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Abstract

We present Aerial, a tool for the online monitoring of metric regular properties. Aerial
supports both the standard metric temporal logic (MTL) and the more expressive met-
ric dynamic logic (MDL) as its property specification language. Unlike MTL, which is
restricted to star-free properties, MDL can express all metric regular properties by gener-
alizing MTL’s temporal operators to arbitrary regular expressions. Aerial’s distinguishing
feature is its ability to monitor an event stream using memory logarithmic in the event rate.
This space efficiency is achieved by altering how Aerial outputs its monitoring verdicts.

1 Introduction

We consider the online monitoring problem: Given a stream of time-stamped data, called
events, and a property formulated in a specification language, determine whether the property is
satisfied for every prefix of the stream. The input stream in the problem formulation is typically
an abstraction of a running system. We do not consider any further details of the abstracted
system: neither its implementation nor the way the events were generated and collected from
it. An (online) monitor processes the input stream event-wise and reports violations as soon as
it identifies them. This online processing is in contrast with offline monitoring, which processes
a finite number of events given in their entirety, for example as a log file.

The main challenge in offline monitoring is to efficiently handle a large volume of events
in a log. In contrast, in the online case, the event rate (or velocity) of the event stream,
i.e., the rate at which the events arrive [3], poses an additional challenge. Monitors that can
efficiently handle large volumes of events are historically called trace-length independent [7, 9]
because their memory consumption is independent of the size of the event log or the prefix
of the stream observed by the monitor. The stronger notion of event-rate independence [3] is
paramount for monitors that need to handle streams with large and varying event rate. An
event-rate independent monitor has memory usage that does not depend on the event rate.

In this paper we showcase our tool Aerial [1], which is an almost event-rate independent
online monitor. Aerial’s unique feature is that its memory consumption is logarithmic in the
event rate of the input stream. Aerial is open-source and publicly available under the LGPL
free software license. Initially, Aerial supported metric temporal logic (MTL) as its property
specification language. However, it now also supports a strictly more expressive metric dynamic
logic (MDL) [6]. MDL extends linear dynamic logic (LDL) [10], which uses regular expressions
as its temporal operators, with metric constraints and past temporal operators. Unlike MTL,
MDL can express all regular properties, in particular also non-star-free properties.

This paper is structured as follows. Section 2 gives a high-level overview of Aerial’s input,
output, and operation. Section 3 provides more details from the user’s perspective, in particular
its input and output syntax and various tool configurations. Section 4 summarizes our earlier
evaluation of Aerial [6], and Section 5 concludes the paper.
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2 Overview

Aerial [1] is an OCaml implementation of our almost event-rate independent monitoring algo-
rithms for MTL [3] and MDL [6]. In the following, we provide more details on Aerial’s input,
its output, and we give some insights about its internal architecture and operation. Aerial
takes an MTL or MDL formula and a stream of time-stamped events as input. It outputs a
verdict stream.

MTL is an extension of LTL that can be used for specifying both qualitative and quan-
titative temporal properties. An instance of a qualitative property is that a publish event is
always preceded by a matching approval event, which can be formalized in MTL as �(publish→
 (¬publish S approve)). We denote with � the temporal operator “always in the future”, with
 the “previous” temporal operator, and with S the past temporal operator “since”. We call a
temporal formula any formula that has a top-level temporal operator (e.g., ¬publish S approve)
and an atomic formula a formula representing basic event occurrence (e.g., publish).

Quantitative (or metric) temporal properties, in contrast, express time constraints between
events, such as a publish event is always preceded by a matching approval event within an hour.
Such a property can also be formalized in MTL by introducing time intervals to the temporal
operators. The formula �(publish → ( [0,1hour]approve ∨ (�[0,1hour]approve ∧  (¬publish S
approve))) expresses precisely this property by associating the time interval [0, 1hour] with the
“previous” and “eventually in the past” (denoted with �) operators. A time interval’s bounds
must be non-negative integers (or infinity for the right bound). Typically, online monitors
require all intervals associated with future operators to be finite, whereas Aerial does not
have this restriction.

It is well known that LTL cannot express all regular languages. For example, one cannot
state that an event occurs at every other position in a stream. MTL inherits this limitation [8],
which is often a problem in practice both for qualitative [13], and quantitative [8] properties.
An example of a quantitative property that MTL cannot express is that at any point in time,
an action is approved and executed within a day and the approval happens before the execution.
To overcome this limitation, Aerial supports MDL, which can express the above quantitative
property as �(〈>∗ · approve · >∗〉[0,1day] execute). An MDL formula of the form 〈r〉I ϕ has
the metric future diamond top-level operator, which expresses that the formula ϕ is true at
some future time-point with a time difference bounded by the interval I and that the regular
expression r matches the portion of the event stream from the current point up to that future
time-point. The atoms (or letters) of the regular expression r are MDL formulas themselves.
Similarly, one can also use the past diamond operator: ϕ I〈r〉. A formula with a top-level
diamond operator is considered a temporal formula. The diamond operators strictly generalize
MTL’s temporal operators. For example, the formula ϕ UI ψ can be written in MDL as 〈ϕ∗〉ψ.

We interpret MTL and MDL formulas on (infinite) event streams (rather than on finite event
logs), which are better suited abstractions for online monitoring. An event stream consists of an
infinite sequence of time-points each containing an integer time-stamp and a set of events. We
assume that the sequence is (non-strictly) ordered according to the value of the time-stamps.
For the formal definitions of MTL’s and MDL’s semantics we refer to our earlier work [3, 6].

At the high level, our monitoring algorithm iteratively processes the event stream, updates
its internal state based on each processed event, and then potentially outputs one or more
verdicts. Its internal state can be seen as a collection of verdicts for all components of the mon-
itored formula at the current and previous time-point. The definition of a formula component
depends on the particular input logic. In the case of MTL, components are interval-skewed sub-
formulas, which include all the standard subformulas as well as all the variants of the temporal
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subformulas that have their intervals skewed (or shifted) down by some constant [3]. For ex-
ample, the formula ♦[2,4]ϕ has four additional interval-skewed variants: ♦[1,3]ϕ, ♦[0,2]ϕ, ♦[0,1]ϕ,
and ♦[0,0]ϕ. In the case of MDL, components additionally include all the variants of temporal
subformulas that have regular expressions replaced with their partial derivatives [6]. For exam-
ple, the formula 〈b〉I ϕ is a partial derivative variant of 〈a · b〉I ϕ. The algorithm updates the
verdicts using dynamic programming [11], starting from the atomic formulas and reusing their
verdicts to update their superformulas. Each verdict is updated based on a recursive definition
of the satisfiability relation for temporal formulas. For instance, when monitoring a since for-
mula ϕ S[a,b] ψ, Aerial can conclude that it holds at some time-point i in the event stream if
ψ holds at i and interval [a, b] includes 0. Otherwise, it can check if ϕ holds at i and, if it does
not hold, conclude that the formula is violated. If ϕ holds at i the satisfaction of the formula
becomes dependent on the time-point i− 1. Let ∆i denote the difference between time-stamps
at time-points i and i−1, then the formula is violated if b < ∆i. If b ≥ ∆i, the formula ϕ S[a,b] ψ
holds at time-point i if and only if the interval-skewed formula ϕ S[a,b]−∆i

ψ holds at the time
point i− 1. Since Aerial maintains verdicts at the previous time-point for all the components
in its internal state, it can reuse them to update the verdicts at the current time-point.

Future formulas complicate the picture. In that case, a formula’s satisfiability may depend
on the satisfiability of a component at the next time-point. Since the latter is unknown at
the current time-point, the verdicts can be seen as Boolean expressions over truth values of
the various components at the next time-point (rather than just Booleans). If the Boolean
expression representing a verdict for the monitored formula Φ is a tautology, the monitor can
output a positive verdict. If the expression is unsatisfiable, the monitor can output a negative
verdict. If however the Boolean expression depends on the truth value of another component,
Aerial keeps the expression and the corresponding time-point, until the truth value is resolved.

The trick to achieving almost event-rate independence is in the way Aerial handles these
unresolved Boolean expressions. It eagerly finds all pairwise equivalent expressions and for
each such pair it removes the expression with the larger time-point and outputs an equivalence
verdict. This guarantees that only semantically different Boolean expressions are maintained
by Aerial at any given time along with their corresponding time-points. The number of such
expressions is independent of the event rate. The stored time-points are represented as the
current value of the time-stamp and the offset between the current and the first time-point
with the same time-stamp. The size of the offset is logarithmic in the event rate; hence Aerial
is almost event-rate independent.

Overall, our implementation consists of about 2000 lines of OCaml code. Most of the code
is purely functional and structured into modules. There are separate modules for manipulating
MTL and MDL formulas, as well as a module that generates random formulas of a given
size. The module that implements the almost event-rate independent monitoring algorithm is
made generic to accommodate various input languages. Introducing a new input language is
a matter of implementing a new module that handles the syntax representation and parsing,
and implements the core dynamic programming function that updates the Boolean expressions
stored in the monitor according to the next event for all operators in the language.

3 User Interface

In this section, we explain Aerial’s input syntax as well as some useful configuration options.
Aerial is a command line tool with various input parameters. For example, the invocation

$ aerial -fmla formula.txt -log events.stream -out verdicts.stream
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Operator Primary syntax Alternative syntax

True > true
False ⊥ false
Negation ¬ f ! f, NOT f
Conjunction f1 ∧ f2 f1 & f2, f1 AND f2
Disjunction f1 ∨ f2 f1 | f2, f1 OR f2
Implication f1→ f2 f1 -> f2, f1 => f2
Equivalence f1↔ f2 f1 <-> f2, f1 <=> f2
Next # int f X int f, NEXT int f
Previous  int f Y int f, PREV int f, PREVIOUS int f, X− int f
Weak Until f1 W int f2 f1 WEAK_UNTIL f2
Until f1 U int f2 f1 UNTIL f2
Since f1 S int f2 f1 SINCE f2, f1 U− f2
Release f1 R int f2 f1 RELEASE f2
Trigger f1 T int f2 f1 TRIGGER f2, f1 R− f2
Eventually (future) ♦ int f F int f, EVENTUALLY int f, FINALLY int f
Eventually (past) � int f F− int f, ONCE int f, FINALLY_PAST int f
Always (future) � int f G int f, ALWAYS int f, GLOBALLY int f
Always (past) � int f G− int f, HISTORICALLY int f, GLOBALLY_PAST int f
Diamond (future) <r > int f
Diamond (past) f int <r >
Box (future) [r ] int f
Box (past) f int [r ]

Empty language ∅ empty, {}
Empty word ε epsilon, λ
Wildcard ? .
Formula letter f
Test f ?
Alternation r1 + r2 r1 | r2
Concatenation r1 r2
Kleene star r *

Figure 1: Aerial’s formula (upper part) and regular expression (lower part) syntax where f, f1,
and f2 are formulas, r, r1, and r2 are regular expressions, and int is an interval. The operators
highlighted in gray are only allowed to occur in MDL formulas.

tells Aerial to read a formula from the formula.txt text file, then monitor the event stream
accessible through the events.stream file descriptor, and write the resulting verdict stream in
the verdicts.stream file descriptor. MDL is the assumed default input logic, since it subsumes
MTL, and unless explicitly specified with a flag -mtl, Aerial will convert any MTL formula
into an equivalent MDL formula. Since our implementation of the MTL monitoring algorithm
exhibits a slightly better performance (Section 4), one should carefully consider if the monitored
property can be expressed in MTL. If the input or the output streams are omitted from the
invocation, then standard input and output streams will be used instead.

To write MTL or MDL formulas in the Aerial syntax, one can start from atomic formulas
represented by the standard identifier syntax and combine them using the operators summa-
rized in Figure 1. Aerial accepts different ASCII and Unicode notations for most temporal and
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@1307522571 approve execute
@1307532861 publish
@1307955600 publish
@1308477599 approve
@1308477599
@1308477599 execute
@1308477600 publish
...

(a) Input stream

1307522571:0 true
1307532861:0 false
1307955600:0 false
1308477599:0 true
1308477599:1 true
1308477599:2 true
1308477600:0 true
...

(b) Output for Φ

1307522571:0 false
1307532861:0 false
1307955600:0 false
1308477599:0 true
1308477599:2 = 1308477599:1
...

(c) Output for Ψ

Figure 2: Input stream and Aerial’s output

logical operators; for each operator, it supports at least one syntax using only ASCII characters.
Aerial supports open (e.g., (0,42)), half-open (e.g., (1,3], [6,∞), or [0,INFINITY)) and
closed time intervals (e.g., [1,6]). Omitted intervals are interpreted as the interval [0,∞).
For instance, for the MTL formula Φ = �(publish → ( [0,1hour]approve ∨ (�[0,1hour]approve ∧
 (¬publish S approve))) both

publish → ( [0,3600] approve) ∨ (�[0,3600] approve) ∧  (¬publish S approve)

and

publish -> (PREV[0,3600] approve) OR
(ONCE[0,3600] approve) AND PREV (!publish S approve)

are valid concrete textual inputs to Aerial. Here, we assume that the unit of time for time-
stamps used in the event stream is a second. The outermost temporal operator � is always
implicit, since Aerial checks if properties hold at every time-point in the event stream by de-
fault.1 Similarly, the MDL formula Ψ = �(〈>∗ · approve · >∗〉[0,1day] execute) can be written as

<>* approve >*> [0, 86400] execute

To represent event streams, we adopt the UNIX formatting for time-stamps and prefix them
with the @ symbol. Events at a time-point can be seen as occurring at the time denoted by
the corresponding time-stamp. Events that are assumed to have happened simultaneously are
grouped together and share the same time-stamp. Alternatively, an event stream can also con-
tain several time-points with the same time-stamp. These events are considered to occur in the
order defined by the event stream and it is assumed that the time difference between their occur-
rence is smaller than the granularity of the clock used when sampling the events. For example,
for the event stream shown in Figure 2a, the time-point 0 contains two events approve and
execute occurring simultaneously at the time 1307522571 (which is 2011-06-08, 08:42:51). The
event approve at time-point 3 occurs strictly before the event execute at time-point 5, although
their time-stamps have the same value. Empty events (time-point 4) are permitted, too.

If we monitor our example MTL formula Φ over the event stream from Figure 2a, Aerial
produces the output shown in Figure 2b, where each line represents a time-point and a verdict.
As mentioned earlier, a time-point is represented as a pair consisting of the time-stamp, written

1Making the outermost � implicit allows Aerial to report to the user at which point the property ϕ was
violated. This makes the monitor’s output more useful than a single Boolean verdict, which some monitors
would report for � ϕ.
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before the : symbol and the offset written after the : symbol. The output shows that the
occurrences of the first two publish events violate the property: the first one was approved too
early while the second one was never approved. For the MDL formula Ψ, Aerial produces the
output shown in Figure 2c. The formula is violated at the time-point 0 because the approval and
the execution happen simultaneously while the property requires the approval to happen strictly
before the executions (and later executions are too far away in the future). Moreover, after
processing the event at time-point 5 (the second execute), the monitor outputs the equivalence
verdict 1308477599:2 = 1308477599:1. This means that the monitor does not know the
Boolean verdict for both time-points 5 (1308477599:1) and 6 (1308477599:2) but it knows
that those verdicts will be equal regardless of the future events to come.

As another example consider the MTL formula �(♦alive). Such future properties with
unbounded intervals are considered to be out-of-scope or “not monitorable” by traditional mon-
itors [5]. Aerial, however, can handle them: For the input formula ♦alive and the event
stream in which no alive event occurs, Aerial will output for every time-point i 6= 0 the
equivalence of i to the time-point 0. If alive occurs for the first time at time-point j, Aerial
outputs true for the time-points 0 and j.

Recall from the previous section that Aerial ensures almost event rate independence by
keeping track of the earliest unresolved verdict, while outputting equivalence verdicts for any
time-point that has a verdict semantically equivalent to a presently tracked one. A user can
influence the way Aerial outputs verdicts by specifying the flag -mode followed by naive,
global, or local, which selects the naive, global, or local mode of operation, respectively.
The naive mode does not perform any equivalence checks and keeps all the unresolved verdicts
as pending. This mode is not almost event-rate independent. The global mode (default
setting) adds the new expression only if there is no semantically equivalent expression. The
local mode adds the new expression only if there is no semantically equivalent expression
labeled with the same time-point.

Our monitor also offers the choice between two internal representations of Boolean expres-
sions. Either they can be represented syntactically using the -expr flag (default setting), or as
binary decision diagrams (BDDs) using the -bdd flag. For the former, it is important to keep
the expressions small and thus they are eagerly normalized with respect to the associativity,
commutativity, and idempotence of ∧ and ∨, as well as Boolean tautologies such as > ∧ c = c.
Boolean expressions offer a low-cost substitution operation (used when updating the expres-
sions), but are expensive to check for equivalence. The BDD representation, in contrast, offers
easier equivalence checking, but substitution is more costly.

By default (or with the flag -noflush) Aerial allows the operating system to buffer the
verdicts and optimize the writing to the output stream. This behavior can be changed with the
-flush flag, which is especially useful when using Aerial interactively.

4 Evaluation Summary

In the past, we have evaluated Aerial’s time and memory efficiency using synthetic event
streams and random formulas of various sizes as input [6]. We have also compared its monitoring
performance on MTL formulas to Monpoly [4], which was the best performing tool that
supports MTL in the First International Competition on Software for Runtime Verification [2]
(CSRV 2014). For monitoring MDL properties, we have compared Aerial to Montre [12],
a state-of-the-art pattern matcher for timed regular expressions (TRE ). We used streams with
the event rate (i.e., number of time-points per time-stamp) ranging from 100 to 100, 000 on
average and random formulas with size (i.e., number of subformulas) ranging from 5 to 100.
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The time performance of Aerial’s MTL monitoring algorithm was the best overall, whereby
the MDL version of the algorithm was slower only by a small margin. For instance, when
monitoring a formula p U[0,5] (q U[2,6] r) over an event stream with event rate 100, 000, both
versions of the algorithm took about 40 seconds to process the first 10, 000, 000 events, while
Monpoly and Montre did not finish even after more than 100 seconds. As for memory
consumption, Aerial used at most 12MB of RAM for the monitoring tasks it performed during
the evaluation. For the largest formulas, Montre used up to 250MB, while Monpoly used
2GB. For both Monpoly and Montre, the evaluation clearly showed that they were not
implementing event-rate independent algorithms.

We also compared the three modes of operation of our tool: naive, local, and global.
Our intuition about almost event-independence was confirmed in practice: for all formulas and
streams, the space consumption in the naive mode of our tool increases linearly in the event
rate, while for local and global modes it stays almost constant. From our evaluation, we also
conclude that it is more efficient to translate Boolean expressions to BDDs when checking for
verdict equivalence, than to maintain the BDD representation and perform the substitution op-
eration on BDDs directly. Avoiding the direct BDD representation when monitoring very large
MDL formulas rendered our monitor 50% faster, while the difference in memory consumption
was negligible. For further details on the setup, Aerial’s performance, and our findings see [6].

5 Discussion and Future Work
We presented Aerial, our almost event-rate independent monitor for metric temporal logic
and metric dynamic logic. The tool is efficient and particularly well suited for monitoring
high-velocity event streams. Although Aerial’s equivalence verdict output is nonstandard, we
are convinced that it is useful. The output provides sufficient information to reconstruct all
violations. Moreover, often the monitor’s users are only interested in the existence of violations
or in identifying the first (earliest) violation. When outputting equivalences, we ensure that
the equivalence is output for the later time-points, while the earliest time-point stays in the
monitor’s memory and is eventually output with a Boolean verdict. Thus, users will always see
a truth value at the earliest violating event.

As future work, we want to validate our tool and test its scalability in realistic scenarios
using case studies supported by industrial partners. We will also explore if more expressive
logics can be monitored in an almost event-rate independent way. Interesting logics to study
are first-order extensions of MTL [5] (or MDL), in which events include data and formulas may
quantify over the data domain.
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