It applies relativization com-

prehensively for the entire HOL, provided a widely applicable sanity property holds for the defined

types, and it proves that relativization is admissible thus removing the need for the additional rule.

Anothermajor theme in our paper is the shift of focus from types-to-sets to themore general types-

to-PERs relativization in HOL. At its core, our work is a PER interpretation of the HOL types. On this

front, we find ideas roughly similar to ours in dependent type theories (DTTs). Notably, the Nuprl

system [Constable et al. 1986] employs subset types and quotient types, which can together represent

PERs; a Nuprl foundation variant with first-class PER typeswas alsoworked out [Allen 1987]. Setoids

and partial setoids (another way to refer to PERs) are essential for developments in proof assistants

such as Agda and Coq [Barthe et al. 2003]. Aspects distinguishing our PER interpretation from those

in DTTs come from the specificity of HOL (Hilbert choice and types defined by comprehension) and

the focus on admissibility. Moreover, major themes related to PER/setoid interpretations in DTTs are

intensionality versus extensionality, and proof irrelevance (via Curry-Howard), which are not of in-

terest in HOL. On the other hand, the challenge we have addressed in this paper, which is essentially

showing that HOL is self-contained with respect to relativization, may have interesting counterparts

in DTTs which could be investigated. Indeed, switching from type-based theorems to more flexible

set-based or PER-based theorems without re-proving the latter (and ideally without resorting to
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extending provability) seems like a worthwhile goal regardless of the particular foundation. For

example, Altenkirch et al. [2019] define a translation of types to setoids for a variant of Martin-Löf

type theory, whose conjectured completeness seems to be a counterpart of our Generality theorem.

Beyond proof assistants, the use of PERs to interpret types of 𝜆-calculi and related systems has a

rich tradition, going back at least to Myhill and Shepherdson [1955] and Kreisel [1959], and has

been particularly successful in the context of domain theory, e.g., [Abadi and Plotkin 1990; Freyd

et al. 1992] (also discussed in the monograph by Mitchell [1996]).

Further broadening the scope to general relational interpretations, where the relations are not as-

sumed to be PERs, our work intersects the theme of parametricity [Reynolds 1983;Wadler 1989]. Our

translations can be viewed as a mechanism to massage HOL statements into more general yet equi-

provable ones made in a PER-parametric fragment of HOL. While our “free theorems” are restricted

to PERs, our Compatibility result shows that admissible PER-parametricity in HOL is compatible

with full parametricity for container types. Our Recoverability result is a variant of Reynolds [1983]’s

Identity Extension Lemma—again, restricted to PERs and applicable to relativized terms only.

General parametricity has been a major research theme in DTT in recent years, showing that

parametricity really comes into its own if one adds the expressive power of dependent types

[Bernardy et al. 2012; Bernardy and Moulin 2012] (and the same is true [Bernardy and Lasson

2011] for the related concept of realizablity [Kleene 1945; Krivine 1993]). Specifically, Bernardy

et al. [2012] describe a parametricity translation and its correctness (a Reynolds-style abstraction

theorem) for pure type systems (PTSs), and shows how it can be extended to handle inductive

families. Moreover, Bernardy and Moulin [2012] show how the translation and all instances of the

abstraction theorem can be internalized in the PTS, after adding a parametricity rule which does

not break desirable properties such as Church-Rosser and strong normalization. There are strong

similarities between the BNF-based constructions described in Section 7.1, which effectively carve

out a well-behaved fragment of HOL, and Bernardy et al. [2012]’s inductive-style variant of the

translation for inductive types. Namely, the definition of the BNF-based relator corresponds to the

inductive definition of the translated type, where the translated constructors are inhabitants of

the original constructor’s parametricity statement. For example, Bernardy et al. [2012]’s interpre-

tation JlistK of list is parameterized by two types 𝐴1 and 𝐴2 and a relation 𝑅 and has constructors

JNilK : JlistK 𝐴1 𝐴2 𝑅 Nil Nil and JConsK : ∀𝑎1 : 𝐴1, ∀𝑎2 : 𝐴2 . ∀𝑝 : 𝑅 𝑎1 𝑎2. ∀as1 : list 𝐴1. ∀as2 :
list 𝐴2 . ∀𝑞 : JlistK 𝐴1 𝐴2 𝑅 as1 as2 . JlistK 𝐴1 𝐴2 𝑅 (Cons 𝑎1 as1) (Cons 𝑎2 as2). Ignoring the proof

variables 𝑝 and 𝑞 from the types of these constructors, these are seen to be essentially the inductive

definition of the relator for the list BNF, and at the same time statements of the parametricity of Nil
and Cons w.r.t. this relator—corresponding closely to the actual definitions and proofs performed

by Isabelle/HOL’s (co)datatype package [Blanchette et al. 2014]. In short, for the well-behaved frag-

ment of HOL, everything is parametric, and our work is in good company. In fact, Isabelle/HOL’s

lifting and transfer package [Huffman and Kuncar 2013] also targets this fragment when tracking

parametricity for the purpose of transferring theorems. On the other hand, outside of this fragment,

where we encounter brittle interactions between Hilbert choice and comprehension-based type

definitions, we are “on our own”; here, as discussed, general parametricity fails and the relativized

terms can only recover PER-parametricity. As for internalizing in (a suitable extension of) HOL the

meta-theory of (PER-)parametricity, this is an interesting prospect, but due to the aforementioned

non-uniformities we do not expect any results matching the elegance of those for PTSs.
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A MORE DETAILS ON HOL
A.1 Some HOL Basics
When writing concrete terms or formulas, we take the following conventions:

• We omit redundantly indicating the types of the variables, e.g., we shall write 𝜆𝑥𝜎 . 𝑥 instead

of 𝜆𝑥𝜎 . 𝑥𝜎 .

• We omit redundantly indicating the types of the variables and constants in terms if they

can be inferred by typing rules, e.g., we shall write 𝜆𝑥 . (𝑦𝜎⇒𝜏 𝑥) instead of 𝜆𝑥𝜎 . (𝑦𝜎⇒𝜏 𝑥)
or choice(𝜆𝑥𝜎 . 𝑃 𝑥) instead of choice (𝜎⇒bool)⇒𝜎 (𝜆𝑥𝜎 . 𝑃𝜎⇒bool 𝑥).
• We write 𝜆𝑥𝜎 𝑦𝜏 . 𝑡 instead of 𝜆𝑥𝜎 . 𝜆𝑦𝜏 . 𝑡

• We apply the constant = in an infix manner, i.e., we shall write 𝑡 = 𝑠 instead of = 𝑡 𝑠 .

The formula connectives and quantifiers are defined as abbreviations starting from the implication

and equality primitives:

true = (𝜆𝑥bool . 𝑥) = (𝜆𝑥bool . 𝑥)
all𝜎 = 𝜆𝑝𝜎⇒bool . 𝑝 = (𝜆𝑥𝜎 . true)
(in what follows, we write ∀𝑥𝜎 . 𝑡 instead of all𝜎 (𝜆𝑥𝜎 . 𝑡))
and = 𝜆𝑝bool 𝑞bool . ∀𝑓bool⇒ bool⇒ bool . 𝑓 𝑝 𝑞 = 𝑓 true true

implies = 𝜆𝑝bool 𝑞bool . and 𝑝 𝑞 = 𝑝

(in what follows, we write 𝑝 −→ 𝑞 instead of implies 𝑝 𝑞)

ex𝜎 = 𝜆𝑝𝜎⇒bool . ∀𝑞bool . (∀𝑥𝜎 . 𝑝 𝑥 −→ 𝑞) −→ 𝑞

false = ∀𝑝bool . 𝑝
not = 𝜆𝑝bool . 𝑝 −→ false

or = 𝜆𝑝bool 𝑞bool . ∀𝑟bool . (𝑝 −→ 𝑟 ) −→ ((𝑞 −→ 𝑟 ) −→ 𝑟 )

As customary, we write:

• ∃𝑥𝜎 . 𝑡 instead of ex𝜎 (𝜆𝑥𝜎 . 𝑡)
• ¬ 𝜑 instead of not 𝜑
• 𝜑 ∧ 𝜒 instead of and 𝜑 𝜒

• 𝜑 ∨ 𝜒 instead of or 𝜑 𝜒

The HOL axioms, forming the set Ax, are the following:

• Equality Axioms:

refl: 𝑥𝛼 = 𝑥

subst: 𝑥𝛼 = 𝑦 −→ 𝑝 𝑥 −→ 𝑝 𝑦

• Infinity Axiom:
7

InfAx: ∃𝑠ind⇒ind, 𝑧ind . (∀𝑥ind, 𝑦ind . 𝑠 𝑥 = 𝑠 𝑦 −→ 𝑥 = 𝑦) ∧ (∀𝑥ind . 𝑠 𝑥 ≠ 𝑧)
• Choice Axiom:

ChoiceAx: 𝑝𝛼⇒bool 𝑥 −→ 𝑝 (choice 𝑝)
Above, refl and subst axiomatize equality. InfAx ensures that ind is an infinite type. ChoiceAx

regulates the behavior of the Hilbert Choice operator. The principle of excluded middle, (𝑏 =

true) ∨ (𝑏 = false), follows from the axiom of choice—this makes HOL a classical logic.

7
A note on how the natural numbers are defined in HOL: The Infinity Axiom states that ind is infinite, in that there exists

an injective but non-surjective function between ind and itself. Using Hilbert choice, we pick such a function and call it suc,
and also pick some element outside its image and call it 0. Then we define the type nat from ind using a type definition

with the predicate describing the smallest subset of ind that contains 0 and is closed under suc.
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Two types 𝜎1 and 𝜎2 are called orthogonal, written 𝜎1 # 𝜎2, if they have no common instance;

i.e., for all 𝜏 , 𝜏 ̸≤ 𝜎1 or 𝜏 ̸≤ 𝜎2. The notion of being being orthogonal (#) is extended from types to

constant instances, by defining 𝑐𝜏 # 𝑑𝜎 to mean that 𝑐 ≠ 𝑑 or 𝜏 # 𝜎 .

A.2 Some Lemmas about HOL Typing and Deduction
Lemma 36. If 𝑡 is typable, then there exists a unique type 𝜎 such that 𝑡 : 𝜎 .

It is well-known (and easy to prove) that substitution respects typing:

Lemma 37. If 𝑡 : 𝜎 , then 𝑡 [𝜌] : 𝜎 [𝜌].

Lemma 38. (Weakening Lemma) If 𝐷 ; Γ ⊢ 𝜓 , then 𝐷 ; Γ ∪ {𝜑} ⊢ 𝜓 .

Lemma 39. (Dropping Lemma) Assume that the following hold:

• 𝐷 ; Γ ∪ {𝜑} ⊢ 𝜓 ,
• 𝐷 ⊢ ∃𝑥𝜎 . 𝜑 , and
• 𝑥𝜎 is fresh for Γ and 𝜑 .

Then 𝐷 ; Γ ⊢ 𝜓

We define ⊢′ by modifying ⊢ as follows. We remove (T-Inst) and strengthen (Fact) to a rule that

combines the use of axioms with type instantiation:

𝐷 ; Γ ⊢′ 𝜑 [𝜌]
(Fact-T-Inst)

[𝜑 ∈ Ax ∪ 𝐷 and each 𝛼 in supp(𝜌) is fresh for Γ]
(where 𝜌 is a type-substitution). This does no change deducibility, as shown by the following result

proved by Kunčar and Popescu [2017]:

Lemma 40. 𝐷, Γ ⊢ 𝜑 iff 𝐷, Γ ⊢′ 𝜑

B WELL-DEFINEDNESS OF THE TRANSLATIONS
Prop 41. The functions RIN and RLT are well-defined as total functions in Type → Term and

Term→ Term. Moreover, we have that RIN(𝜎) : 𝜎 rel, and also that 𝑡 : 𝜎 implies RLT(𝑡) : 𝜎 .

We will prove this proposition by providing a terminating relation ▶ that captures the mutual

call graph of RIN and RLT. We take ▶ to be the union ≡↓ ∪ ▷, where ≡↓ and ▷ are defined below.

The relation ▷ includes the structurally recursive calls of RIN and RLT:

𝜎1 ⇒ 𝜎2 ▷ 𝜎1 𝜎1 ⇒ 𝜎2 ▷ 𝜎2 𝑐𝜎 ▷ 𝜎 𝑥𝜎 ▷ 𝜎 𝑡1𝑡2 ▷ 𝑡1 𝑡1𝑡2 ▷ 𝑡2 𝜆𝑥𝜎 . 𝑡 ▷ 𝑡

Moreover,≡↓ captures the recursive calls corresponding to defined items. Given𝑢, 𝑣 ∈ TypeΣ∪TermΣ,

𝑢 ≡↓ 𝑣 states that one of the following holds:
• there exists a constant definition 𝑐𝜎 ≡ 𝑡 in 𝐷 and a type-substitution 𝜌 such that 𝑢 = 𝑐𝜌 (𝜎 )
and 𝑣 = 𝜌 (𝑡);
• there exists a type definition 𝜏 ≡ 𝑡 in 𝐷 where 𝑡 : 𝜎 and a type-substitution 𝜌 such that

𝑢 = 𝜏 [𝜌] and either 𝑣 = 𝜌 (𝑡) or 𝑣 = 𝜌 (𝜎).
Thus, the totality of RIN and RLT is reduced to the termination of ▶, which is ensured by Lemma 6.

The next observation connects ▶ and⇝↓, via ▷∗ (the reflexive-transitive closure of ▷):

Lemma 42. If 𝑢, 𝑣 ∈ Type• ∪ CInst•,𝑤 ∈ TypeΣ ∪ CInstΣ and 𝑢 ≡↓ 𝑤 ▷∗ 𝑣 , then 𝑢 ⇝↓ 𝑣

Proof. By routine structural induction on𝑤 . □

Now we can reduce the termination of ▶ to that of⇝↓, hence prove the former:
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Lemma 43. The relation ▶ is terminating.

Proof. For a contradiction, let us assume that ▶ does not terminate. Then there exists an infinite

sequence (𝑤𝑝 )𝑝∈N such that 𝑤𝑝 ▶ 𝑤𝑝+1 for all 𝑝 . Since ▶ is defined as ≡↓ ∪ ▷ and ▷ clearly

terminates, there must exist an infinite subsequence (𝑤𝑝 𝑗
) 𝑗∈N such that𝑤𝑝 𝑗

≡↓ 𝑤𝑝 𝑗+1 ▷
∗ 𝑤𝑝 𝑗+1 for

all 𝑗 . Since from the definition of ≡↓ we have𝑤𝑝 𝑗
∈ Type•Σ ∪ CInst•Σ, we obtain from Lemma 42 that

𝑤𝑝 𝑗
⇝↓ 𝑤𝑝 𝑗+1 for all 𝑝 . This contradicts the termination of⇝↓. □

This concludes the proof of Prop. 41.

C RELATIVIZATION OF PARAMETRIC TERMS
One aspect that we take for granted in the paper is the correctness of leaving parametric terms

unchanged under relativization. To state this, we must first define parametricity in HOL, which

requires a relational infrastructure that is slightly more general than the one we needed so far.

Remember that, for the defined type constructors (𝛼1, . . . , 𝛼𝑚)𝜅 , a relational witnesses relwit𝜅 has

type 𝛼1 rel⇒ . . . 𝛼𝑚 rel⇒ (𝛼1, . . . , 𝛼𝑚)𝜅 rel. Parametricity requires more general witness grelwit𝜅

of type (𝛼1, 𝛼 ′1) rel2 ⇒ . . . (𝛼𝑚, 𝛼 ′𝑚) rel ⇒ ((𝛼1, . . . , 𝛼𝑚)𝜅, (𝛼 ′1, . . . , 𝛼 ′𝑚)𝜅) rel2, where (𝛼, 𝛼 ′)rel
denotes 𝛼 ⇒ 𝛼 ′ ⇒ bool. (Note that 𝛼 rel is the same as (𝛼, 𝛼)rel.) We assume that grelwit𝜅 extends

relwit𝜅 , in that grelwit𝜅 [𝜌] = relwit𝜅 where 𝜌 is the substitution 𝛼1/𝛼 ′1, . . . , 𝛼𝑚/𝛼 ′𝑚 .
A generalized relational interpretation operatorGRIN : Type⇒ Term can be defined by structural

induction on types—similarly to RIN, but assuming variables 𝐺
𝛼,𝛼 ′

(𝛼,𝛼 ′ ) rel2 rather than relational

variables 𝑅𝛼
𝛼 rel .

A term 𝑡 of type 𝜎 is said to be parametric if 𝐷 ⊢ GRIN(𝜎) 𝑡 𝑡 [𝜌] where 𝜌 is defined as above.

A type 𝜎 is called parametricity-supporting if for all defined type constructors 𝜅 occurring in 𝜎 ,

grelwit𝜅 is parametric.

We can now prove that, up to provable relativized equality (given by its type’s relational inter-

pretation), a parametric term is the same as the original term.

First, we need a lemma, which follows by routine structural induction on the type 𝜎 :

Lemma 44. Assume 𝜎 is a parametricity-supporting type. Then 𝜆𝐺
𝛼1

𝛼1 rel
, . . . , 𝐺

𝛼𝑚
𝛼𝑚 rel . GRIN(𝜎) is

parametric, where 𝛼1 < . . . < 𝛼𝑚 are all the type variables of 𝜎 .

Now we can prove the desired correctness property:

Prop 45. Assume 𝑡 : 𝜎 such that 𝑡 is parametric and 𝜎 is parametricity-supporting. Then

𝐷 ; Δ𝑡 ⊢ RIN(𝜎) 𝑡 RLT(𝑡).

Proof. From𝐷 ⊢ GRIN(𝜎) 𝑡 𝑡 [𝜌], by Admissibilitywe obtain𝐷 ; Δ ⊢ RLT(GRIN(𝜎)) RLT(𝑡) RLT(𝑡 ′)
where 𝑡 ′ is 𝑡 [𝜌] and Δ denotes ΔGRIN(𝜎 ) 𝑡 𝑡 ′

.

Let 𝛿 be the term-substitution that sends each 𝑅𝛼
𝛼 rel to =𝛼 rel .

Let 𝜌1 be the type-substitution that sends each 𝛼 ′ to 𝛼 .
Let 𝛿1 be the term-substitution that sends each 𝐺

𝛼,𝛼

(𝛼,𝛼 ) rel2 to 𝑅
𝛼
𝛼 rel .

Since the type-variables 𝛼 and term-variables 𝑅𝛼
𝛼 rel do not appear (free) in 𝑡 ′, and similarly the

type-variables 𝛼 ′ and term-variables 𝑅𝛼 ′

𝛼 ′ rel do not appear (free) in 𝑡 , We have

𝐷 ; Δ ⊢ RLT(GRIN(𝜎)) [𝛿] [𝜌1] [𝛿1] RLT(𝑡) [𝛿] RLT(𝑡 ′) [𝜌1]

By Recoverability, we have 𝐷 ⊢ RLT(𝑡) [𝛿] = 𝑡 . Moreover, by the properties of substitution, we have

RLT(𝑡 ′) [𝜌1] = RLT(𝑡 [𝜌]) [𝜌1] = RLT(𝑡) [𝜌] [𝜌#] [𝜌1] = RLT(𝑡)
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Finally, using the parametricity of 𝜆𝐺
𝛼1

𝛼1 rel
, . . . , 𝐺

𝛼𝑚
𝛼𝑚 rel . GRIN(𝜎) (Lemma 44), the properties of

substitution, and the fact that GRIN extends RIN, we obtain:

RLT(GRIN(𝜎)) [𝛿] [𝜌1] [𝛿1] = GRIN(𝜎) [𝛿] [𝜌1] [𝛿1] = RIN(𝜎)
These give us 𝐷 ; Δ𝑡 ⊢ RIN(𝜎) 𝑡 RLT(𝑡), as desired. □

D DIGRESSION: WHY PURELY SET-BASED RELATIVIZATIONWOULD NOTWORK
Now, after we have built the theory of HOL relativization, let us go all the way back to the design

stage—covered in Section 3—and analyze an alternative to one of our major design decisions.

As suggested in Section 3, Connective & Quantifier Suitability was the first litmus test for our

choices on how to relativize 𝜆-abstraction and equality. Besides (A) relativizing equality to a PER and

leaving 𝜆-abstraction untouched, we also explored the alternative of (B) leaving equality untouched

and patching 𝜆-abstraction instead.

This alternative does not require the generalization to PERs, but stays at the level of sets. Instead

of 𝑅𝛼
𝛼 rel assumed to be nonempty PERs, we would fix 𝐴𝛼

𝛼 set assumed to be nonempty (sets). For

each type 𝜎 , rather than RIN(𝜎) we have a set-interpretation of 𝜎 , SIN(𝜎), of type 𝜎 set. We take

RLT(=𝜎 rel) to be =𝜎 rel . The price for leaving equality unchanged is paid by the more complex

treatment of function spaces and 𝜆-abstractions. The relativization of the latter, needs to be patched

to produce elements of the former: We take RLT(𝜆𝑥𝜎 . 𝑡) to be 𝜆𝑥𝜎 . patch (RLT(𝑡)) for a suitable
patch function. Now, a simple and natural set version of RIN(𝜎 ⇒ 𝜏), namely

SIN(𝜎 ⇒ 𝜏) = SIN(𝜎) ⇒ SIN(𝜏) = {|𝑓𝜎⇒𝜏 . ∀𝑥𝜎 ∈∈ SIN(𝜎). 𝑓 𝑥 ∈∈ SIN(𝜏) |}
and a corresponding notion of patching, namely

patch (RLT(𝑡)) = if (𝑥𝛼 ∈∈ SIN(𝜎) ∧ ¬ RLT(𝑡) ∈∈ SIN(𝜏)) then (Some 𝑦𝜏 ∈∈ SIN(𝜏)) else RLT(𝑡)
would fail to satisfy Connective & Quantifier Suitability. Indeed, RLT(∀𝑥𝜎 . 𝜑) would become

(𝜆𝑥𝜎 . patch (RLT(𝜑))) = (𝜆𝑥𝜎 . true), which implies but is not equivalent to ∀𝑥 ∈∈ SIN(𝜎). 𝜑 . This
is because the above choices for SIN(𝜎 ⇒ 𝜏) and patch (RLT(𝑡)) do not regulate what happens

with its member functions when applied to elements outside of SIN(𝜎). To fix this, we must make

sure that the members 𝑓 of RIN(𝜎 ⇒ 𝜏) send such irrelevant elements to some fixed element of 𝜏 ,

independent of 𝑓 . This is achieved via Hilbert choice. We define

SIN(𝜎 ⇒ 𝜏) = {|𝑓𝜎⇒𝜏 . ∀𝑥𝜎 ∈∈ SIN(𝜎). 𝑓 𝑥 ∈∈ SIN(𝜏)∧ ∀𝑥𝜎 . ¬ 𝑥 ∈∈ SIN(𝜎) −→ 𝑓 𝑥 = Some 𝑦𝜏 |}
and take a corresponding notion of patching.

Now we can prove Connective & Quantifier Suitability. Moreover, we can define a corresponding

notion of wideness: A type definition 𝜏 ≡ 𝑡 where 𝑡 : 𝜎 ⇒ bool is called wide if {|𝑥𝜎 . 𝑡 𝑥 |} can be

embedded in SIN(𝜎). And the counterpart of what we called relational witness will be a set-witness:
a term setwit𝜅 of type 𝛼1 set ⇒ . . . 𝛼𝑚 set ⇒ (𝛼1, . . . , 𝛼𝑚)𝜅 set such that

𝐷 ⊢ (𝐴𝛼1

𝛼1 set ≠ ∅ ∧ . . . ∧ 𝐴
𝛼𝑚
𝛼𝑚 set ≠ ∅ −→ (setwit𝜅 𝐴

𝛼1

𝛼1 set . . . 𝐴
𝛼𝑚
𝛼𝑚 set ≠ ∅)) ∧

(𝐴𝛼1

𝛼1 set = univ𝛼1 set ∧ . . . ∧ 𝐴
𝛼𝑚
𝛼𝑚 set = univ𝛼𝑚 set −→ (rel set𝜅𝐴𝛼1

𝛼1 set . . . 𝐴
𝛼𝑚
𝛼𝑚 set) = univ𝜏 rel) ∧

(∃𝑓𝜏⇒𝜎 . bij 𝑓 (setwit𝜅 𝐴𝛼1

𝛼1 set . . . 𝐴
𝛼𝑚
𝛼𝑚 set) (SIN(𝜎) ∩ RLT(𝑡)))

With these definitions, we can prove counterparts of all our meta-theoretic results from Section 4,

including Admissibility. In this setting, PER-Parametricity is reduced to the more basic property

that typing yields membership: 𝐷 ⊢ 𝑡 : 𝜎 implies 𝐷 ; Δ𝑡 ⊢ RLT(𝑡) ∈∈ SIN(𝜎).
In summary, we obtain a purely set-based version of admissible relativization, which lightens

the treatment of equality with the price of hardening the treatment of 𝜆-abstractions and function

spaces.



Admissible Types-to-PERs Relativization in HOL 37

However, this version faces a major problem, in relation to the results in Section 7.1. The familiar

internalization operators associated to container types (for example, the operator list : 𝛼 set →
𝛼 list set) are not set-witnesses. This is because the container relators do not interact well with our

“patched” function space set-interpretation. Therefore we would lose Compatibility.

We conclude that purely set-based relativization does not take a sufficiently abstract view to

make HOL-based relativization work. This was the first version we tried, and then abandoned in

favor of the PER-based version.

E MORE BASIC PROPERTIES OF THE RELATIVIZATION OPERATORS
Next, we state some basic properties of the relativization operators—which did not make it into the

main paper due to space limitations, but are needed in the proofs of our main results from Section 4.2.

For the following results, remember our underlying freshness assumption about the relation-

variables 𝑅𝛼
: They are different from the variables we consider (such as 𝑥𝜎 below) and do not occur

in the terms we consider (such as 𝑡 below).

Prop 46. The following hold for all types 𝜎 and terms 𝑡 :

(1) RIN(𝜎) : 𝜎 rel.
(2) If 𝑡 : 𝜎 , then RLT(𝑡) : 𝜎 .

As a further sanity check for our translation definitions, we can prove that they are vacuous in

the absence of type variables:

Prop 47. The following hold for all types 𝜎 and typable terms 𝑡 :

(1) If TV(𝜎) = ∅ and 𝜎 , then 𝐷 ⊢ RIN(𝜎) = =𝜎⇒𝜎⇒bool .

(2) If TV(𝑡) = ∅ then 𝐷, Δ𝑡 ⊢ RLT(𝑡) = 𝑡 .

(3) If TV(𝑡) = ∅ and FTV(𝑡) = ∅, then 𝐷 ⊢ RLT(𝑡) = 𝑡 .

Prop 48. The following hold for all types 𝜎 and terms 𝑡 :

(1) TV(RIN(𝜎)) = TV(𝜎).
(2) TV(RLT(𝑡)) = TV(𝑡).
(3) FTV(RIN(𝜎)) ⊆ {𝑅𝛼

𝛼 rel | 𝛼 ∈ TV(𝜎)}.
(4) FTV(𝑡) ⊆ FTV(RLT(𝑡)) ⊆ FTV(𝑡) ∪ {𝑅𝛼

𝛼 rel | 𝛼 ∈ TV(𝑡)}.

Prop 49. The following hold for all types 𝜎 , variables 𝑥𝜎 , terms 𝑡 and 𝑠 such that 𝑠 : 𝜎 , contexts

Γ and type-substitutions 𝜌 :

(1) RLT(𝑡 [𝑠/𝑥𝜎 ]) = RLT(𝑡) [RLT(𝑠)/𝑥𝜎 ].
(2) RIN(𝜎 [𝜌]) = RIN(𝜎) [𝜌] [𝜌#].
(3) RLT(𝑡 [𝜌]) = RLT(𝑡) [𝜌] [𝜌#].

F PROOFS
In the proofs, we use several induction schemas, fit for the purpose:

• Well-founded induction on types and/or terms with respect the relation ▶, which is known to

be terminating: Given 𝑢, we can assume the property holds for all items 𝑢′ such that 𝑢 ▶ 𝑢′

and need to prove it for 𝑢. So whenever we indicate a proof by well-founded induction, we

will implicitly refer ▶.
• Structural induction on types and/or terms: Given 𝑢, we can assume the property holds for

all immediate subtypes/subterms of 𝑢 and need to prove it for 𝑢.

• Rule induction with respect to the definition of typing or the definition of HOL deduction:

To conclude that typing or deduction implies a property, we prove that the property is

closed under the rules defining typing or deduction.
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Proof of Prop. 46. The two points can be routinely proved together by well-founded induction. □

Proof of Prop. 47. Points (1) and (2) can be routinely proved together by well-founded induction.

Point (3) follows from point (2) since Δ𝑡 = ∅ provided TV(𝑡) = ∅ and FTV(𝑡) = ∅. □

Proof of Prop. 48. Points (1) and (2) can be routinely proved together by well-founded induction.
8

In all cases of the definition, the existing type variables are preserved and no new type variables

are added.

Consider, for example, case of instances 𝜏 of defined types 𝜏 ′, where 𝜏 = 𝜏 ′ [𝜌] and 𝜏 ′ ≡ 𝑡 ′ is in
𝐷 , where 𝑡 ′ : 𝜎 ′ ⇒ bool. Let 𝜎 = 𝜎 ′ [𝜌] and 𝜏 = 𝜏 ′ [𝜌]. We have:

TV(RIN(𝜏)) = TV(𝜏) ∪ TV(RIN(𝜎)) ∪ TV(typedef𝜏,𝜎,𝑡,rep) ∪ TV(RLT(𝑡))
= TV(𝜏) ∪ TV(RIN(𝜎)) ∪ TV(RLT(𝑡))

And, since 𝜏 ▶ 𝜎, 𝑡 , the induction hypothesis gives us TV(RIN(𝜎)) = TV(𝜎) and TV(RLT(𝑡)) =
TV(𝑡). From the above and the fact that TV(𝑡) ⊆ TV(𝜏) and TV(𝜎) ⊆ TV(𝜏), we obtain TV(RIN(𝜏)) =
RIN(𝜏), as desired.

Points (3) and (4) can be proved together by well-founded induction. Again, the only slightly

interesting case is that of instances 𝜏 of defined types, where, using the same notations as above,

we have:

FTV(RIN(𝜏)) = FTV(RIN(𝜎)) ∪ FTV(typedef𝜏,𝜎,𝑡,rep) ∪ FTV(RLT(𝑡))
= FTV(RIN(𝜎)) ∪ ∅ ∪ FTV(RLT(𝑡))

Moreover, since 𝜏 ▶ 𝜎, 𝑡 , the induction hypothesis gives us FTV(RIN(𝜎)) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TV(𝜎)}

and FTV(RLT(𝑡)) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TV(𝑡)}. From the above. we have

FTV(RIN(𝜏)) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TV(𝜎)} ∪ {𝑅

𝛼
𝛼 rel | 𝛼 ∈ TV(𝑡)}

And since TV(𝑡) ⊆ TV(𝜏) and TV(𝜎) ⊆ TV(𝜏), we obtain FTV(RIN(𝜏)) ⊆ {𝑅𝛼
𝛼 rel | 𝛼 ∈ TV(𝜏)}, as

desired. □

Proof of Prop. 49. The proof of (1) goes routinely by structural recursion on the term 𝑡 ,9 using

that term-substitution commutes with the syntactic constructs and that, thanks to Prop. 48 and

our freshness convention about the variables 𝑅𝛼
𝛼 rel, we have that, for all types 𝜏 , 𝑥𝜎 ∉ FTV(RIN(𝜏))

and therefore RIN(𝜏) [𝑠/𝑥𝜎 ] = RIN(𝜏).

We now prove (2) and (3) together by well-founded induction. We distinguish different cases,

according to the syntactic form of 𝑢.

Assume 𝑢 is a variable 𝑥𝜎 . Then, on the one hand, applying the definitions of type-substitution and

RLT, we have:
RLT(𝑥𝜎 [𝜌]) = RLT(𝑥𝜎 [𝜌 ]) = 𝑥𝜎 [𝜌 ]

On the other hand, applying the definitions of RLT and type-substitution, and also the fact that

(thanks to Prop. 48) 𝑥𝜎 ∉ supp(𝜌#), we have:
RLT(𝑥𝜎 ) [𝜌] [𝜌#] = 𝑥𝜎 [𝜌] [𝜌#] = 𝑥𝜎 [𝜌 ] [𝜌#] = 𝑥𝜎 [𝜌 ]

So the two sides are equal, as desired.

8
More precisely, we prove by well-founded induction on 𝑢 that: if 𝑢 is a type 𝜎 , then (1) holds; and if 𝑢 is a term 𝑡 , then (2)

holds.

9
The reason why well-founded induction is not needed here is because, since term-substitution does not affect types, we do

not need to delve into the (well-founded) recursive co-dependency of terms as types.
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Assume 𝑢 is an application or an abstraction term, or is the choice constant. Here, the desired fact

follows from an immediate application of the induction hypothesis and the fact that relativization,

type- and term-substitution all commute with application and abstraction (considering that, thanks

to Prop. 48, the abstracted variables are not in supp(𝜌#)).

Assume 𝑢 is an instance of the equality constant. Here, the desired fact holds trivially, since neither

term- nor type-substitution has any effect.

Assume 𝑢 is an instance of a non-built-in constant, let’s say, 𝑢 has the form 𝑐𝜏 where 𝑐𝜏 ′ ≡ 𝑡 ′ is in
𝐷 and 𝜏 = 𝜏 ′ [𝜌 ′], so that RLT(𝑐𝜏 ) = RLT(𝑡), where 𝑡 is 𝑡 ′ [𝜌].
By the definition of type-substitution for constant instances and compositionality of type-

substitution, we have:

RLT(𝑐𝜏 [𝜌]) = RLT(𝑐𝜏 ′ [𝜌 ′ ] [𝜌]) = RLT(𝑐𝜏 ′ [𝜌 ′ ] [𝜌 ]) = RLT(𝑐𝜏 ′ [𝜌 ′ ·𝜌 ])

Moreover, applying the definition of RLT for the instance 𝑐𝜏 ′ [𝜌 ′ ·𝜌 ] , and again compositionality of

substitution, we have:

= RLT(𝑐𝜏 ′ [𝜌 ′ ·𝜌 ]) = RLT(𝑡 ′ [𝜌 ′ · 𝜌]) = RLT(𝑡 ′ [𝜌 ′] [𝜌]) = RLT(𝑡 [𝜌])

Finally, applying the induction hypothesis for 𝑡 (since 𝑐𝜏 ▶ 𝑡 ) and the definition of RLT for the

instance 𝑐𝜏 , we have:

= RLT(𝑡 [𝜌]) = RLT(𝑡) [𝜌] [𝜌#] = RLT(𝑐𝜏 ) [𝜌] [𝜌#]

At the ends of the above chain of equalities, we have RLT(𝑐𝜏 [𝜌]) = RLT(𝑐𝜏 ) [𝜌] [𝜌#], as desired.

Assume 𝑢 is a type-variable 𝛼 . Applying the definitions of RLT, of type- and term-substitution for

typed variables, and the definition of 𝜌#, we have:

RIN(𝛼) [𝜌] [𝜌#] = 𝑅𝛼
𝛼 rel [𝜌] [𝜌

#] = 𝑅𝛼
𝜌 (𝛼 ) rel [𝜌

#] = 𝜌# (𝑅𝛼
𝜌 (𝛼 ) rel) = RIN(𝜌 (𝛼)) = RIN(𝛼 [𝜌])

which gives as the desired equality.

Assume 𝑢 is bool or ind. Then the desired equality follows trivially, since 𝑢 and =𝑢 rel have no type-

variables or free (term) variables, meaning that they are not affected by type- or term-substitution.

Assume𝑢 is a function type, i.e., it has the form𝜎 ⇒ 𝜏 . This case follows by an immediate application

of the inductive hypothesis for 𝜎 and 𝜏 (considering that, thanks to Prop. 48, the abstracted variables

are not in supp(𝜌#)).

Assume 𝑢 is an instance of a defined type, i.e., has the form 𝜏 where 𝜏 = 𝜏 ′ [𝜌 ′] and 𝜏 ′ ≡ 𝑡 ′ is in 𝐷

with 𝑡 ′ : 𝜎 ′ ⇒ bool, so that RIN(𝜏) = 𝜆𝑥𝜏 , 𝑦𝜏 . RIN(𝜎) (𝑓 𝑥) (𝑓 𝑦) ∧ RLT(𝑡) (𝑓 𝑥) ∧ RLT(𝑡) (𝑓 𝑦),
where 𝑡 = 𝑡 ′ [𝜌 ′], 𝜎 = 𝜎 ′ [𝜌 ′], and and 𝑓 = Some rep𝜏⇒𝜎 . typedef𝜏,𝜎,𝑡,rep.
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On the one hand, applying the compositionality of substitution and the definition of RIN for

the instance 𝜏 ′ [𝜌 ′ · 𝜌] of 𝜏 ′, we have the following, where 𝑓 ′ denotes Some rep𝜏 ′ [𝜌 ′ ·𝜌 ]⇒𝜎 ′ [𝜌 ′ ·𝜌 ] .
typedef𝜏 ′ [𝜌 ′ ·𝜌 ],𝜎 ′ [𝜌 ′ ·𝜌 ],𝑡 ′ [𝜌 ′ ·𝜌 ],rep:

RIN(𝜏 [𝜌]) = RIN(𝜏 ′ [𝜌 ′] [𝜌]) = RIN(𝜏 ′ [𝜌 ′ · 𝜌]) =
𝜆𝑥𝜏 ′ [𝜌 ′ ·𝜌 ], 𝑦𝜏 ′ [𝜌 ′ ·𝜌 ] . RIN(𝜎 ′ [𝜌 ′ · 𝜌]) (𝑓 ′ 𝑥) (𝑓 ′ 𝑦) ∧

RLT(𝑡 ′ [𝜌 ′ · 𝜌]) (𝑓 ′ 𝑥) ∧ RLT(𝑡 ′ [𝜌 ′ · 𝜌]) (𝑓 ′ 𝑦) =
𝜆𝑥𝜏 ′ [𝜌 ′ ] [𝜌 ], 𝑦𝜏 ′ [𝜌 ′ ] [𝜌 ] . RIN(𝜎 ′ [𝜌 ′] [𝜌]) (𝑓 ′ 𝑥) (𝑓 ′ 𝑦) ∧

RLT(𝑡 ′ [𝜌 ′] [𝜌]) (𝑓 ′ 𝑥) ∧ RLT(𝑡 ′ [𝜌 ′] [𝜌]) (𝑓 ′ 𝑦) =
𝜆𝑥𝜏 [𝜌 ], 𝑦𝜏 [𝜌 ] . RIN(𝜎 [𝜌]) (𝑓 ′ 𝑥) (𝑓 ′ 𝑦) ∧

RLT(𝑡 [𝜌]) (𝑓 ′ 𝑥) ∧ RLT(𝑡 [𝜌]) (𝑓 ′ 𝑦)
On the other hand, we have:

RIN(𝜏) [𝜌] [𝜌#] = 𝜆𝑥𝜏 [𝜌 ], 𝑦𝜏 [𝜌 ] . RIN(𝜎) [𝜌] [𝜌#] (𝑓 [𝜌] [𝜌#] 𝑥) (𝑓 [𝜌] [𝜌#] 𝑦) ∧
RLT(𝑡) [𝜌] [𝜌#] (𝑓 [𝜌] [𝜌#] 𝑥) ∧ RLT(𝑡) [𝜌] [𝜌#] (𝑓 [𝜌] [𝜌#] 𝑦)

By the induction hypothesis (since𝜏 ▶ 𝑡, 𝜎), we haveRLT(𝜎 [𝜌]) = RLT(𝜎) [𝜌] [𝜌#] andRLT(𝑡 [𝜌]) =
RLT(𝑡) [𝜌] [𝜌#]. Moreover, by substitution compositionality, we have that 𝑓 ′ = 𝑓 [𝜌]. And since

𝑓 [𝜌] has no free variables, we have 𝑓 [𝜌] [𝜌#] = 𝑓 [𝜌].
All the above gives us RIN(𝜏 [𝜌]) = RIN(𝜏) [𝜌] [𝜌#], as desired. □

Proof of Prop. 15. By routine well-founded induction on 𝜎 .10

For the case of a type 𝜏 defined from 𝜎 ′ via 𝑡 ′, we use the following: Since by the induction

hypothesis RIN(𝜎) is provably a PER, then so is its restriction to RLT(𝑡); and so is the inverse image

of the latter via the injective function 𝑓 .11 □

Proof of Theorem 16. Points (1) and (2) follow from Prop. 47(3) and the fact that the logical

connectives (as defined in HOL) are both ground and closed.

(3): Applying the definition of ∀ and that of RLT, we have:

RLT(∀𝑥𝜎 . 𝜑) = RLT((𝜆𝑥𝜎 . 𝜑) = (𝜆𝑥𝜎 . true)) =
= RIN(𝜎 ⇒ bool) (𝜆𝑥𝜎 . 𝜑) (𝜆𝑥𝜎 . true)
= ∀𝑥𝜎 , 𝑦𝜎 . RIN(𝜎) 𝑥 𝑦 −→ RLT(𝜑) = true
= ∀𝑥𝜎 , 𝑦𝜎 . RIN(𝜎) 𝑥 𝑦 −→ RLT(𝜑)

where 𝑦𝜎 is fresh for 𝜑 . Moreover, by Prop. 15, we have 𝐷 ; Δ𝜎 ⊢ per RIN(𝜎), which implies

𝐷 ; Δ𝜎 ⊢ (∀𝑥𝜎 , 𝑦𝜎 . RIN(𝜎) 𝑥𝜎 𝑦𝜎 −→ RLT(𝜑)) = (∀𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 −→ RLT(𝜑))
We therefore obtain

𝐷 ; Δ𝜎 ⊢ RLT(∀𝑥𝜎 . 𝜑) = (∀𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 −→ rel(𝜑))
as desired.

(4): Follows from points (2) and (3) together with the fact that ⊢ (∃𝑥𝜎 . 𝜑) ←→ ¬ (∀𝑥𝜎 . ¬ 𝜑). □

Proof of Theorem 17. The two points can be routinely proved together by well-founded induction.
□

10
More precisely, the following is proved by well-founded induction on 𝑢 ∈ Type ∪ Term: If 𝑢 is a type 𝜎 , the stated fact

holds.

11
This case shows that, even though to prove this proposition we do not need to recurse on terms, structural induction on

types is not enough.
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Proof of Prop. 18. The proof goes by well-founded induction on 𝜎 . All cases are completely

routine, except for that of defined types.

Assume 𝜏 is an instance of a defined type, i.e., assume 𝜏 = 𝜏 ′ [𝜌 ′] and 𝜏 ′ ≡ 𝑡 ′ is in 𝐷 with

𝑡 ′ : 𝜎 ′ ⇒ bool, so that RIN(𝜏) = 𝜆𝑥𝜏 , 𝑦𝜏 . RIN(𝜎) (𝑓 𝑥) (𝑓 𝑦) ∧ RLT(𝑡) (𝑓 𝑥) ∧ RLT(𝑡) (𝑓 𝑦),
where 𝑡 = 𝑡 ′ [𝜌 ′], 𝜎 = 𝜎 ′ [𝜌 ′], and 𝑓 = Some rep𝜏⇒𝜎 . typedef𝜏,𝜎,𝑡,rep.

Since 𝐷 ⊢ ∃𝑧𝜎 . 𝑡 𝑧𝜎 , by Prop. 21, we have 𝐷 ; Δ∃𝑧𝜎 . 𝑡 𝑧 ⊢ RLT(∃𝑧𝜎 . 𝑡 𝑧), hence, by Prop. 16(4),

𝐷 ; Δ∃𝑧𝜎 . 𝑡 𝑧 ⊢ ∃𝑧𝜎 . RIN(𝜎) 𝑧 𝑧 ∧ RLT(𝑡) 𝑧. Moreover, since FTV(𝑡) = ∅ and TV(𝑡) ⊆ TV(𝜏), we
have Δ∃𝑧𝜎 . 𝑡 𝑧 ⊆ Δ𝜏

, and therefore 𝐷 ; Δ𝜏 ⊢ ∃𝑧𝜎 . RIN(𝜎) 𝑧 𝑧 ∧ RLT(𝑡) 𝑧 □

Proof of Theorem 19. To prove this statement, we need to generalize it a bit. First, some notation:

For any variable 𝑥 , we will fix a fresh copy 𝑥 ′ of it. In fact, we consider the set Var to be partitioned
in two sets, with

′
being a bijection between the two; and we assume that the terms 𝑡 we consider

do not contain primed variants of variables. We write 𝑡 ′ for the “copy” of 𝑡 obtained by replacing

each of its free typed variables 𝑥𝜎 with 𝑥 ′𝜎 . This is similar to the notations from [Bernardy et al.

2012].

Nowwemodify the definition of Δ𝑡
so that, for each 𝑥𝜎 ∈ FTV(𝑡), Δ𝑡

contains not the assumption

RIN(𝜎) 𝑥𝜎 𝑥𝜎 , but the assumption RIN(𝜎) 𝑥𝜎 𝑥 ′𝜎 . Now, we will prove the following:
(*) If 𝑡 : 𝜎 , then 𝐷 ; Δ𝑡 ⊢ RIN(𝜎) RLT(𝑡) RLT(𝑡 ′).
(This is more general than what we wish to prove, which can be obtained by applying the term-

substitution sending all variables 𝑥 ′𝜎 from FTV(𝑡) to 𝑥𝜎 , and using that deducibility is closed under

term-substitution.)

The proof of (*) goes by well-founded induction on the term 𝑡 . We distinguish different cases,

according to the syntactic form of 𝑡 :

Assume the term is a variable 𝑥𝜎 . We need to prove 𝐷 ; Δ𝑥𝜎 ⊢ RIN(𝜎) 𝑥𝜎 𝑥 ′𝜎 , which holds because

RIN(𝜎) 𝑥𝜎 𝑥 ′𝜎 is an assumption in Δ𝑥𝜎
.

Assume the term is an application 𝑡1 𝑡2 where 𝑡1 : 𝜎 ⇒ 𝜏 and 𝑡2 : 𝜎 . From the induction hypothesis,

we have 𝐷 ; Δ𝑡1 ⊢ RIN(𝜎 ⇒ 𝜏) 𝑡1 𝑡 ′1 and 𝐷 ; Δ𝑡2 ⊢ RIN(𝜎) 𝑡2 𝑡 ′2. In particular, we have 𝐷 ; Δ𝑡1 𝑡2 ⊢
RIN(𝜎 ⇒ 𝜏) 𝑡1 𝑡 ′1 and 𝐷 ; Δ𝑡1 𝑡2 ⊢ RIN(𝜎) 𝑡2 𝑡 ′2. From these and the definition of RIN(𝜎 ⇒ 𝜏), we
have 𝐷 ; Δ𝑡1 𝑡2 ⊢ RIN(𝜎) (𝑡1 𝑡2) (𝑡 ′1 𝑡 ′2), as desired.

Assume the term is an abstraction 𝜆𝑥𝜎 . 𝑡 where 𝑡 : 𝜏 . We need to prove 𝐷 ; Δ𝜆𝑥𝜎 . 𝑡 ⊢ RIN(𝜎 ⇒
𝜏) (𝜆𝑥𝜎 . 𝑡) (𝜆𝑥 ′𝜎 . 𝑡 ′), i.e., applying the definition of RIN(𝜎 ⇒ 𝜏) and HOL deduction, that

𝐷 ; Δ𝜆𝑥𝜎 . 𝑡 , RIN(𝜎) 𝑥𝜎 𝑥 ′𝜎 ⊢ RIN(𝜏) 𝑡 𝑡 ′

This is true because Δ𝜆𝑥𝜎 . 𝑡 , RIN(𝜎) 𝑥𝜎 𝑥 ′𝜎 ⊆ Δ𝑡
and by the induction hypothesis we have

𝐷 ; Δ𝑡 ⊢ RIN(𝜏) 𝑡 𝑡 ′.

The term is an instance of equality, =𝜎⇒𝜎⇒bool . We need to prove

𝐷 ; Δ𝜎 ⊢ RIN(𝜎 ⇒ 𝜎 ⇒ bool) RIN(𝜎) RIN(𝜎)

which means, applying the definition of RIN for function types and bool,

𝐷 ; Δ𝜎 ⊢ ∀𝑥𝜎 , 𝑥 ′𝜎 , 𝑦𝜎 , 𝑦′𝜎 . RIN(𝜎) 𝑥 𝑥 ′ ∧ RIN(𝜎) 𝑥 𝑥 ′ −→ (RIN(𝜎) 𝑥 𝑦 = RIN(𝜎) 𝑥 ′ 𝑦′)

The above follows from 𝐷 ; Δ𝜎 ⊢ per RIN(𝜎), which is ensured by Prop. 15.
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The term is an instance of the choice constant, choice (𝜎⇒bool)⇒bool . Let us write 𝑓 for the term

RLT(choice (𝜎⇒bool)⇒bool). We need to prove

𝐷 ; Δ𝜎 ⊢ RIN(𝜎 ⇒ bool) ⇒ bool) 𝑓 𝑓

To this end, we perform in HOL some reasoning that we only describe informally below: Let

𝑝𝜎⇒bool and 𝑞𝜎⇒bool , and assume RIN(𝜎 ⇒ bool) 𝑝 𝑞, meaning ∀𝑥𝜎 , 𝑦𝜎 . RIN(𝜎) 𝑥 𝑦 −→ 𝑝 𝑥 =

𝑞 𝑦. In particular, ∀𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 −→ 𝑝 𝑥 = 𝑞 𝑥 , hence (𝜆𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑝 𝑥) ←→
(𝜆𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑞 𝑥). We have two subcases:

• Assume ∃𝑥𝜎 . RIN(𝜎) 𝑥 𝑥∧𝑝 𝑥 . Then, by the Choice axiom, RIN(𝜎) (𝑓 𝑝) (𝑓 𝑝) and 𝑝 (𝑓 𝑝).
Also, we have that ∃𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑞 𝑥 hence, similarly, RIN(𝜎) (𝑓 𝑞) (𝑓 𝑞) and 𝑞 (𝑓 𝑞).
Moreover, we have 𝑓 𝑝 = 𝑓 𝑞 (since the choice operator is applied to identical predicates).

We obtain RIN(𝜎) (𝑓 𝑝) (𝑓 𝑞), as desired.
• Assume ¬ (∃𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑝 𝑥). Since ∃𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 by Prop. 18, we again by

the Choice axiom have RIN(𝜎) (𝑓 𝑝) (𝑓 𝑝), and similarly RIN(𝜎) (𝑓 𝑞) (𝑓 𝑞); and also

𝑓 𝑝 = 𝑓 𝑞 (since the choice operator is applied to the same predicate). We again obtain

RIN(𝜎) (𝑓 𝑝) (𝑓 𝑞), as desired.

Assume the term is an instance 𝑐𝜏 of a non-built-in constant. Then rel(𝑐𝜏 ) = rel(𝑡) where 𝑐𝜏 ▶
𝑡 . By the induction hypothesis and the fact that FTV(𝑡) = ∅ and therefore 𝑡 ′ = 𝑡 , we have

RIN(𝜏) rel(𝑡) rel(𝑡), hence RIN(𝑐𝜏 ) rel(𝑡) rel(𝑡), as desired. □

Proof of Prop. 20. On the one hand, ΔΓ [𝜌 ]
consists of the following:

• an assumption per≠∅ 𝑅
𝛼
𝛼 rel for each 𝛼 ∈ TV(Γ [𝜌]),

i.e., using the properties of TV and type-substitution,

an assumption per≠∅ 𝑅
𝛼
𝛼 rel for each 𝛽 ∈ TV(Γ) and each 𝛼 ∈ TV(𝜌 (𝛽)), and

• an assumption RIN(𝜎) 𝑥𝜎 𝑥𝜎 for each 𝑥𝜎 ∈ FTV(Γ [𝜌])
i.e., using the properties of FTV and type-substitution,

an assumption RIN(𝜏 [𝜌]) 𝑥𝜏 [𝜌 ] 𝑥𝜏 [𝜌 ] for each 𝑥𝜏 ∈ FTV(Γ).
On the other hand, ΔΓ [𝜌] [𝜌#] consists of the following:
• an assumption per≠∅ 𝑅

𝛽

𝛽 rel [𝜌] [𝜌
#] for each 𝛽 ∈ TV(Γ),

i.e., by the definitions of type- and term-substitutions for typed variables, and the definition

of 𝜌#, an assumption per≠∅ RIN(𝜌 (𝛽)), for each 𝛽 ∈ TV(Γ), and
• an assumption RIN(𝜏 [𝜌]) 𝑥𝜏 [𝜌 ] 𝑥𝜏 [𝜌 ] for each 𝑥𝜏 ∈ FTV(Γ).

From the above, we see that for proving our desired fact, namely per≠∅ 𝑅
𝛼
𝛼 rel for each 𝛽 ∈ TV(Γ), it

would suffice to prove that, for each 𝛽 ∈ TV(Γ), we have

𝐷 ; {𝑅𝛼
𝛼 rel ≠ ∅ | 𝛼 ∈ TV(𝜌 (𝛽))} ⊢ per≠∅ RIN(𝜌 (𝛽))

But the latter is precisely 𝐷 ; Δ𝜌 (𝛽 ) ⊢ per≠∅ RIN(𝜌 (𝛽)), which follows from Prop. 15 and Prop 19(1).

□

Proof of Theorem 21. The proof goes by induction on the definition of eager-substitution

deduction ⊢′ (taking advantage of Lemma 40). Henceforth, we write ⊢ instead of ⊢′. We distinguish

different cases, according to the last applied rule:

(Fact-T-Inst) for instances of axioms: We assume 𝜑 is an instance of an axiom and we need to

show 𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT(𝜑). We have the following subcases:
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• Assume 𝜑 is an instance of refl (the reflexivity axioms), i.e., has the form 𝑥𝜎 = 𝑥𝜎 , mean-

ing that RLT(𝜑) is RIN(𝜎) 𝑥𝜎 𝑥𝜎 . Since 𝑥𝜎 ∈ FTV(𝜑), the context ΔΓ∪{𝜑 }
contains the

assumption RIN(𝜎) 𝑥𝜎 𝑥𝜎 . Hence 𝐷 ; Δ
Γ∪{𝜑 }, Γ ⊢ RIN(𝜎) 𝑥𝜎 𝑥𝜎 , as desired.

• Assume 𝜑 is an instance of subst (the substitution axiom), i.e., has the form 𝑥𝜎 = 𝑦𝜎 −→
𝑝𝜎⇒bool 𝑥 −→ 𝑝 𝑦, meaning (by Prop. 16) that

⊢ RLT(𝜑) = (RIN(𝜎) 𝑥𝜎 𝑦𝜎 −→ 𝑝𝜎⇒bool 𝑥 −→ 𝑝 𝑦)
Since𝑝𝜎⇒bool ∈ FTV(𝜑), the contextΔΓ∪{𝜑 }

contains the assumptionRIN(𝜎) 𝑝𝜎⇒bool 𝑝𝜎⇒bool .

Hence, using the definition of RIN for function spaces and for bool, we obtain

𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RIN(𝜎) 𝑥𝜎 𝑦𝜎 = 𝑝𝜎⇒bool 𝑥 −→ 𝑝 𝑦

From the last two displayed deductions, we obtain 𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ rel(𝜑), as desired.
• If 𝜑 is an instance of InfAx (the infinity axiom), then ⊢ RLT(𝜑) = 𝜑 , so the desired fact is

trivial.

• If 𝜑 is an instance of ChoiceAx (the choice axiom), then 𝜑 has the form

𝑝𝜎⇒bool 𝑥𝜎 −→ 𝑝 (choice (𝜎⇒bool)⇒bool 𝑝), and therefore we have

⊢ RLT(𝜑) ←→ (𝑝𝜎⇒bool 𝑥𝜎 −→ 𝑝 (choice (𝜎⇒bool)⇒bool (𝜆𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑝 𝑥)))

And since RIN(𝜎) 𝑥𝜎 𝑥𝜎 is in ΔΓ∪{𝜑 }
, using the Choice axiom and HOL deduction, we have

𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ 𝑝𝜎⇒bool 𝑥𝜎 −→ 𝑝 (choice (𝜎⇒bool)⇒bool (𝜆𝑥𝜎 . RIN(𝜎) 𝑥 𝑥 ∧ 𝑝 𝑥))

From the above two, we obtain 𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT(𝜑), as desired.

(Fact-T-Inst) for instances of type definitions:We need to prove𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT(𝜑) for formulas

𝜑 of the form

∃rep𝜏⇒𝜎 . (∀𝑥𝜏 , 𝑦𝜏 . rep 𝑥 = rep 𝑦 −→ 𝑥 = 𝑦) ∧ (∀𝑦𝜎 . 𝑡 𝑦 ←→ (∃𝑥𝜏 . 𝑦 = rep 𝑥))
where 𝜎 , 𝜏 and 𝑡 are instances, for some type-substitution 𝜌 , of 𝜎 ′, 𝜏 ′ and 𝑡 ′ appearing in a type

definition 𝜏 ′ ≡ 𝑡 ′ in 𝐷 , where 𝑡 ′ : 𝜎 ′ ⇒ bool (and therefore 𝑡 : 𝜎 → bool). Then, using the definition
of rel, Prop. 16 and HOL deduction, we obtain

⊢ RLT(𝜑) ←→ (∃rep𝜏⇒𝜎 . RIN(𝜏 ⇒ 𝜎) rep rep.
(∀𝑥𝜏 , 𝑦𝜏 . RIN(𝜏) 𝑥 𝑥 ∧ RIN(𝜏) 𝑦 𝑦 ∧ RIN(𝜎) (rep 𝑥) (rep 𝑦) −→ RIN(𝜏) 𝑥 𝑦) ∧
(∀𝑦𝜎 . RIN(𝜎) 𝑦 𝑦 −→ (RLT(𝑡) 𝑦 ←→ (∃𝑥𝜏 . RIN(𝜏) 𝑥 𝑥 ∧ RIN(𝜏) 𝑦 (rep 𝑥)))))

For simplicity, let us write Rep instead of Rep𝜏⇒𝜎 . Because, by Prop. 19, we have ⊢ RIN(𝜏 ⇒
𝜎) RLT(Rep) RLT(Rep), for proving 𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT(𝜑) it suffices to prove the instance of the

above lefthand side for RLT(Rep):
𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢

(∀𝑥𝜏 , 𝑦𝜏 . RIN(𝜏) 𝑥 𝑥 ∧ RIN(𝜏) 𝑦 𝑦 ∧ RIN(𝜎) (RLT(Rep) 𝑥) (RLT(Rep) 𝑦) −→ RIN(𝜏) 𝑥 𝑦) ∧
(∀𝑦𝜎 . RIN(𝜎) 𝑦 𝑦 −→ (RLT(𝑡) 𝑦 ←→ (∃𝑥𝜏 . RIN(𝜏) 𝑥 𝑥 ∧ RIN(𝜏) 𝑦 (RLT(Rep) 𝑥)))))

Moreover, by the definition of RLT, we have that RLT(Rep) and Rep are provably equal on the

elements of RIN(𝜏), so it suffices to prove:

(∀𝑥𝜏 , 𝑦𝜏 ∈ RIN(𝜏). Rep𝜏⇒𝜎 𝑥 = Rep𝜏⇒𝜎 𝑦 −→ 𝑥 = 𝑦) ∧
(∀𝑦𝜎 ∈ RIN(𝜎). RLT(𝑡) 𝑦 ←→ (∃𝑥𝜏 ∈∈ RIN(𝜏). 𝑦 = Rep𝜏⇒𝜎 𝑥))

Now, remember that Rep𝜏⇒𝜎 is defined as the choice operator applied to the predicate 𝑝 that

gives𝜑 , in that𝜑 is equal to ∃rep𝜏⇒𝜎 . 𝑝 rep. And thanks to𝜑 being provable, we have that 𝑝 Rep𝜏⇒𝜎

provable, meaning that Rep𝜏⇒𝜎 is provably an injection on 𝜏 whose image is 𝑡 . So:
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• the first conjunct above follows from the injectivity of Rep𝜏⇒𝜎

• the second conjunct follows from the definition of RIN(𝜏) (as the inverse image through

Rep𝜏⇒𝜎 of the intersection between RIN(𝜎) and RLT(𝑡)).

(Fact-T-Inst) for instances of constant definitions: We must prove 𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT(𝜑) for
formulas 𝜑 of the form 𝑐𝜎 [𝜌 ] = 𝑡 [𝜌], where 𝑐𝜎 ≡ 𝑡 is a constant definition in 𝐷 and 𝜌 has the form

𝜎1/𝛼1, . . . , 𝜎1/𝛼1 where 𝛼1 < . . . 𝛼𝑛 are all the type-variables of 𝜎 .

So we must prove 𝐷 ; Γ, ΔΓ∪{𝜑 } ⊢ RLT(𝑐𝜎 [𝜌 ]) = RLT(𝑡 [𝜌]), which means:

𝐷 ; Γ, ΔΓ∪{𝜑 } ⊢ 𝑐rlt𝜎𝜎1 set⇒ . . .⇒ 𝜎𝑛 set⇒ 𝜎 [𝜌 ] (RIN(𝜎1)) . . . (RIN(𝜎𝑛)) = RLT(𝑡 [𝜌])
To this end, we apply (Fact-T-Inst) for the 𝜌-instance of the definition

𝑐rlt𝜎𝛼1 rel⇒ . . .⇒ 𝛼𝑛 rel⇒ 𝜎 ≡ 𝜆𝐴
𝛼1

𝛼1 rel
, . . . , 𝐴

𝛼𝑛
𝛼𝑛 rel . RLT(𝑡)

from 𝐷 and the (Beta) rule 𝑛 times, obtaining:

𝐷 ⊢ 𝑐rlt𝜎𝜎1 set⇒ . . .⇒ 𝜎𝑛 set⇒ 𝜎 [𝜌 ] (RIN(𝜎1)) . . . (RIN(𝜎𝑛)) =

RLT(𝑡) [𝜌] [RIN(𝜎1)/𝐴𝛼1

𝜎1 set, . . . , RIN(𝜎𝑛)/𝐴
𝛼𝑛
𝜎𝑛 set]

Moreover, from point (3) we have

⊢ RLT(𝑡 [𝜌]) = RLT(𝑡) [𝜌] [RIN(𝜎1)/𝐴𝛼1

𝜎1 set, . . . , RIN(𝜎𝑛)/𝐴
𝛼𝑛
𝜎𝑛 set]

so our desired fact follows from the last two facts and HOL deduction.

(Assum): The proof here is immediate, since the context Γ is part of the larger context ΔΓ∪{𝜑 }, Γ.

(Beta): We need to show 𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT((𝜆𝑥𝜎 . 𝑡) 𝑠) = RLT(𝑡 [𝑠/𝑥𝜎 ]). By the definition of RLT
for applications and point (4), this is equivalent to

𝐷 ; ΔΓ∪{𝜑 }, Γ ⊢ RLT(𝜆𝑥𝜎 . 𝑡) RLT(𝑠) = RLT(𝑡) [RLT(𝑠)/𝑥𝜎 ]
To prove the above, we first apply point (1) to obtain 𝐷 ; ΔΓ∪{𝜑 } ⊢ RLT(𝑠) ∈∈ RIN(𝜎), then the

definition of RLT for abstractions to obtain that RLT(𝜆𝑥𝜎 . 𝑡) and 𝜆𝑥𝜎 . RLT(𝑡) are provably equal

on all elements of RIN(𝜎), i.e.,
𝐷 ; ΔΓ∪{𝜑 } ⊢ ∀𝑦𝜎 ∈∈ RIN(𝜎). RLT(𝜆𝑥𝜎 . 𝑡) 𝑦 = (𝜆𝑥𝜎 . RLT(𝑡)) 𝑦

From the above two, we obtain

𝐷 ; ΔΓ∪{𝜑 } ⊢ RLT(𝜆𝑥𝜎 . 𝑡) RLT(𝑠) = (𝜆𝑥𝜎 . RLT(𝑡)) RLT(𝑠)
which by HOL deduction ((Beta) and the equality rules) gives us the desired fact.

(Ext): From the induction hypothesis and the fact that RLT is the identity on variables and on the

equality constant, we know 𝐷 ; Δ, RLT(Γ) ⊢ RIN(𝜏) (𝑓𝜎⇒𝜏 𝑥𝜎 ) (𝑔𝜎⇒𝜏 𝑥𝜎 ), where 𝑥𝜎 is fresh for Γ,
and Δ denotes ΔΓ∪{ 𝑓𝜎⇒𝜏 𝑥𝜎 = 𝑔𝜎⇒𝜏 𝑥𝜎 }

.

We need to prove 𝐷 ; Δ′, Γ ⊢ RIN(𝜎 ⇒ 𝜏) 𝑓𝜎⇒𝜏 𝑔𝜎⇒𝜏 where Δ
′
denotes ΔΓ∪{ 𝑓𝜎⇒𝜏 = 𝑔𝜎⇒𝜏 }

. To this

end, we first note that Δ = Δ′ ∪ {RIN(𝜎) 𝑥𝜎 𝑥𝜎 }. Hence, applying (ImpI) to the known deducibility

fact we obtain

𝐷 ; Δ′, RLT(Γ) ⊢ RIN(𝜎) 𝑥𝜎 𝑥𝜎 −→ RIN(𝜏) (𝑓𝜎⇒𝜏 𝑥𝜎 ) (𝑔𝜎⇒𝜏 𝑥𝜎 )
Moreover, 𝑥𝜎 is fresh for Δ′, RLT(Γ) because:
• 𝑥𝜎 is fresh for Δ′ by the definition ΔΓ∪{ 𝑓𝜎⇒𝜏 = 𝑔𝜎⇒𝜏 }

and the fact that 𝑥𝜎 is fresh for Γ, and
• 𝑥𝜎 is fresh for RLT(Γ) by Lemma 48 and the fact that 𝑥𝜎 is fresh for Γ.
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From the last two facts, we obtain

𝐷 ; Δ′, RLT(Γ) ⊢ ∀RIN(𝜎) 𝑥𝜎 𝑥𝜎 . 𝑓𝜎⇒𝜏 𝑥𝜎 = 𝑔𝜎⇒𝜏 𝑥𝜎

And since Δ′ contains the assumptions 𝑓𝜎⇒𝜏 ∈ RIN(𝜎 ⇒ 𝜏) and 𝑔𝜎⇒𝜏 ∈ RIN(𝜎 ⇒ 𝜏), by the

definition of RIN(𝜎 ⇒ 𝜏) (which ensures that functions belonging to this set return a fixed element

of 𝜏 for any input outside of RIN(𝜎)) we obtain 𝐷 ; Δ′, Γ ⊢ 𝑓𝜎⇒𝜏 = 𝑔𝜎⇒𝜏 , as desired.

(ImpI): From the induction hypothesis we have 𝐷 ; ΔΓ∪{𝜑,𝜒 }, RLT(Γ) ∪ {RLT(𝜑)} ⊢ RLT(𝜒) which by

applying (ImpI) gives us𝐷 ; ΔΓ∪{𝜑.𝜒 }, RLT(Γ) ⊢ RLT(𝜑) −→ RLT(𝜒). And using the definition ofRLT
for −→ and the fact that ΔΓ∪{𝜑,𝜒 } = ΔΓ∪{𝜑−→𝜒 }

, we obtain 𝐷 ; ΔΓ∪{𝜑−→𝜒 }, RLT(Γ) ⊢ RLT(𝜑 −→ 𝜒),
as desired.

(MP):
12
From the induction hypothesis we have

• 𝐷 ; ΔΓ∪{𝜑−→𝜒 }, RLT(Γ) ⊢ RLT(𝜑 −→ 𝜒) and
• 𝐷 ; ΔΓ∪{𝜑 }, RLT(Γ) ⊢ RLT(𝜑)

Using the definition of RLT for −→, the fact that ΔΓ∪{𝜑−→𝜒 } = ΔΓ∪{𝜑,𝜒 } ⊇ ΔΓ∪{𝜑 }
and the admissi-

bility of weakening (Lemma 38), we obtain

• 𝐷 ; ΔΓ∪{𝜑,𝜒 }, RLT(Γ) ⊢ RLT(𝜑) −→ RLT(𝜒) and
• 𝐷 ; ΔΓ∪{𝜑,𝜒 }, RLT(Γ) ⊢ RLT(𝜑)

from which by (MP) we obtain 𝐷 ; ΔΓ∪{𝜑,𝜒 }, RLT(Γ) ⊢ RLT(𝜒). By Lemma 48, FTV(RLT(Γ) ∪
{RLT(𝜒)}) = FTV(Γ ∪ {𝜒}) ∪ {𝐴𝛼

𝛼 set | 𝛼 ∈ TV(Γ ∪ {𝜒})} Hence, according to dropping lemma

(Lemma 39), in this last deducibility statement we can remove from ΔΓ∪{𝜑,𝜒 }
:

• any assumptions of the form 𝐴𝛼
𝛼 set ≠ ∅ for which 𝛼 ∉ TV(Γ ∪ {𝜒}) (which in particular

implies 𝐴𝛼
𝛼 set ∉ FTV(RLT(Γ) ∪ {RLT(𝜒)})) – this is because ⊢ ∃𝐴𝛼

𝛼 set . 𝐴
𝛼
𝛼 set ≠ ∅

• any assumptions of the form RIN(𝜎) 𝑥𝜎 𝑥𝜎 such that 𝑥𝜎 ∉ FTV(Γ ∪ {𝜒}) (which means

𝑥𝜎 ∉ FTV(RLT(Γ) ∪ {RLT(𝜒)})) – this is because, by point (5), ⊢ ∃𝑥𝜎 . RIN(𝜎) 𝑥𝜎 𝑥𝜎

This gives us 𝐷 ; ΔΓ∪{𝜒 }, RLT(Γ) ⊢ RLT(𝜒), as desired. □

Proof of Theorem 22. We let 𝛿 be the term-substitution that sends each 𝑅𝛼
𝛼 rel to =𝛼 rel and all

other typed variables to themselves. To prove the desired fact, it suffices to prove

𝐷 ⊢ ((∧𝛼∈TV(𝜑 ) per≠∅ 𝑅
𝛼
𝛼 rel) ∧ (

∧
𝑥𝜎 ∈FTV(𝜑 ) RIN(𝜎) 𝑥𝜎 𝑥𝜎 ) −→ RLT(𝜑)) [𝛿] −→ 𝜑

that is,

𝐷 ⊢ ((∧𝛼∈TV(𝜑 ) per≠∅ (=𝛼 rel)) ∧ (
∧

𝑥𝜎 ∈FTV(𝜑 ) RIN(𝜎) [𝛿] 𝑥𝜎 𝑥𝜎 ) −→ RLT(𝜑) [𝛿]) −→ 𝜑

By Theorem 17, we have 𝐷 ⊢ RIN(𝜎) [𝛿] = (=𝜎 rel) and 𝐷 ⊢ RLT(𝜑) [𝛿] ←→ 𝜑 , which shows that

the conjuncts on the left-hand of the implication are tautological, and the desired fact is true. □

Proof of Theorem 23. To avoid some of the bureaucracy of reasoning about contexts, we let𝜓 be

(∧ Γ) −→ 𝜑 . We have 𝐷 ⊢ (∃rep𝛽⇒𝜎 . typedef𝛽,𝜎,𝐴,rep) −→ 𝜓

By the Admissibility theorem and the definitions of RLT, RIN and the relativization contexts, we

have:

𝐷 ; Δ ⊢ (∃rep𝛽⇒𝜎 . (𝑅
𝛽

𝛽 rel ⇒ RIN(𝜎)) rep rep ∧ RLT(typedef𝛽,𝜎,𝐴,rep)) −→ RLT(𝜓 )

where Δ denotes Δ{𝜓, ∃rep𝛽⇒𝜎 . typedef𝛽,𝜎,𝐴,rep }
.

Let 𝛿 be the term-substitution that sends:

12
This case is surprisingly delicate due to the residuum left by the additional relativization hypotheses brought around by

the lefthand side of the implication.
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• every 𝑅𝛼
𝛼 rel for 𝛼 ∈ FTV(𝜓 ) ∪ FTV(𝐴) ∖ {𝛽} to =𝛼 rel,

• every 𝑧𝑐𝜏 for 𝑐𝜏 ∈ DeclaredOnlyDeps(𝜓 ) ∪ DeclaredOnlyDeps(𝐴) to 𝑐𝜏 , and
• all the other variables (including 𝑅

𝛽

𝛽 rel) to themselves.

By deduction term-substitutivity, we have

𝐷 ; Δ[𝛿] ⊢ ((∃rep𝛽⇒𝜎 . (𝑅
𝛽

𝛽 rel ⇒ RIN(𝜎)) rep rep ∧ RLT(typedef𝛽,𝜎,𝐴,rep)) −→ RLT(𝜓 )) [𝛿]

By the Recoverability theorem, we have 𝐷 ⊢ RIN(𝜎) [𝛿] = (=𝜎 rel) and 𝐷 ⊢ RLT(𝜓 ) [𝛿] = 𝜓 , hence:

𝐷 ; Δ[𝛿] ⊢ (∃rep𝛽⇒𝜎 . (𝑅
𝛽

𝛽 rel ⇒ (=𝜎 rel)) rep rep ∧ RLT(typedef𝛽,𝜎,𝐴,rep) [𝛿]) −→ 𝜓

Further using deduction type-substitutivity for 𝜎/𝛽 and term-substitutivity for (eqOf 𝐴)/𝑅𝛽

𝜎 rel,

and again the freshness of 𝛽 , we obtain

𝐷 ; Δ′ ⊢ 𝜒 −→ 𝜓

where Δ′ denotes Δ[𝛿] [𝜎/𝛽] [(eqOf 𝐴)/𝑅𝛽

𝜎 rel] and 𝜒 denotes the following formula:

∃rep𝜎⇒𝜎 . ((eqOf 𝐴) ⇒ (=𝜎 rel)) rep rep ∧ RLT(typedef𝛽,𝜎,𝐴,rep) [𝛿] [𝜎/𝛽] [(eqOf 𝐴)/𝑅𝛽

𝜎 rel]

Now, RLT(typedef𝛽,𝜎,𝐴,rep) is the following formula:

(∀𝑥𝛽 , 𝑥 ′𝛽 . 𝑅
𝛽

𝛽 rel 𝑥 𝑥 ∧ 𝑅
𝛽

𝛽 rel 𝑥
′ 𝑥 ′ ∧ RIN(𝜎) (rep 𝑥) (rep 𝑥 ′) −→ 𝑅

𝛽

𝛽 rel 𝑥 𝑥 ′) ∧
(∀𝑦𝜎 . 𝑦 ∈ RLT(𝐴) ←→ (∃𝑥𝛽 . 𝑅𝛽

𝛽 rel 𝑥 𝑥 ∧ RIN(𝜎) 𝑦 (rep 𝑥)))

Moreover, applying the definitions and using that, by the Recoverability theorem and the

freshness of 𝛽 , we have 𝐷 ⊢ RLT(𝐴) [𝛿] = 𝐴 and 𝐷 ⊢ RIN(𝜎) [𝛿] = (=𝜎 rel), we obtain that

RLT(typedef𝛽,𝜎,𝐴,rep) [𝛿] [𝜎/𝛽] [(eqOf 𝐴)/𝑅𝛽

𝜎 rel] is 𝐷-provably equal to the following formula:

(∀𝑥𝜎 , 𝑥 ′𝜎 . 𝑥 ∈ 𝐴 ∧ 𝑥 ′ ∈ 𝐴 ∧ rep 𝑥 = rep 𝑥 ′ −→ 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑥 ′) ∧
(∀𝑦𝜎 . 𝑦 ∈ 𝐴 ←→ (∃𝑥𝜎 . 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑥 ′ ∧ 𝑦 = rep 𝑥))

Since this last formula, as well as ((eqOf 𝐴) ⇒ (=𝜎 rel)) rep rep, are provable if we take rep to be

the identity function, we obtain 𝐷, Δ′ ⊢ 𝜒 . Hence 𝐷, Δ′ ⊢ 𝜓 .
Moreover, Δ′ consists of:

(1) an assumption per≠∅ (=𝛼 rel) for each 𝛼 ∈ TV(𝜓 ) ∪ TV(𝐴)
(2) an assumption per≠∅ (eqOf 𝐴)
(3) an assumption RIN(𝜏) [𝛿] 𝑥𝜏 𝑥𝜏 for each 𝑥𝜏 ∈ FTV(𝜓 ) ∪ FTV(𝐴)
(4) an assumption RIN(𝜏) [𝛿] 𝑧𝑐𝜏 𝑧𝑐𝜏 for each 𝑐𝜏 ∈ DeclaredOnlyDeps(𝜓 ) ∪DeclaredOnlyDeps(𝐴)

And, referring to the above categories of assumptions, we have:

(1) ⊢ per≠∅ (=𝛼 rel)
(2) 𝐷 ; Γ ⊢ per≠∅ (eqOf 𝐴) thanks to our assumption that 𝐷 ; Γ ⊢ 𝐴 ≠ ∅
(3) 𝐷 ⊢ RIN(𝜏) [𝛿] 𝑥𝜏 𝑥𝜏 since, thanks to the Recoverability theorem and 𝛽 being fresh for 𝜏

(given that it is fresh for𝜓, 𝐴), we have 𝐷 ⊢ RIN(𝜏) [𝛿] = (=𝜏 rel)
(4) 𝐷 ⊢ RIN(𝜏) [𝛿] 𝑧𝑐𝜏 𝑧𝑐𝜏 for essentially the same reason as above: thanks to the Recoverability

theorem and 𝛽 being fresh for 𝜏 (given that it is fresh for𝜓, 𝐴 and definitional dependency

preserves type variables), we again have 𝐷 ⊢ RIN(𝜏) [𝛿] = (=𝜏 rel)
We therefore have 𝐷 ; Γ ⊢ Δ′. From this and 𝐷, Δ′ ⊢ 𝜓 , we obtain 𝐷 ; Γ ⊢ 𝜓 , i.e., 𝐷 ; Γ ⊢ (∧ Γ) −→ 𝜓 .

This implies 𝐷 ; Γ ⊢ 𝜑 , as desired. □
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G ADMISSIBILITY OF UNOVERLOADING
As discussed in Section 5, Kunčar and Popescu [2019] proposed the Local Typedef rule as an

extension of the HOL logic—which is seen to be admissible in HOL as a consequence of our results.

Specifically in the context of Isabelle/HOL, they proposed an additional axiomatic extension: a rule

for generalizing over declared constants in order to “unoverload” them. This rule is meant to work

in tandem with Local Typedef in order to extend the types-to-sets transfer mechanism for HOL to

cope with Isabelle/HOL’s type classes too.

The Unoverloading (UO) rule is the following:

𝐷 ⊢ 𝜑 [𝑐𝜎/𝑥𝜎 ]
𝐷 ⊢ ∀𝑥𝜎 . 𝜑

(UO)

[𝑐𝜎 declared-only and 𝑐𝜎 ∉ Deps(𝜑)]
The admissibility of this rule also follows from our results, more precisely from the extension of

our results sketched in Section 6:

Theorem 50. (Admissibility of Unoverloading) The Unoverloading rule is admissible for

widely-typed definitional theories. More precisely, assume 𝐷 is a widely-typed definitional theory,

𝜑 a formula, and 𝑐𝜎 a declared-only constant instance such that 𝑐𝜎 ∉ Deps(𝜑). Then 𝐷 ⊢ 𝜑 [𝑐𝜎/𝑥𝜎 ]
implies 𝐷 ⊢ ∀𝑥𝜎 . 𝜑 .

The proof of this again first relativizes the formula and applies a similar Admissibility + Recover-
ability treatment as in the case of Local Typedef. The relativization of 𝜑 [𝑐𝜎/𝑥𝜎 ] replaces 𝑐𝜎 with its

associated variable 𝑧𝑐𝜎—so, by Admissibility (of relativization), we deduce RLT(𝜑) [𝑧𝑐𝜎/𝑥𝜎 ]. Then we

substitute 𝑥𝜎 for 𝑧𝑐𝜎 , deducing RLT(𝜑) [𝑧𝑐𝜎/𝑥𝜎 ] [𝑥𝜎/𝑧𝑐𝜎 ], which thanks to the freshness of 𝑧𝑐𝜎 (which

in turn is due to the side-condition 𝑐𝜎 ∉ Deps(𝜑)) is the same as RLT(𝜑). Finally, we apply Recov-

erability with a suitable substitution 𝛿 to deduce RLT(𝜑) [𝛿] = 𝜑 , and then 𝜑 . Here are the details:

Proof of Theorem 50. Assume 𝐷 ⊢ 𝜑 [𝑐𝜎/𝑥𝜎 ]. Let𝜓 denote 𝜑 [𝑐𝜎/𝑥𝜎 ].
Let 𝛿 be the term-substitution that sends:

• every 𝑅𝛼
𝛼 rel for 𝛼 ∈ FTV(𝜓 ) to =𝛼 rel,

• every 𝑧𝑐𝜏 for 𝑐𝜏 ∈ DeclaredOnlyDeps(𝜓 ) to 𝑐𝜏 , and
• all the other variables to themselves.

By the Admissibility theorem, we have 𝐷 ; Δ𝜓 ⊢ RLT(𝜑 [𝑐𝜎/𝑥𝜎 ]). Hence, by Prop. 49(1) and the

definition of RLT for instances of declared-only constants, we have 𝐷 ; Δ𝜓 ⊢ RLT(𝜑) [𝑧𝑐𝜎/𝑥𝜎 ]. By
deduction term-substitutivity, we have 𝐷 ; Δ𝜓 [𝑥𝜎/𝑧𝑐𝜎 ] ⊢ RLT(𝜑) [𝑧𝑐𝜎/𝑥𝜎 ] [𝑥𝜎/𝑧𝑐𝜎 ]. Moreover, our

assumption that 𝑐𝜎 ∉ Deps(𝜑) (which also means 𝑐𝜎 ∉ DeclaredOnlyDeps(𝜑)) ensure that 𝑧𝑐𝜎 is

fresh for RLT(𝜑). Hence RLT(𝜑) [𝑧𝑐𝜎/𝑥𝜎 ] [𝑥𝜎/𝑧𝑐𝜎 ] = RLT(𝜑), and therefore 𝐷 ; Δ𝜓 [𝑥𝜎/𝑧𝑐𝜎 ] ⊢ RLT(𝜑).
Hence, by deduction term-substitutivity, we have 𝐷 ; Δ𝜓 [𝑥𝜎/𝑧𝑐𝜎 ] [𝛿] ⊢ RLT(𝜑) [𝛿]. And since, thanks
to the Recoverability theorem, we have 𝐷 ⊢ RLT(𝜑) [𝛿] = 𝜑 , we obtain 𝐷 ; Δ𝜓 [𝑥𝜎/𝑧𝑐𝜎 ] [𝛿] ⊢ 𝜑 .

Finally, we have 𝐷 ⊢ Δ𝜓 [𝑥𝜎/𝑧𝑐𝜎 ] [𝛿] (for a reason similar to that given for 𝐷 ⊢ Δ′ in the proof of

Theorem 23), hence 𝐷 ⊢ 𝜑 , and therefore 𝐷 ⊢ ∀𝑥𝜎 . 𝜑 , as desired. □
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