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Abstract. First-order monitors analyze data-carrying event streams.
When event streams are generated by distributed systems, it may be
difficult to ensure that events arrive at the monitor in the right order. We
develop a new monitoring tool for metric first-order temporal logic, called
TimelyMon, that can process out-of-order events. Using the stream
processing framework Timely Dataflow, TimelyMon also supports par-
allelized monitoring. We demonstrate TimelyMon’s good performance
and scalability on synthetic and real-world benchmarks.

Keywords: Monitoring · Temporal logic · Stream processing

1 Introduction

First-order monitors detect complex temporal patterns in data-carrying event
streams. Metric first-order temporal logic (MFOTL) [5] (Section 2) is a pow-
erful language for expressing the temporal patterns. Monitors like DejaVu [15],
MonPoly [6], and VeriMon [2] use (variants of) MFOTL as their input language.

Patterns expressed by MFOTL formulas are interpreted over event streams
that are subdivided into time-points. A time-point consists of a time-stamp and a
database, i.e., a finite set of events. From the point of view of the monitor, events
coming from a single database happen concurrently. Existing monitors either re-
strict the databases to be singleton sets [7,15] or process entire databases at once
and in-order [2,6]. Both these modes of operation limit the existing tools’ suitabil-
ity for monitoring distributed systems in which individual concurrent events may
arrive at the monitor out-of-order [3, 4]. The plausible workaround based on re-
ordering of the events in a component wrapping the monitor has been proposed [3].
However, the monitor is idle while it waits for delayed events in this approach.

In this work, we develop a monitoring tool for MFOTL that supports the
streaming mode of operation (Section 3), i.e., the processing of individual events
that may arrive out-of-order. Our monitor’s output is also presented to the user
event-wise and possibly out-of-order. This has the advantage that whenever
future temporal operators are involved users may get to see verdicts much earlier
than in traditional monitors, which output verdicts for entire time-points at once.
A somewhat surprising advantage of the streaming setting is that we can reuse
mostly the same data structures for both past and future operators and can even
support unbounded future operators without completely stalling the monitor.

An additional challenge for MFOTL monitoring, which we also tackle, is scal-
ability. Typically, MFOTL monitors are sequential algorithms that are quickly
overwhelmed by high volume and high velocity event streams. Parallelization is the
main approach for tackling such scalability issues. The approaches for parallelizing
MFOTL monitors can be grouped in two categories. The black box parallelization
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approach uses the sequential monitors without modifications (as a black box) to
process independent slices of the input [1, 11, 27]. The alternative is white box
parallelization, in which the monitoring algorithm is itself parallelized [14, 17, 25].

Generic data stream processing frameworks like Apache Flink [10] and Timely
Dataflow [24] are useful tools for implementing black and white box parallel
monitors as they enforce a program structure that is susceptible to a high degree
of parallelism while hiding the pitfalls of parallel programming from their users.

We use Timely Dataflow [23,24] to implement our streaming MFOTL monitor,
called TimelyMon, as a white box parallel monitor. Timely Dataflow organizes
its programs as a graph of stream transformers, called operators. Given a mon-
itorable [5] MFOTL formula, we map every MFOTL operator occurring in it to
a Timely Dataflow operator that inputs the verdicts from the subformulas and
outputs the verdicts according to the MFOTL operator’s semantics. Parallelized
evaluation of Timely Dataflow operators naturally results in out-of-order verdicts
for subformulas, which meshes well with our streaming mode of operation.

We demonstrate TimelyMon’s reasonable performance and good scalability
on a standard first-order benchmark [20] (Section 4) and a real-world example.
We also extend the benchmark by incorporating different degrees of the input
being out-of-order. TimelyMon is publicly available [26], along with build and
usage instructions and our experiments.

Related Work TimelyMon processes out-of-order event streams. In the area of
stream runtime verification, pioneered by Lola [12], in-order processing is the
norm. An exception is TeSSLa [22], which can process multiple non-synchronized
streams, but requires each of them to be in-order. We do not impose any order
requirements, but require that the events are labeled with their “true” position
so that one has the information to reconstruct the sorted input in principle.

Decentralized runtime monitoring [13] uses multiple monitors to check a
centralized specification via multiple decentralized specifications. Each operator
in TimelyMon can be viewed as one decentralized monitor with a partial view of
the monitored system. Bonakdarpour et al. [9,18] discussed decentralized run-time
verification with a focus on fault-tolerance and crash-resiliency and focuses on LTL,
whereas TimelyMon supports MFOTL. Timely Dataflow has no built-in fault-
tolerance mechanisms, although different approaches have been proposed [21,28].

The traditional MFOTL monitors MonPoly [6], DejaVu [15], and Veri-
Mon [2] all assume in-order inputs. This restriction also extends to the black box
parallel monitors using these tools [1,27]. Basin et al. [3] note this limitation and
incorporate watermark-based reordering in the black box monitor, with the afore-
mentioned downside of the monitor having to wait for complete input prefixes.

A exception to in-order MFOTL monitors is Basin et al.’s [7] (closed-source)
monitor POLÍMON [19], which supports out-of-order processing for metric tem-
poral logic extended with freeze quantifiers. Their streams store precisely one value
per register (which the freeze quantifiers refer to) at a time-point, whereas for us
one time-point consists of a set of events. Their logic, also called half-order tempo-
ral logic [16], is much less expressive than MFOTL. Nonetheless, we use a variant of
their observations data structure to optimize our Once and Eventually operators.
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2 Preliminaries

We briefly recall metric first-order temporal logic (MFOTL).

Metric First-Order Temporal Logic Let I be the set of nonempty intervals over N.
An interval [b, b′) ∈ I denotes {a ∈ N | b ≤ a∧a < b′}, where b ∈ N, b′ ∈ N∪{∞},
and b < b′. We fix a domain D, a set of event names E, and the function ι : E → N
that assigns each e ∈ E the arity ι(e). Additionally, we consider a set of variables
V such that V ∩ (D ∪ E) = ∅. MFOTL formulas α, β, . . . are defined as follows:

α, β := e(t) | t1 ≈ t2 | ¬α | α ∧ β | α ∨ β | ∃x. α | α SI β | α UI β

The predicate e(t) consists of an event name e ∈ E and a finite sequence of
arguments t = t1, . . . , tι(e), where each ti ∈ V ∪ D. Similarly, equality ≈ is ap-
plied to arguments from V ∪ D. Boolean operators and the existential quantifier
are standard. The temporal operators S (“since”) and U (“until”) are annotated
with an interval I ∈ I. From this minimal MFOTL syntax, we derive additional
operators in a standard fashion: ⊤ := ∃x. x ≈ x (“truth”), α → β := ¬α ∨ β
(“implication”), ∀x. α := ¬∃x. ¬α (“universal quantification”), I α := ⊤ SI α
(“once”), I α := ⊤ UI α (“eventually”), and I α := ¬I α (“always”).

A database D is a finite set of events and each event has the form e(d1, . . . dι(r))
for e ∈ E and di ∈ D. A time-stamped database is a pair of a time-stamp τ ∈ N
and a database D. An event stream is an infinite sequence ρ = ⟨τi,Di⟩i∈N of time-
stamped databases. Each time-stamped database in ρ is called a time-point and is
identified by its index i. Time-stamps in the event stream must (1) monotonically
increase: ∀i ∈ N. τi ≤ τi+1 and (2) always eventually make progress: ∀τ. ∃i. τ < τi.

MFOTL formulas are evaluated over event streams and valuations for the
formula’s free variables. The valuation v : V → D maps variables to domain
values. The standard semantics of an MFOTL formula α is given by a satisfaction
relation of the form v, i |= α. We refer to Basin et al. [5, 8] for a formal definition.

The objective for our monitor is to (eventually) compute correct verdicts, also
called satisfactions, for each time-point i, i.e., satisfying valuations v applied to the
formula’s free variables. To ensure that the set of satisfactions for any time-point is
finite, we syntactically restrict the formulas we consider as is done in some but not
all MFOTL monitors [2, 6]. Such restriction allow monitors to use finite relations
(or tables) instead of binary decision diagrams [15] or automata [5] to represent sets
of satisfactions, which benefits performance. Specifically, we make the following
restrictions, which are also present in the MonPoly and VeriMon monitors:

1. negated formulas may occur only on the right-hand side of a conjunction
α∧¬ β and moreover β’s free variables must be contained in α’s in such cases
or on the left-hand side of a (¬α) SI β or (¬α) UI β;

2. (negated) equalities between variables may only appear on the right-hand
side of a conjunction α ∧ x ≈ y (and α ∧ ¬ x ≈ y) and moreover x or y (x and
y when negated) must be contained in α’s free variables in such cases;

3. in formulas of the form α ∨ β, α and β must have the same free variables;
4. in formulas of the form α UI β and α SI β, the free variables of α must be

contained in β’s. (This also applies when α is a negated formula as in 1.)
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Fig. 1: Dataflow graph for the formula ([0,7) A(x, y)) ∧ B(y, z)∧¬ ([0,7) C(x, z))
.

3 Monitoring Algorithm Overview

TimelyMon creates a dataflow graph from the MFOTL formula’s abstract syntax
tree. Usually, the mapping from MFOTL operators to Timely Dataflow operators
is one-to-one, but not always. For example, formulas of the form α ∧ ¬ β are
translated into a single, binary anti-join operator. Also, we optimize the derived
operators  and  by using dedicated operators.

Figure 1 shows the dataflow graph constructed for the example formula
([0,7) A(x, y)) ∧ B(y, z) ∧ ¬ ([0,7) C(x, z)). The inputs of each binary operator
are labeled with the role of the incoming input stream from the operator’s point
of view. Even though  and  are derived from S and U, we use dedicated,
optimized operators for them in the dataflow graph. All temporal operators receive
an additional input (denoted by τ) over which time-stamps are communicated.

Our operators exchange three kinds of events. We use MFOTL’s time-points
as the notion of time in Timely Dataflow. Thus, all exchanged events are labeled
with a time-point. The source operator emits individual data events of the form
e(d1, . . . , dι(e)) to the predicates operators (dotted connections). Furthermore, the
source operator emits time-stamp events of the form (τi) mapping a time-point i to
its time-stamp τi (dashed connections) to temporal operators. The other operators
exchange subformula satisfaction events (solid connections). A satisfaction v is rep-
resented by a vector of domain values (d1, . . . , dι(e)) that are interpreted as the val-
ues assigned by v to the subformula’s free variables (listed in some canonical order).

TimelyMon operators make no assumption on the order in which it receives
the events. Also, as soon as a satisfaction according to the operator’s semantics is
found, it is immediately output. Each parallel worker in Timely Dataflow executes
the entire dataflow on different portions of the data. We specify for each operator
how to distribute the data across workers. For example, the incoming events to be
processed by the predicate operators are simply hashed onto the worker’s identity:
one worker may receive the event A(1, 2), another one may receive B(2, 3). Later op-
erators may require the redistribution of the data across the workers. For example,
the join operator must ensure that the same worker receives the matching satis-
faction (1, 2) for variables (x, y) and (2, 3) for variables (y, z) to correctly compute
the resulting satisfaction (1, 2, 3) for variables (x, y, z). Therefore, our algorithm
(re)distributes the events before the join operator by hashing the values from the
join key, i.e., the common variables of α and β. Similarly, for the temporal opera-
tors we use the variables of α for hashing (unless α has no free variables, in which
case we broadcast the trivial α tuples to all workers and hash on β’s variables).

We sketch how our algorithm processes each MFOTL operator.
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time-point 0 1 2 3 4
time-stamp 1 3 3 7
α with variable list (x) (1) (1),(2) (1),(2)
β with variable list (x, y) (1,2),(3,1) (2,1) (4,3) (2,1),(4,5)
α S[1,5) β with variable list (x, y) (2,1)

Fig. 2: Example partial inputs and outputs for α S[1,5) β

Predicate Upon receiving an event e(d1, . . . , dι(e)), the operator for the predicate
e(x1, . . . , xι(e)) creates the corresponding satisfaction (d1, . . . , dι(e)). The operator
performs matching due to constants and repeated variables that may occur, which
may filter out certain events. For example, the predicate A(x, 5, x) matches the
event A(1, 5, 1) yielding the satisfaction (1) for the variable list (x). The same
predicate does not match events A(1, 4, 1) or A(1, 5, 2)—no satisfaction is output.

Existential Quantifier The operator for the existential quantifier ∃x. α projects
away (i.e., removes) the variable x from the satisfactions it receives for α.

Disjunction The binary operator for α ∨ β outputs the satisfactions it receives
on either input. Recall that α and β are assumed to have the same free variables.

Conjunction We use four operators to handle conjunctions. Whenever equalities
are involved we consider two cases: (1) The operator for formulas of the form
α ∧ x ≈ y or α ∧ ¬ x ≈ y where both x and y are free in α filters α’s satisfactions
using the (negated) equality constraint. (2) The operator for formulas of the form
α∧ x ≈ y where only one of x and y is free in α extends α’s satisfactions with the
new variable (copying the old variable’s value). The regular conjunction α ∧ β
proceeds symmetrically whenever it receives a new input for α or β. For both
inputs, the operator stores all previously received satisfactions grouped by time-
point. Upon receiving a new satisfaction for α at time-point i, the operator joins it
with all matching previously received satisfactions for β at i and outputs the result.
The conjunction with a negated subformula α∧¬ β is evaluated using a binary anti-
join operator. This operator is non-streaming, in the sense that it must wait until
it receives all β satisfactions for a time-point i before producing an output at i.

Temporal Operators We exemplify the inner workings of our streaming temporal
operators α SI β and αUI β. The operators have three inputs: one for time-stamps
and two for the subformulas α and β. Recall that we assume that α’s free variables
are contained in those of β. We focus on the S case.

Consider the partial trace in Figure 2. It shows the received satisfactions for α
and β and the computed output (2, 1) for α S[1,5) β at time-point 4. The operator
works under the assumption that none of the time-points is complete. That is, it
may receive new inputs for any of the time-points 0–4. The operator has not yet
received any input at time-point 1; even this time-point’s time-stamp is unknown.
Nonetheless and unlike traditional monitors, the operator was able to already
output a satisfaction at time-point 4. To do so, it was sufficient to note the (2, 1)
input for β at time-point 2 and the two (1) inputs for α at time-points 3 and 4
together with the quantitative interval check: 7− 3 ∈ [1, 5). We call such patterns
of inputs resulting in S satisfactions β-α-sequences. Because α may have fewer
variables than β, a single input for α may be relevant for different β-α-sequences.
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Continuing our example, we note that both receiving new inputs for α and β
may trigger new output for S. For example, upon receiving the satisfaction (1) at
time-point 1 for α the operator can output satisfactions (1, 2) at time-points 2 and
3 and possibly also at 1 if it learns that the time-stamp at time-point 1 is different
from 1 (but not at 0 and 4, which fail the interval constraint). Alternatively,
upon receiving the satisfaction (1, 2) for β at time-point 1 with time-point 2, we
can output the satisfaction (1, 2) at time-points 2 and 3 (but not at 0, 1, and 4).

4 Empirical Evaluation

We evaluate TimelyMon to provide answers to the following research questions:
RQ1: Does our monitor produce the same verdicts as the verified tool VeriMon?
RQ2: How does TimelyMon perform in comparison to MonPoly and VeriMon?
RQ3: How does TimelyMon scale with respect to the number of events?
RQ4: How does TimelyMon scale with respect to the number of workers?
RQ5: How does the order of the events impact TimelyMon’s performance?
RQ6: Does TimelyMon output verdicts earlier than MonPoly?

4.1 Experimental Setup

We used the synthetic benchmark generation tool by Krstić and Schneider [20] to
conduct our experiments. Our traces were generated for the built-in temporal three-
way conjunctions family of query patterns F3. A three-way conjunction is a specific
temporal pattern that involves three distinct event types A, B, and C, with integer
data values. The family is parameterized by lists of variables vA, vB, vC (called
variable patterns) and is given by the following parametric MFOTL formula:

([0,b] A(vA)) ∧ B(vB) ∧ ([0,b] C(vC))

We used the three supported variable patterns: Star vA = (w, x), vB = (w, y), vC =
(w, z), Linear vA = (w, x), vB = (x, y), vC = (y, z), and Triangle vA = (x, y), vB =
(y, z), vC = (z, x). We also consider the Negated Triangle formula, which includes an
anti-join: ([0,b] A(x, y)) ∧ B(y, z)∧¬ ([0,b] C(z, x)). The interval’s upper bound
b is denoted by the superscript b on a pattern’s name, e.g., Star7. To benchmark
Since and Until we use two additional parametric formulas, which are referred to by
combining the variable pattern and the operator, e.g., Star Until or Triangle Since.

B(vA) S[0,45] (([0,45] A(vB)) ∧ C(vC)) B(vA) U[0,45] (([0,45] A(vB)) ∧ C(vC))

The benchmark supports adjusting the relative frequency of each event’s type.
We use 10% for A, 50% for B, and 40% for C. For each variable pattern, we used
the benchmark to randomly generated finite prefixes of event streams of different
lengths ranging from 50 to 500 time-points with 1 000 events per time-point.

The benchmark has the capability to delay a given fraction of events, which
mimics real-world scenarios where there is no guarantee of order. We use this
feature but also consider other cases that exhibit a higher degree of disorder. We
examine five different orders in which events are given to TimelyMon:
In-order: Events are sent in the correct order, with ascending time-points.
Delayed: Events are sent mainly in order. For each time-point, a subset of the
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MonPoly 1 VeriMon 1 TimelyMon Delayed 1
TimelyMon Delayed 6 TimelyMon 1 TimelyMon 6

100 200 300 400 500

0

5

10

15

time-point

N
um

be
r

of
V

er
di

ct
s

(a) Scalability of Negated Triangle7

100 200 300 400 500

0

2

4

Data set size

T
im

e
in

Se
co

nd
s

(b) Scalability of Star7

Fig. 3: Load scalability results

data is delayed and moved to a later point in the input. The maximum
delay (move distance md) and the fraction of delayed events can be specified
(standard deviation sd) by the user. We use md = 5 and sd = 25%.

Reversed: Events are sent in the reverse order, with descending time-points.
Out-of-order (time-points): Entire time-points are shuffled. The monitor re-

ceives time-points (consisting of a set of events) in an arbitrary order.
Out-of-order (events): Individual events are shuffled. The monitor receives

events (labeled with their time-point and time-stamp) in an arbitrary order.

To test TimelyMon with real-world data, we used the Wikipedia API [29]
that streams all changes in real-time. The produced stream is mildly out-of-order.
Moreover, it does not contain watermarks so that it is not clear by how much
individual events may be delayed. We reduce each JSON objects in this stream
to a time-stamped event containing the event-type, username, and the bot label.
We used a simple python script to interact with the API, and to sanitize and
transform the data into the format suitable for TimelyMon. Our objective was
to identify users that are not labeled as bots but exhibit bot-like behavior. Our
policy outputs users u not labeled as bots (i.e., have label 0) that perform five
edits (event ed) within (too) close proximity (1-2 seconds) to each other:

ed(u, 0) ∧[1,2] (ed(u, 0) ∧[1,2] (ed(u, 0) ∧[1,2] (ed(u, 0) ∧[1,2] ed(u, 0))))

4.2 Data and Analysis

All experiments were run on an Apple M2 Pro 10 Core CPU at 3.30 GHz, and
16 GB of RAM. For each synthetic experiment we ran 5 executions and recorded
the average execution time. For RQ1, we observed that there was no difference
in the verdicts produced by all monitors (even though TimelyMon’s verdicts
were ordered differently than VeriMon’s and MonPoly’s as expected).

A direct comparison between TimelyMon, MonPoly, and VeriMon is only
fair when considering one worker and an in-order event sequence, as the latter
tools are restricted to this setting. TimelyMon scales worse than MonPoly but
better than VeriMon in terms of trace length 3b. Therefore, for RQ2, we cannot
claim any performance gain in equal testing scenarios (i.e., without parallelism).
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Fig. 4: Anticipation and parallel scalability results

For RQ3, as shown in Figures 3a and 3b, processing time expectedly increases
proportionally with increased numbers of the events. In the one worker scenario,
our monitor spends (approximately) five times more time to process 250 time-
points than it does for 50 time-points. On the other hand, with six workers, our
monitor still has competitive execution times for 500 time-points compared to
the other monitors. In response to RQ4, in general, increasing the number of
workers resulted in a significant reduction of execution time for all benchmarks.
For example, the execution time was reduced by almost 40% for the Delayed
input order when increasing from 1 to 2 workers in Figure 4a.

Out of the considered tools, only TimelyMon can process events out-of-order.
Regarding RQ5, out-of-order (events) setting presents the most challenging cases
for TimelyMon, as shown in Figure 4a. In this scenario, the execution time
increases significantly with a large number of time-points. The larger the set of
out-of-order time-points in the partial sequence data structure, the higher the like-
lihood of gaps and the number of optimised updates. Apart from this corner case,
TimelyMon’s performance is robust with respect to delaying a fraction of events.

To answer question RQ6, we record the numbers of output tuples for Time-
lyMon and MonPoly after each time-point in the in-order experiment. Figure 4b
show the result: TimelyMon is always equal or ahead of MonPoly. We computed
the average, minimal and maximal difference by how much TimelyMon leads:

Formula Average Minimum Maximum
Triangle30 247 1 302
Star30 240 0 292

Due to the event-wise processing and the ability to output as soon as possible,
TimelyMon produces output ahead of MonPoly. We also note the advantage of
our approach in the real-world scenario, where TimelyMon continuously produces
output, whereas MonPoly would need to buffer, sort, and only produce output
when receiving watermarks. The API has an enforced timeout; we ran Timely-
Mon for 13.34 minutes on 6 cores with a peak memory consumption of 54MB.
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