
Noname manuscript No.
(will be inserted by the editor)

Scalable Online First-Order Monitoring

Joshua Schneider · David Basin · Frederik Brix · Srd̄an Krstić · Dmitriy Traytel

the date of receipt and acceptance should be inserted later

Abstract Online monitoring is the task of identifying com-
plex temporal patterns while incrementally processing streams
of data-carrying events. Existing state-of-the-art monitors for
first-order patterns, which may refer to and quantify over data
values, can process streams of modest velocity in real-time.
We show how to scale up first-order monitoring to substan-
tially higher velocities by slicing the stream, based on the
events’ data values, into substreams that can be monitored
independently. Because monitoring is not embarrassingly par-
allel in general, slicing can lead to data duplication. To reduce
this overhead, we adapt hash-based partitioning techniques
from databases to the monitoring setting. We implement
these techniques in an automatic data slicer based on Apache
Flink and empirically evaluate its performance using two
tools—MonPoly and DejaVu—to monitor the substreams.
Our evaluation attests to substantial scalability improvements
for both tools.

Keywords Runtime Verification · Online Monitoring ·
Temporal Logic · Data Parallelism

1 Introduction

In large-scale software systems, millions of events occur each
second [26, 42]. Identifying instances of interesting patterns
in these high-velocity data streams is a central challenge in

Joshua Schneider is supported by the US Air Force grant “Monitoring at
Any Cost” (FA9550-17-1-0306). Srd̄an Krstić is supported by the Swiss
National Science Foundation grant “Big Data Monitoring” (167162).

J. Schneider · D. Basin · F. Brix · S. Krstić
Institute of Information Security, Department of Computer Science,
ETH Zürich, Switzerland
E-mail: {joshua.schneider, srdan.krstic}@inf.ethz.ch

D. Traytel
Department of Computer Science, University of Copenhagen, Denmark
E-mail: traytel@di.ku.dk

the area of runtime verification and monitoring. Often, this
search must be performed online given the systems’ continu-
ous operation and the massive amounts of data they produce.

An online monitor takes as input a pattern and a stream of
data, which it consumes incrementally, and it detects and out-
puts matches with the pattern. The specification language for
patterns significantly influences the monitor’s time and space
complexity. For propositional languages, such as metric tem-
poral logic or metric dynamic logic, existing state-of-the-art
monitors are capable of handling millions of events per sec-
ond in real time on commodity hardware [10, 17, 47, 48].
Propositional languages, however, are severely limited in
their expressiveness. Since they regard events as atomic,
they cannot formulate dependencies between the data val-
ues stored in events. First-order languages, such as metric
first-order temporal logic (MFOTL) [15], do not have this
limitation. Various online monitors [7, 9, 15, 18, 37, 49, 51]
can handle first-order languages for event streams, but only
with modest velocities.

We improve the scalability of online first-order moni-
tors using parallelization. There are two basic approaches
regarding what to parallelize. Task parallelism adapts the
monitoring algorithm to evaluate multiple subpatterns in par-
allel. The amount of parallelization offered is limited by
the number of subpatterns of a given input pattern. The al-
ternative is data parallelism, where multiple copies of the
monitoring algorithm are run unchanged as a black box, in
parallel, on different portions of the input data stream.

In this article we focus on data parallelism, which is at-
tractive for several reasons. As it is a black-box approach,
data parallelism allows us to reuse existing monitors, which
implement heavily optimized sequential algorithms. It also
offers a virtually unbounded amount of parallelization, es-
pecially on high-volume and high-velocity data streams. Fi-
nally, it caters for the use of general-purpose libraries for
data-parallel stream processing. These libraries deal with

2 Joshua Schneider et al.

common challenges in high-performance computing, such
as deployment on computing clusters, fault-tolerance, and
back-pressure induced by velocity spikes.

Data parallelism has previously been used to scale up the
offline monitoring of systems (Section 2), which is performed
after the systems completed their execution. Yet neither of-
fline nor online monitoring is an embarrassingly parallel task
in general. Thus, in some cases, the monitors executing in
parallel must synchronize. Alternatively, careful data duplica-
tion across these monitors allows for a non-blocking parallel
architecture. An important contribution of prior work on scal-
able offline monitoring is the development of a (data) slicing
framework [11]. The framework takes as input an MFOTL
formula (Section 3) and a splitting strategy that determines
to which of the parallel monitors the data should be sent.
The framework’s output is a dispatcher that forwards events
to appropriate monitors and ensures that the overall parallel
architecture collectively produces exactly the same results
that a single monitor would produce.

The previous slicing framework has three severe limita-
tions. First, data can be sliced on only one free variable at
a time. Although it is possible to compose multiple single-
variable slices into multi-variable slices, this composition
is less expressive than simultaneously slicing on multiple
variables. We explain the difference in Section 4.3. Second,
the user of the slicing framework must supply a splitting
strategy, even when it is obvious what the best strategy is for
the given formula. Third, the framework’s implementation
uses Google’s MapReduce library for parallel processing,
which restricts its applicability to just offline monitoring.

This article addresses all of the above limitations and
thereby makes the following contributions:

– We generalize the offline slicing framework [11] to sup-
port simultaneous slicing on multiple variables and we
also adapt it to online monitoring (Section 4).

– We instantiate the slicing framework with an automatic
splitting strategy (Section 5) inspired by hash-based par-
titioning and the hypercube algorithm [4, 39]. This algo-
rithm has previously been used to parallelize relational
join operators in databases. Skew, which is the presence
of frequently occurring values, can cause imbalances
in hash-based partitioning. Our automatic strategy also
addresses this issue by separately handling events with
frequently occurring values, using another database tech-
nique that we adapt to the monitoring setting.

– We implement our new slicing framework using the
Apache Flink [5] stream processing engine (Section 6).
We use both MonPoly [15, 16] and DejaVu [37] as black-
box monitors for the slices. A particular challenge was
to efficiently checkpoint MonPoly’s state within Flink to
achieve fault-tolerance. (We do not address fault-tolerance
and skew for DejaVu.)

– We evaluate the slicing framework and automatic strategy
selection on both real-world data based on Nokia’s data
collection campaign [14] and synthetic data exercising
difficult cases (Section 7). We show that the overall par-
allel architecture substantially improves the throughput.
Although the optimality of the hypercube approach in
terms of a balanced data distribution is out of reach for
general MFOTL formulas, we demonstrate that our au-
tomatic splitting results in balanced slices and improved
monitoring performance.

An earlier version of this work was presented at RV
2018 [52]. This article extends the conference paper with
detailed proofs of the slicing framework’s correctness (Sec-
tion 4) and a significantly expanded description of the auto-
matic strategy selection algorithm (Section 5). This includes
background information on the standard hypercube algorithm
from databases (Section 5.1), which we build upon. More-
over, we have integrated DejaVu as a second black-box moni-
tor in addition to MonPoly in our Apache Flink-based imple-
mentation (Section 6). This demonstrates our framework’s
generality. Finally, we (re-)evaluate both versions of the re-
sulting parallel online monitor (Section 7). For both, higher
parallelism yields significantly improved performance.

All theorems stated in this article, namely those establish-
ing our slicing framework’s correctness, have been mechan-
ically checked using the Isabelle proof assistant. Addition-
ally, we provide detailed proofs in this article for the benefit
of readers not familiar with Isabelle. Both our implementa-
tion [54] and formalization [56] are publicly available. The
formal verification of an MFOTL monitor modeled after Mon-
Poly has been addressed in a separate line of work [12, 55].

2 Related Work

Our work builds on the slicing framework introduced by
Basin et al. [11]. This framework ensures the sound and com-
plete slicing of the event stream with respect to MFOTL for-
mulas. It prescribes the use of composable operators, called
slicers, that slice data associated with a single free variable,
or slice data based on time. As explained in the introduction,
we have generalized their data slicers to operate simulta-
neously on all free variables in a formula. Moreover, the
use of MapReduce in the original framework’s implementa-
tion limited it to offline monitoring. In contrast, our Apache
Flink implementation supports online monitoring. Finally,
our implementation extends the framework with an automatic
strategy selection that results in a balanced load distribution
for the slices in our empirical evaluation.

Barre et al. [6], Bianculli et al. [23], and Bersani et al. [22]
use task parallelism over subformulas to parallelize proposi-
tional offline monitors. The degree of parallelization in these
approaches is limited by the formula’s size.

Scalable Online First-Order Monitoring 3

Parametric trace slicing [51] lifts propositional monitor-
ing to parametric specifications. To this end, a trace with
parametric events is split into propositional slices with events
grouped by their parameter instances, which can be moni-
tored independently. Parametric trace slicing considers only
non-metric policies with top-level universal quantification.
Barringer et al. [7] generalize this approach to more complex
properties expressed using quantified event automata (QEA).
Reger and Rydeheard [49] delimit the sliceable fragment
of first-order linear temporal logic (FO-LTL) that admits
a sound application of parametric trace slicing. The frag-
ment prohibits deeply nested quantification and using the
“next” operator. These restrictions originate from the time
model used, in which time-points consist of exactly one event.
Hence, when an event is removed from a slice, information
about that time-point is lost. Our time model, based on se-
quences of time-stamped sets of events, avoids such pitfalls.
Parametric trace slicing produces an exponential number of
propositional slices (in the domain’s size), whereas we use
as many slices as there are parallel monitors available.

Kuhtz and Finkbeiner [40] show that the LTL monitoring
problem belongs to the complexity class AC1(logDCFL) and
hence can be efficiently parallelized. However, the Boolean
circuits used to establish the lower bound must be built for
each trace in advance, which limits these results to offline
monitoring. A similar limitation applies to the work by Bun-
dala and Ouaknine [24] and Feng et al. [32], who study
variants of MTL and TPTL.

Complex event processing (CEP) systems analyze streams
by recognizing composite events as (temporal) patterns built
from simple events. These systems allow for ample paral-
lelism. However, their languages are often based on SQL
extensions without a clear semantics. An exception is Beep-
Beep [34,35]: a multi-threaded stream processor that supports
LTL-FO+, a first-order variant of LTL. The parallelism in
BeepBeep must, however, be arranged manually by the user.

Event stream processing systems have been extensively
studied in the database community. We focus on the most
closely related works. The hypercube algorithm (also known
as the shares algorithm) was proposed by Afrati and Ull-
man [4] in the context of MapReduce. The algorithm is sim-
ilar to the triangle counting algorithm by Suri and Vassilvit-
skii [57] and can be traced back to the parallel evaluation of
datalog queries [33]. The hypercube algorithm is optimal for
conjunctive queries with one communication round on skew-
free databases [21], which do not contain heavy hitters (data
values that occur more frequently than a fixed threshold).

The hypercube algorithm and other hash-based partition-
ing schemes are sensitive to skew. Rivetti et al. [50] suggest
applying a greedy balancing strategy after identifying heavy
hitters. This approach is restricted to conjunctive queries
where all relations share a common join key. Joglekar et
al. [38] improve asymptotically over the hypercube algorithm

by using multiple communication rounds. Nasir et al. [43,44]
balance skew for associative stream operators without explic-
itly identifying heavy hitters. Vitorovic et al. [58] combine the
hash-based hypercube, prone to heavy hitters, with random
partitioning [45], resilient to heavy hitters. Their combina-
tion only applies to conjunctive queries and limits the impact
of skew without improving the worst-case performance. All
these approaches are unsuitable for handling MFOTL formu-
las. Instead we follow a hypercube variant that is worst-case
optimal in the presence of skew [39]. The heavy hitters must
be known in advance in this approach. In contrast to the ear-
lier algorithm by Beame et al. [20], it is sufficient to consider
the heavy hitters of each attribute in isolation.

3 Metric First-Order Temporal Logic

We briefly recall the syntax and semantics of our specification
language, metric first-order temporal logic (MFOTL) [15].

We fix a set of names E and for simplicity assume a single
infinite domain D of values. The names r ∈E have associated
arities ι(r) ∈ N. An event r(d1, . . . ,dι(r)) is an element of
E×D∗. We call 1, . . . , ι(r) the attributes of the name r. We
further fix an infinite set V of variables, such that V, D, and
E are pairwise disjoint. Let I be the set of nonempty intervals
[a,b) := {x ∈N | a≤ x < b}, where a ∈N, b ∈N∪{∞} and
a < b. Formulas ϕ are constructed inductively, where ti, r, x,
and I range over V∪D, E, V, and I, respectively:

ϕ ::= r(t1, . . . , tι(r)) | t1 ≈ t2 | ¬ϕ | ϕ∨ϕ | ∃x.ϕ |
 I ϕ |#I ϕ | ϕSI ϕ | ϕUI ϕ.

Along with the Boolean operators, MFOTL includes the met-
ric past and future temporal operators (previous), S (since),
(next), and U (until), which may be nested freely. We de-
fine other standard operators in terms of this minimal syntax:
truth > := ∃x. x ≈ x, falsehood ⊥ := ¬>, inequality t1 6≈
t2 :=¬(t1 ≈ t2), conjunction ϕ∧ψ :=¬(¬ϕ∨¬ψ), universal
quantification ∀x. ϕ :=¬(∃x.¬ϕ), eventually ♦I ϕ :=>UI ϕ,
always �I ϕ :=¬♦I¬ϕ, once �I ϕ :=>SI ϕ, and historically
(always in the past) �I ϕ := ¬�I¬ϕ. We write V(ϕ) for the
set of free variables of the formula ϕ.

MFOTL formulas are interpreted over streams of time-
stamped events. We group finite sets of events that hap-
pen concurrently (from the event source’s point of view)
into databases. An (event) stream ρ is an infinite sequence
(τi, Di)i∈N of databases Di with associated time-stamps τi.
We assume discrete time-stamps, modeled as natural numbers
τ ∈ N. The event source may use a finer notion of time than
the one used for time-stamps: databases at different indices
i 6= j may have the same time-stamp τi = τ j. The sequence
of time-stamps must be non-strictly increasing (∀i. τi ≤ τi+1)
and always eventually strictly increasing (∀τ. ∃i. τ < τi).

The relation v, i |=ρ ϕ (Figure 1) defines the satisfaction of
the formula ϕ for a valuation v at an index i with respect to the

4 Joshua Schneider et al.

v, i |=ρ r(t1, . . . , tι(r)) if r(v(t1), . . . v(tι(r))) ∈ Di
v, i |=ρ t1 ≈ t2 if v(t1) = v(t2)
v, i |=ρ ¬ϕ if v, i 6|=ρ ϕ
v, i |=ρ ϕ∨ψ if v, i |=ρ ϕ or v, i |=ρ ψ
v, i |=ρ ∃x. ϕ if v[x 7→ z], i |=ρ ϕ for some z ∈ D
v, i |=ρ I ϕ if i > 0, τi−τi−1 ∈ I, and v, i−1 |=ρ ϕ
v, i |=ρ #I ϕ if τi+1−τi ∈ I and v, i+1 |=ρ ϕ
v, i |=ρ ϕSI ψ if v, j |=ρ ψ for some j≤ i, τi−τ j ∈ I,

and v, k |=ρ ϕ for all k with j < k ≤ i
v, i |=ρ ϕUI ψ if v, j |=ρ ψ for some j≥ i, τ j−τi ∈ I,

and v, k |=ρ ϕ for all k with i≤ k < j

Fig. 1 Semantics of MFOTL

stream ρ= (τi, Di)i∈N. The valuation v is a mapping V(ϕ)→
D, assigning domain elements to the free variables of ϕ. Over-
loading notation, v is also the extension of v to the domain
V(ϕ)∪D, setting v(t) = t whenever t ∈D. We write v[x 7→ y]
for the function equal to v, except that x is mapped to y.

Let S be the set of streams. Although satisfaction is de-
fined over streams, a monitor will always receive only a finite
stream prefix. We write P for the set of prefixes and � for
the usual prefix order on streams and prefixes. For a prefix π
and i < |π|, π[i] denotes π’s i-th element.

4 Slicing Framework

We introduce a general framework for parallel online mon-
itoring based on slicing. Basin et al. [11] provide operators
that split finite logs offline into independently monitorable
slices, based on the events’ data values and time-stamps.
Each slice contains only a subset of the events from the orig-
inal trace, which reduces the computational effort required
to monitor the slice. We adapt this idea to online monitoring.
Our framework is abstract. We start with a characterization
of an online monitor’s input–output behavior (Section 4.1).
Slicing’s fundamental property is that it preserves this behav-
ior (Section 4.2). We then refine the framework and focus on
the data in the events, since slicing with respect to time is
more suitable for offline monitoring (Section 4.3).

4.1 Monitor Functions

Abstractly, a monitor functionM∈ P→O maps stream pre-
fixes to verdict outputs from some set O. A monitor is an algo-
rithm that implements a monitor function. An online monitor
receives incremental updates of a stream prefix and com-
putes the corresponding verdicts. We consider time-stamped
databases to be the atomic units of the online monitor’s input.
The monitor may produce the verdicts incrementally, too. To
represent this behavior at the level of monitor functions, we
assume that verdict outputs are equipped with a partial order
v, where o1 v o2 means that o2 provides more (or the same)
information as o1. We also assume thatM is a monotone
map from the poset 〈P,�〉, i.e., stream prefixes ordered by

the prefix relation, to the poset 〈O,v〉. This captures the in-
tuition that as the monitor function receives more input, it
produces more output, and, depending on the partial order v,
it does not retract previous verdicts.

The standard application of monitors for runtime verifi-
cation is detecting violations of a safety property of the form
�∀x1 . . . xn.ϕ. To do this, one can monitor the negation ¬ϕ
to obtain the valuations of the variables x1, . . . , xn that satisfy
the negation. Such valuations correspond to the violations
of the initial safety property. We call monitors that output
valuations of the free variables informative.

Intuitively, the verdict of an informative monitor function
Mϕ is a set of tuples (v, i), where v is a valuation of the free
variables of the MFOTL formula ϕ and i is an index in the
event stream. We call these tuples satisfying valuations. Thus,
we instantiate 〈O,v〉 with 〈(V(ϕ)→ D)×N,⊆〉 when we
work with an informative monitor function. By using the sub-
set relation as the partial order on verdicts, the granularity at
which an online implementation can incrementally output its
verdict is at the level of satisfying valuations. The following
definition makes the above intuition more precise.

Definition 1 An informative monitor functionMϕ for ϕ is a
monotone function 〈P,�〉→〈(V(ϕ)→D)×N,⊆〉 satisfying

Soundness ∀π,v, i. (v, i) ∈Mϕ(π)

=⇒∀ρ� π. v, i |=ρ ϕ

Completeness ∀π,ρ,v, i. π� ρ∧ (∀ρ′ � π. v, i |=ρ′ ϕ)

=⇒∃π′ � ρ. (v, i) ∈Mϕ(π
′)

Soundness restricts the output to valuations that are satisfied
independently of future events: the monitor may output a
tuple (v, i) only if it is a satisfying valuation for all streams
ρ extending the prefix π. This property is sometimes called
impartiality [41]. Our definition of completeness is a weak
form of anticipation [41]: once a valuation v is satisfied at an
index i on every possible extension of the prefix π, the mon-
itor must eventually output this fact. However, we allow the
output to be delayed, which is generally necessary for formu-
las with future modalities. The delay may be unbounded with
respect to either time or the number of databases alone. We
therefore require that for any choice of the infinite stream ex-
tension ρ� π, there is another prefix π′ � ρ such thatMϕ(π

′)
contains the satisfying valuation (v, i). Informative monitor
functions are not unique because the output delay is not fixed.

As concrete examples, the MonPoly monitor [16] im-
plements an informative monitor function for a practically
relevant fragment of MFOTL [15]. MonPoly’s output delay
depends only on the future operators’ intervals in the moni-
tored formula. The DejaVu monitor [37] internally computes
an informative monitor function for a past-only fragment
of MFOTL, where all intervals are [0,∞). It represents val-
uations as binary decision diagrams (BDDs), but does not
output them. Instead, DejaVu’s verdicts consist only of the

Scalable Online First-Order Monitoring 5

S

M1

M2
...

Mk

J
π

S (π)1

S (π)k

M1(S (π)1)

Mk(S (π)k)

Fig. 2 The parallelized monitor function J
(
λk. Mk(S (π)k)

)
, assuming

K = {1, . . . , k}

indices where violations occurred. Since DejaVu does not
support future operators, its verdict output is never delayed.

We briefly compare our informative monitor functions
with another common type of monitor functions from the
literature where O is the set {?,⊥,>} and the partial order
v is the reflexive closure of {(?,⊥),(?,>)} [19, 46]. The
verdict ⊥ means that the monitored prefix is a bad prefix,
i.e., all its infinite extensions violate the formula. Similarly,
> denotes a good prefix, while ? indicates an inconclusive
result. Every nonempty result fromMϕ(π) corresponds to a
⊥ verdict for the formula �∀x1 . . . xn.¬ϕ (due to soundness),
whereas an empty result could either mean ? or >.

4.2 Abstract Slicing

Parallelizing a monitor should not affect its input–output be-
havior. We formulate this correctness requirement abstractly
using the notion of a slicer for a monitor function. The slicer
specifies how to split a stream prefix into independently moni-
torable substreams, called slices, and how to combine the ver-
dict outputs of the parallel submonitors into a single verdict.

Definition 2 A slicer for a monitor functionM∈ P→O is
a tuple (K, M,S , J), where K is a set of slice identifiers, the
submonitor family M ∈ K→ (P→O) is a K-indexed family
of monitor functions, the splitter S ∈ P→ (K → P) splits
prefixes into K-indexed slices, and the joiner J ∈ (K→O)→
O combines K-indexed verdicts into a single one, satisfying:

Monotonicity ∀π1, π2, k. π1 � π2 =⇒ S (π1)k � S (π2)k.
Correctness ∀π. J

(
λk. Mk(S (π)k)

)
=M(π).

For an input prefix π, let S (π) denote the collection of its
slices. Each slice is identified by an element k ∈ K, which we
write as a subscript. We require the splitter S to be monotone
so that the submonitors Mk, which may differ from the moni-
tor functionM, can process the sliced prefixes incrementally.
Composing the splitter, the corresponding submonitor for
each slice, and the joiner as shown in Figure 2 yields the par-
allelized monitor function J

(
λk. Mk(S (π)k)

)
. This function

is correct if and only if it computes the same verdicts asM.
For example, parametric trace slicing [49,51] can be seen

as a particular slicer for monitor functions that arise from
sliceable FO-LTL formulas [49, Section 4]. Thereby, K is the

Cartesian product of finite domains for the formulas’ vari-
ables. The elements of K are thus valuations and the splitter
is defined as the restriction of the trace to the values occurring
in the valuation. The submonitor Mk is a propositional LTL
monitor and the joiner simply takes the union of the results
(which may be marked with the valuation).

The splitter S as defined above is overly general. A con-
crete instance of S may determine each event’s assignment
to slices based on all previous events. In practice, we would
like an efficient implementation of S. For example, paramet-
ric trace slicing determines the target slice for an event by
inspecting events individually (and not as part of the entire
prefix). We call a splitter with this property event-separable.
Event-separable splitters are desirable because they cater for
a parallel implementation of the splitter itself.

Definition 3 A splitter S is called event-separable if there
is a function Ŝ ∈ (E×D∗)→ P(K) such that S (π)k[i] =
(τi, {e ∈ Di | k ∈ Ŝ (e)}), for all π ∈ P, k ∈ K, and i < |π|.

Lemma 1 Assume that S is event-separable. Then π1 � π2
implies S (π1)k � S (π2)k for all k ∈ K.

Proof Fix an event-separable splitter S with the correspond-
ing function Ŝ (*). Fix two prefixes π1 = (τi, Di)i<|π1| and
π2 = (τ′i, D′i)i<|π2|, with π1 � π2. We thus have τi = τ′i and
Di = D′i for all i < |π1| (**). Fix k ∈ K. We show S (π1)k �
S (π2)k pointwise by showing S (π1)k[i] = S (π2)k[i] for all
i < |π1|. To do so we calculate:

S (π1)k[i]
(∗)
= (τi, {e ∈ Di | k ∈ Ŝ (e)})
(∗∗)
= (τ′i, {e ∈ D′i | k ∈ Ŝ (e)}) (∗)

= S (π2)k[i]. ut

We also call a slicer with an event-separable splitter event-
separable. We identify an event-separable slicer (K, M,S , J)
with (K, M, Ŝ , J), where Ŝ is the function from Definition 3.

4.3 Joint Data Slicer

We now describe an event-separable slicer for informative
monitor functionsMϕ. Our joint data slicer distributes events
according to the valuations they induce in the formula. Recall
that the output ofMϕ consists of all valuations that satisfy
the formula ϕ at some index. For a given valuation, only a
subset of the events is relevant to evaluate the formula. We
would like to evaluate ϕ separately for each valuation to de-
termine whether it is satisfied by that valuation, as this would
allows us to exclude some events from each slice. However,
there are infinitely many valuations in the presence of infinite
domains. Therefore, the joint data slicer uses finitely many
(possibly overlapping) slices associated with sets of valua-
tions, which taken together cover all possible valuations.

We assume without loss of generality that the bound
variables in ϕ are disjoint from the free variables V(ϕ). Given

6 Joshua Schneider et al.

an event e = r(d1, . . . ,dι(r)), the set matches(ϕ,e) contains
all valuations v ∈ V(ϕ)→ D for which there is a subformula
r(t1, . . . , tι(r)) in ϕ where v(ti) = di for all i ∈ {1, . . . , ι(r)}.
Intuitively, v is in matches(ϕ,e) if the event e is possibly
relevant for evaluating ϕ over the valuation v.

Definition 4 Let ϕ be an MFOTL formula and f ∈ (V(ϕ)→
D)→P(K) be a mapping from valuations to nonempty sets
of slice identifiers. The joint data slicer for ϕ with splitting
strategy f is the tuple (K, λk.Mϕ, Ŝ f , J f), where1

Ŝ f (e) =
⋃

v∈matches(ϕ,e)
f (v),

J f (s) =
⋃

k∈K
(sk ∩ ({v | k ∈ f (v)}×N)).

The splitting strategy f associates valuations to slices
(more precisely, slice identifiers). Accordingly, Ŝ f assigns the
event e to all slices k for which there exists v∈matches(ϕ,e),
i.e., a valuation v for which e may be relevant, with k ∈ f (v).
The joiner J f takes the union of the verdicts from all slices,
keeping only those verdicts that the corresponding slice is
responsible for. Note that {v | k ∈ f (v)}×N is the set of all
verdicts whose valuation is associated with the slice k.

The following example demonstrates why the intersec-
tion in the definition of J f is needed for some formulas, for
example those involving equality. Intuitively, these formulas
may be satisfied if and only if certain events are absent. The
problem occurs if the input prefix contains these events, but
a slice does not.

Example 1 Consider the formula ϕ= x≈ a∧¬P(x), where
a is a constant, and consider a stream ρ with the prefix
π = 〈(0,{P(a)})〉. Obviously, v,0 6|=ρ ϕ for all v. However,
the event P(a) will be omitted from each slice k that does
not have an associated valuation mapping x to a. (A splitting
strategy with such a slice exists whenever |K| ≥ 2.) Hence
v[x 7→ a],0 |=ρ′ ϕ for all v and all extensions ρ′ of the slice
S f (π)k to a stream. The result will be unsound if we do not fil-
ter the erroneous satisfying valuations v[x 7→ a] that are neces-
sarily output by the k-th submonitor (due to its completeness).

We show next thatM f
ϕ(π) = J f

(
λk.Mϕ(S f (π)k)

)
, the

parallelized monitor that uses the joint data slicer, is an infor-
mative monitor function, i.e., it is monotone, sound, and com-
plete. As a first step, given a formula ϕ and a set of valuations
R, we define the formula’s relevant events with respect to R as
Eϕ(R) = {e | R∩matches(ϕ,e) 6= {}}. The following lemma
justifies this name: if we restrict the databases in a stream to
(a superset of) the formula’s relevant events with respect to
R, the satisfying valuations within R remain unchanged.

Lemma 2 Fix a formula ϕ, a stream ρ = (τi, Di)i∈N, a set
of valuations R, and a set of events E, with Eϕ(R)⊆ E. Let
σ=(τi, Di∩E)i∈N. Then v, i |=ρ ϕ⇐⇒ v, i |=σ ϕ for all v∈R
and i ∈ N.

1 Recall that s is a family of K-indexed verdicts, so sk denotes the
verdict for slice k.

Proof Proof by structural induction over the formula ϕ, gen-
eralizing over v, R, and i. We only show the base cases, which
are the most interesting ones, and the step case for ∃. The
other step cases all follow easily from the induction hypothe-
sis because the evaluation only depends on the evaluation of
the recursive subformulas (covered by the induction hypothe-
sis) and the time-stamps in the streams. Note that the latter
are the same in ρ and σ.

Case ϕ= r(t1, . . . , tn) with n = ι(r): We have for any v ∈ R:

v, i |=ρ ϕ⇐⇒ r(v(t1), . . . ,v(tn)) ∈ Di
∗⇐⇒ r(v(t1), . . . ,v(tn)) ∈ Di∩E⇐⇒ v, i |=σ ϕ.

The step marked with ∗ is justified as follows. Either
r(v(t1), . . . ,v(tn)) /∈ Di, and both sides of⇐⇒ are false.
Otherwise, r(v(t1), . . . ,v(tn)) ∈ Di, which implies that
v ∈ matches(ϕ,(r(v(t1), . . . ,v(tn))). This in turn implies
that r(v(t1), . . . ,v(tn)) ∈ Eϕ(R) ⊆ E using the fact that
v ∈ R and the lemma’s assumption.

Case ϕ= t1 ≈ t2: We have for any v ∈ R: v, i |=ρ ϕ ⇐⇒
v(t1) = v(t2)⇐⇒ v, i |=σ ϕ.

Case ϕ= ∃x. ψ: We have for any v ∈ R:

v, i |=ρ ϕ⇐⇒∃z ∈ D. v[x 7→ z], i |=ρ ψ
∗⇐⇒∃z ∈ D. v[x 7→ z], i |=σ ψ⇐⇒ v, i |=σ ϕ.

The step marked with ∗ is justified using the induction
hypothesis for the formula ψ, namely, v[x 7→ z], i |=ρ ϕ

⇐⇒ v[x 7→ z], i |=σ ϕ, for all z ∈ D. Note that we have
instantiated the parameters v and R by v[x 7→ z] and
{v[x 7→ z] | v ∈ R}, respectively. ut

The relevant events provide an alternative characteriza-
tion of the joint data slicer’s splitter: S f (π)k[i] = (τi, Di ∩
Eϕ({v | k ∈ f (v)})), for all π= (τi, Di)i<|π| and i < |π|.

Theorem 1 The functionM f
ϕ(π) = J f

(
λk.Mϕ(S f (π)k)

)
is

an informative monitor function.

Proof The monotonicity ofM f
ϕ follows directly fromMϕ’s

monotonicity. For soundness, fix i, v, and π and assume
(v, i) ∈M f

ϕ(π). Then, byM f
ϕ’s definition, we obtain a slice

identifier k∈ f (v) such that (v, i)∈Mϕ(S f (π)k). FromMϕ’s
soundness, we have v, i |=σ ϕ for all σ � S f (π)k. Let ρ be
some stream extending π, i.e., ρ � π. Using the alternative
characterization of S f and Lemma 2 with R instantiated to
{v | k ∈ f (v)}, we deduce v, i |=ρ ϕ.

For completeness, fix i, v, π, and ρ= (τi, Di)i∈N, where
π � ρ (i.e., π = (τi, Di)i<|π|), and ∀ρ′ � π. v, i |=ρ′ ϕ. As
f (v) is nonempty, let k ∈ f (v) be some slice identifier. We
first show that for all σ = (τ′i, D′i)i∈N with σ � S f (π)k we
have v, i |=σ ϕ. For i < |π|, we have τ′i = τi and D′i = Di ∩
Eϕ({v | k ∈ f (v)}) via S f ’s alternative characterization. Let
the stream ρ′ = (τ′i, Ei)i∈N, where Ei = Di for i < |π| and

Scalable Online First-Order Monitoring 7

Ei = D′i otherwise, and let the stream σ′ = (τ′i, Ei∩Eϕ({v |
k ∈ f (v)}))i∈N. We calculate using Lemma 2 with R = {v |
k ∈ f (v)}:
v, i |=σ ϕ

Lemma 2
⇐⇒ v, i |=σ′ ϕ

Lemma 2
⇐⇒ v, i |=ρ′ ϕ.

Because ρ′ � π, we have v, i |=ρ′ ϕ by our assumption, and
thus v, i |=σ ϕ. Now, we can apply Mϕ’s completeness to
the stream σ′′ = (τi, Di ∩ Eϕ({v | k ∈ f (v)})i∈N, to obtain
a π′′ such that π′′ � σ′′ and (v, i) ∈Mϕ(π

′′). Taking π′ =
(τi, Di)i<|π′′|, we have π′ � ρ and π′′ = S f (π

′)k. By the defini-
tion ofM f

ϕ, we conclude that (v, i) ∈M f
ϕ(π
′). ut

The monitor functionsMϕ andM f
ϕ may differ. However,

both are informative, i.e., they produce correct verdicts (and
eventually all verdicts by completeness) for the formula ϕ.
Yet they may output verdicts with different delays. In general,
the joint data slicer is only a slicer forM f

ϕ but not forMϕ.

Corollary 1 The joint data slicer (K, λk.Mϕ, Ŝ f , J f) is a
slicer forM f

ϕ.

Proof Monotonicity follows from Lemma 1; correctness fol-
lows fromM f

ϕ’s definition. ut
The joint data slicer is also a slicer for the original moni-

tor functionMϕ, i.e., it produces the same output as the origi-
nal monitor function, under an additional assumption onMϕ.

Definition 5 A monitor function is sliceable if for any prefix
π = (τi, Di)i<|π|, set of valuations R, and v ∈ R, we have
(v, i) ∈Mϕ((τi, Di∩Eϕ(R))i<|π|)⇐⇒ (v, i) ∈Mϕ(π).

This assumption is satisfied by MonPoly’s and DejaVu’s con-
crete monitor functions: The indices at which these monitors
output satisfying valuations depend only on the sequence of
time-stamps, which slicing does not affect. It follows from
Lemma 2 that they are sliceable.

Theorem 2 The joint data slicer (K, λk.Mϕ, Ŝ f , J f) is a
slicer forMϕ, ifMϕ is sliceable.

Proof Monotonicity follows from Lemma 1. For correct-
ness, we must show that (v, i) ∈M f

ϕ(π) if and only if (v, i) ∈
Mϕ(π), for an arbitrary v and i. This follows from the def-
inition ofM f

ϕ, the sliceability assumption, and that f (v) is
nonempty. ut
Example 2 Consider the formula P(x,y)∧¬♦[0,5](P(y, x)∨
Q(x,y)). We apply the joint data slicer with K = {1,2} and a
splitting strategy f that maps the valuation 〈x = 5,y = 7〉 to
the first slice and all other valuations to the second slice. We
obtain the following slices for the prefix π= 〈(11,{P(7,5)}),
(12,{P(5,1), Q(7,5)}), (21,{P(5,7), Q(5,7)})〉:
S f (π)1 = 〈(11,{P(7,5)}), (12,{}), (21,{P(5,7), Q(5,7)})〉
S f (π)2 = 〈(11,{P(7,5)}), (12,{P(5,1), Q(7,5)}),

(21,{P(5,7)})〉.

The events P(5,7) and P(7,5) are duplicated across the slices
because both 〈x = 5,y = 7〉 and 〈x = 7,y = 5〉 are match-
ing valuations for either event. The joiner is crucial for the
slicer’s correctness in this example. Because of the subfor-
mula P(y, x), the first slice receives the event P(7,5) but not
the event Q(7,5), which is sent to the second slice instead.
This results in the spurious verdict 〈x = 7,y = 5〉 at index 0,
which the joiner’s intersection filters out.

The data slicer used in the offline slicing framework [11]
is defined for a single free variable x and a collection (Sk)k∈K
of slicing sets covering the domain:

⋃
k∈K Sk =D. This single

variable slicer is a special case of our joint data slicer. To see
this, define f (v) to be the set of all k with v(x) ∈ Sk. At least
one such k must exist because the Sk cover the domain. In
contrast, some instances of the joint data slicer cannot be sim-
ulated by composing single variable slicers. This limitation
affects formulas where the same predicate symbol appears
in multiple atoms that each miss at least one free variable to
slice on. As a result, single variable slicers are ineffective for
some formulas as they add unnecessary data duplication.

Example 3 Consider the formula P(x)∧ P(y) and the split-
ting strategy that maps v to the slice (v(x) mod 2,v(y) mod
2) such that there are four slices in total. Any single variable
slicer will send each P event to all slices, and this extends
to their composition. The joint data slicer sends each event
P(d) to exactly three slices, excluding the slice (z,z), where
(z mod 2) 6= (d mod 2). This example generalizes to other
splitting strategies as we show in Example 7 in Section 5.3.

Finally, we revisit the intersection with {v | k ∈ f (v)}×N
in the definition of J f . Examples 1 and 2 demonstrate the
need for it in general. A valid question is for which formulas
and splitting strategies can the intersection be omitted, i.e.,
when can we replace J f with J′(s) =

⋃
k∈K sk? For exam-

ple, this replacement is necessary when using DejaVu as a
submonitor (see Section 6). We give a sufficient condition
stemming from the following lemma. The lemma ensures
that a formula’s satisfying valuations on streams restricted
to relevant events with respect to a given set of valuations R
come from precisely this set of valuations R.

Lemma 3 Let ϕ be a formula and R 6= {} a nonempty set of
valuations. Assume that

(1) the formula ϕ is safe, i.e., satisfies the predicate sf defined
in Figure 3;

(2) no subformula of the form x≈ a or a≈ x, where x ∈ V
and a ∈ D, occurs in ϕ;

(3) no event name occurs twice in ϕ; and
(4) for all v1 ∈ R, v2 ∈ R, and v satisfying v(x) = v1(x)∨

v(x) = v2(x) for all x ∈ V(ϕ), we have v ∈ R.

If v, i |=ρ ϕ for some i ∈ N, a valuation v, and a stream ρ=

(τi, Di)i∈N with Di ⊆ Eϕ(R) for all i ∈ N, then v ∈ R.

8 Joshua Schneider et al.

sf(r(t1, . . . , tι(r))) = true

sf(t1 ≈ t2) = (∃a ∈ D. t1 = a∨ t2 = a)
sf(¬(t1 ≈ t2)) = (∃a, b ∈ D. t1 = a∧ t2 = b)∨

(∃x ∈ V. t1 = x∧ t2 = x)
sf(¬(ϕ∨ (¬ψ))) = ((sf(ϕ)∧V(ϕ)⊆ V(ψ))∨ sf¬(ϕ))∧ sf(ψ)
sf(ϕ∨ψ) = sf(ϕ)∧ sf(ψ)∧V(ϕ) = V(ψ)
sf(∃x. ϕ) = sf(ϕ)
sf(I ϕ) = sf(ϕ)
sf(#I ϕ) = sf(ϕ)
sf(ϕSI ψ) = V(ϕ)⊆ V(ψ)∧ (sf(ϕ)∨ sf¬(ϕ))∧ sf(ψ)
sf(ϕUI ψ) = V(ϕ)⊆ V(ψ)∧ (sf(ϕ)∨ sf¬(ϕ))∧ sf(ψ)

Fig. 3 Safe formulas (sf¬(ϕ) abbreviates sf(ψ) if ϕ = ¬ψ and false
otherwise)

Proof (Sketch) By induction on the structure of safe formulas.
The base cases are straightforward using the assumptions (2)
and (3). Note that safe formulas only allow negation to occur
in formulas of the form (¬ϕ)∧ψ (i.e., ¬(ϕ∨ (¬ψ)), (¬ϕ)SI
ψ, and (¬ϕ)UI ψ with all the free variables of the negated
subformula ¬ϕ being contained in the free variables of ψ.
This ensures that the satisfying valuations of these formulas
are a subset of the satisfying valuations of ψ, allowing for a
straightforward use of the induction hypothesis. The case ϕ∧
ψ (where both subformulas are not negated), requires joining
the satisfying valuations of ϕ and ψ. Condition (4) makes
sure that this join operation produces a valuation in R. ut

The safety assumption requires that any negated subformula
is guarded by a non-negated subformula, such that ϕ can be
monitored using finite relations [15, 55]. (Safe formulas are
called monitorable in these references.) The safety assump-
tion is standard for monitors operating on finite tables. For
instance, the MonPoly monitor only supports safe formu-
las [15]. In contrast, DejaVu supports unsafe formulas for
the past-only non-metric fragment of MFOTL [37]. Observe
that condition (2) of Lemma 3 rules out the formula from
Example 1. We conclude this section with J′’s main property.

Theorem 3 Let ϕ be a formula and f the joint data slicer’s
splitting strategy. Let R(k) = {v | k ∈ f (v)} and assume that
f makes R(k) nonempty for all k ∈ K. Under the assumptions
(1)–(3) of Lemma 3 on ϕ and assumption (4) on R(k) for all
k ∈ K, we have:

J f
(
λk.Mϕ(S f (π)k)

)
= J′

(
λk.Mϕ(S f (π)k)

)
.

Proof The left-to-right inclusion is obvious. For the right-
to-left inclusion, assume (v, i) ∈ J′

(
λk.Mϕ(S f (π)k)

)
. Then,

obtain k ∈ K such that (v, i) ∈Mϕ(S f (π)k). By the moni-
tor functionMϕ’s soundness, we have v, i |=ρ ϕ for all ρ�
S f (π)k. Taking any ρ= (τi, Di)i∈N satisfying Di ⊆ Eϕ(R(k))
for all i (note that this is precisely what ρ� S f (π)k ensures
for i < |π|) and applying Lemma 3, we have v ∈ R(k) and
thus (v, i) ∈ J f

(
λk.Mϕ(S f (π)k)

)
. ut

5 Automatic Slicing

The joint data slicer is parameterized by a splitting strategy.
Ideally, the chosen strategy optimally utilizes the available
computing resources: computation costs should be evenly
distributed and any overhead kept low. In this section, we
present our approach to automatically selecting a suitable
strategy. It is inspired by results from database theory and
leverages stream statistics to optimize the submonitors’ event
rates, i.e., the number of events in a time period.

In online monitoring, the monitor’s throughput must be
high enough to process the incoming events with bounded
delay, especially if its buffering capacity is limited. The goal
of slicing is to supply the submonitors with substreams that
can be monitored more efficiently than the entire event stream.
Under the assumption that slicing and the communication to
the submonitors do not pose a bottleneck, the parallel monitor
will thus achieve a higher throughput than the sequential
monitor. Another related benefit is the improved worst-case
latency in the presence of bursty event streams, where the
events are not distributed evenly in time. Low latency is
important in online monitoring to obtain timely verdicts.

The key problem we solve is to find a splitting strategy
that achieves the above goal. Ideally, the improvements in
throughput and worst-case latency scale with the number of
submonitors. To approximate this ideal within our slicing
framework, the splitting strategy should minimize the event
rates observed by a fixed number of submonitors. This in
turn maximizes the parallel monitor’s throughput if we make
the simplifying assumption that the submonitors’ throughput
solely depends on their input event rate. Under the same as-
sumption, the submonitors require less memory. We do not
optimize the communication cost in this article. However, the
number of slices is a parameter that affects the communica-
tion cost due to data duplication.

5.1 Recap of the Hypercube Algorithm

Our automatic splitting strategy is based on the observation
that the hypercube algorithm [4, 33, 57], which is used to
parallelize relational queries in databases, can be generalized
to the online monitoring of MFOTL formulas.

We start by recalling the standard notion of full conjunc-
tive queries [2], which represent a substantially less expres-
sive language than MFOTL. The computational properties
of conjunctive queries are well understood. In particular,
researchers have devised and analyzed (near-)optimal dis-
tributed algorithms for computing conjunctive queries [3, 4,
20, 21, 38, 39]. Afterwards, we focus on the hypercube algo-
rithm and recall previous results. The terminology we use
has been adjusted slightly to match the monitoring setting.

A database instance (or database for short) represents
a finite set of events. This coincides with the definition that

Scalable Online First-Order Monitoring 9

we previously gave for the stream elements in MFOTL’s
semantics. In the database context, we also call the names
r ∈ E relation names. A relation D(r) in a database D is the
set of all events in D with the name r. Its size |D(r)| is the
cardinality of the set D(r). The degree of a value d ∈ D with
respect to an attribute i ∈ {1, . . . , ι(r)} of the relation name r
is the number of events r(d1, . . . ,dι(r)) ∈ D with di = d.

A query q is a syntactic expression in a given query
language. It defines a mapping q(D) from databases D to
finite sets of valuations over some finite set of variables
V(q) ⊂ V. An atom is an expression r(y1, . . . ,yι(r)), where
r ∈ E, and the variables yi are elements of V. The image of
an atom a = r(y1, . . . ,yι(r)) under a valuation v is the event
v(a) = r(v(y1), . . . ,v(yι(r))). We write V(a) for the set of vari-
ables {y1, . . . ,yι(r)}. A full conjunctive query q is a finite set
of atoms. Such a query maps to valuations that have as their
domain the variables occurring in the query’s atoms, i.e.,
V(q) =

⋃
a∈q V(a). The semantics of q is then given by

q(D) = {v ∈ V(q)→ D | ∀a ∈ q. v(a) ∈ D}.

Note that we overload q above and refer to it both as a set
(denoting the query’s syntax) and as a mapping (denoting the
query’s semantics). In the following, we assume that there is
a linear ordering x1, . . . , xn on the variables V(q).

The basic hypercube algorithm [4] computes a full con-
junctive query q on a distributed, MapReduce-like system [29]
with p parallel workers. The algorithm is parametrized by
the number of workers p and by the share pi ∈ N for each
variable xi in q, where i∈ {1, . . . ,n}. Each worker is assigned
a unique coordinate vector (x1, . . . , xn) ∈ [p1]× ·· · × [pn],
where [p] := {0, . . . , p−1} for p ∈ N. Initially, the events of
the database D are assumed to be distributed evenly (but in
an unspecified manner) over the p workers. The algorithm
proceeds as follows.

1. Hash functions hi ∈ D→ [pi] are chosen randomly and
independently for all i ∈ {1, . . . ,n}. The hash functions
are known to all workers.

2. In the map phase, each worker computes for every event
e in its local partition a set of workers T (e), represented
by their coordinates, to which it sends the event:

T (e) =
⋃

v∈matches(q,e)
{(h1(v(x1)), . . . ,hn(v(xn)))}, (1)

where matches(q,e) = {v | ∃a ∈ q. v(a) = e}. The set
T (e) can be computed by determining for every a ∈ q
the unique va ∈ V(a)→ D with va(a) = e (if it exists).
Each partial valuation va fixes the coordinates hi(va(xi))

for all xi ∈ V(a), while for the remaining coordinate
components xi 6∈ V(a), every possible combination of the
coordinates in [pi] must be considered. (We assume for
simplicity that the hash functions are surjective.)

3. In the reduce phase, the workers evaluate q locally on the
events that they received in the first phase. The query’s re-
sult is the union of all local results, which may optionally
be sent to a centralized worker.

In general, the basic hypercube algorithm duplicates
events, namely those matching an atom that does not contain
a variable xi with pi > 1. The total number of events that each
worker receives (and on which it computes q) depends on
the input database and the shares. Beame et al. [21] analyze
the maximum worst-case load of the workers, given fixed
relation sizes and shares. They define the load as the total
size of the messages (in bits) received by a worker before
the algorithm’s reduce phase. Based on the number of work-
ers p, Beame et al. distinguish between skewed and skew-free
databases. A database is skewed if it contains heavy hit-
ters, which are values whose degree with respect to some at-
tribute i and relation name r exceeds |D(r)|/p. For skew-free
databases, they show that the maximum load generated by the
hypercube algorithm is asymptotically bounded (up to a fac-
tor polylogarithmic in p) by L = ∑a∈q|D(r)|/

(
∏xi∈V(a) pi

)

with high probability. (In fact, they prove the bound for a
more general notion of skew-free databases.)

Beame et al. [21] also show that the shares can be opti-
mized using linear programming. The input to the optimiza-
tion is the full conjunctive query and the relation sizes of
the database on which the query should be computed. Using
a single round of communication and the optimized shares,
the hypercube algorithm matches the lower bound for the
maximum load that is necessary to compute the query. A
single round of communication means that only one com-
munication step is allowed after the initial communication
phase. Afterwards, each worker can only perform local com-
putations. The lower bound holds under the assumption that
p workers can send arbitrary messages over private channels,
have unbounded computational power, and have access to a
common source of randomness.

However, optimizing the shares with linear programming
does not yield integer values in general. As an alternative,
Chu et al. [27] propose a simple exhaustive search over all
possible integer shares, selecting the shares that minimize
L. We present a modified version of their algorithm in Sec-
tion 5.3 (Algorithm 2).

Example 4 (adapted from [21]) Consider the star query qS =

{P(x1, x2), Q(x1, x3),R(x1, x4)} and a skew-free database D
with |D(P)| = |D(Q)| = |D(R)| = m. The optimal shares
for the hypercube algorithm with p workers are p1 = p
and p2 = p3 = 1. This results in each worker receiving
approximately 3m/p events. For the triangle query qT =

{P(x1, x2), Q(x2, x3),R(x3, x1)} on the same database as be-
fore, the optimal shares are p1 = p2 = p3 = p1/3. Thus each
worker receives approximately 3m/p2/3 events. If p is not a
cubic number, we must approximate p1/3 by a combination of

10 Joshua Schneider et al.

integers. E.g. for p = 16, the algorithm by Chu et al. selects
p1 = 4 and p2 = p3 = 2 (or a permutation of these numbers).

Next, we show how the events are distributed to the work-
ers for qT . We assume p = 64 (hence p1 = p2 = p3 = 4)
and simplify the hash functions to h(x) = x mod 4 for the
purpose of this example. The slices are thus identified by
three coordinates between 0 and 3, with one coordinate for
each variable x1, x2, and x3.

event e target slices T (e)
P(0,1) 010, 011, 012, 013
P(1,1) 110, 111, 112, 113

event e target slices T (e)
Q(1,7) 013, 113, 213, 313
R(7,0) 003, 013, 023, 033

The events P(0,1), Q(1,7), and R(7,0) are sent to the worker
with coordinates 013. This ensures that the valuation 〈x1 =

0, x2 = 1, x3 = 7〉 ∈ qT (D) is produced by at least this worker.

When the database is skewed, i.e., it contains heavy hit-
ters, the basic hypercube algorithm sketched above is not
optimal: applying a hash function hi with share pi > 1 to a
heavy hitter does not distribute the value evenly over the co-
ordinates [pi]. Koutris et al. [39] propose an extension, which
we simply call the hypercube algorithm, that is worst-case
optimal also for skewed databases. Our automatic splitting
strategy adjusts this algorithm to the online monitoring set-
ting (Algorithm 1 in Section 5.3). Koutris et al. assume that
all heavy hitters in the database are known in addition to the
relation sizes. In the database setting, as well as in offline
monitoring, this is a reasonable assumption since computing
statistics is asymptotically dominated by querying.

In the hypercube algorithm, a copy of the basic algo-
rithm is executed in parallel for every subset H ⊆ V(q) of the
query’s variables. Each copy uses its own set of shares pH,i
and hash functions hH,i, but with the constraint that pH,i = 1
if xi ∈H. A valuation v is heavy in variable x if there exists an
atom a = r(y1, . . . ,yι(r)) ∈ q and i where yi = x and v(x) is a
heavy hitter in the attribute i of r. We write heavy(q,v) for the
set of variables in which v is heavy. The event e is processed
by those instances of the basic hypercube algorithm that are
associated with the variable sets heavy(q,v) for which there
exists an atom a ∈ q with v(a) = e. For every H, the corre-
sponding shares can be optimized as in the basic hypercube
algorithm by considering the residual query qH , which is ob-
tained from q by removing all occurrences of variables in H.

Example 5 Suppose that the database D from Example 4 is
skewed. We analyze the optimal shares for the triangle query
qT and instances of the basic hypercube algorithm for the vari-
able subsets H1 = {}, H2 = {x1}, H3 = {x1, x2}, and H4 =

{x1, x2, x3}. If no variable has a heavy hitter (H1), the shares
from Example 4 apply. The remaining variable sets have sym-
metric solutions. For the algorithm instance H2, the optimal
shares are pH2,1 = 1 and pH2,2 = pH2,3 = p1/2. Each worker
then receives at most 1/p1/2 of the events for which only x
is assigned a heavy hitter. For the algorithm instance H3, the

optimal shares are pH3,1 = pH3,2 = 1 and pH3,3 = p, so at
most 1/p of the corresponding events are sent to the workers.
Finally for the algorithm instance H4, one must broadcast
the events to all workers. Note that there can be at most p
different heavy hitters per attribute. Therefore, there are at
most 3p2 events to which the set H4 applies. The overall
fraction of events received by each worker is asymptotically
equal to the maximum of the three cases, which is O(1/p1/2).

5.2 Stream Statistics for Slicing

To adapt the hypercube algorithm to the monitoring setting,
we first generalize the notions of relation size and heavy
hitters to event streams. Our automatic splitting strategy is se-
lected based on these statistics. Since streams are unbounded,
we consider non-overlapping time intervals of a fixed size ∆.
Non-overlapping means that all intervals begin at multiples
θ ·∆. We call θ ∈N the interval’s time index. The interval size
∆ is a parameter of our model.

The choice of ∆ represents a tradeoff. Larger values
smooth out irregularities in the stream and thus reduce the
variability of the characteristics. The downside is lower pre-
cision, which can impact monitoring latency. For example,
consider a stream where the events are spaced uniformly and
can be monitored without additional latency. In the worst-
case input with the same event rate, all events in an interval
arrive simultaneously, such that one of the events is delayed
by the combined processing time of all events. The larger ∆
is, the larger is the difference between this maximal latency
and the best case.

Recall that an event stream (τi, Di)i∈N is an infinite se-
quence of time-stamped databases. Given an arbitrary event
stream and time index θ, the r-event rate γθ(r) is the average
number of events with name r ∈ E and a time-stamp in the
interval Iθ = [θ ·∆,(θ+1) ·∆) per time unit, i.e.,

γθ(r) =
1
∆
· ∑
τi∈ Iθ

|Di(r)|.

As before, Di(r) denotes the set of events with the name r in
the database Di. The event rate at time θ is γθ = ∑r∈E γθ(r),
and the relative r-event rate is γ′θ(r) = γθ(r)/γθ. For all
names r ∈ E and attributes i ∈ {1, . . . , ι(r)}, the frequency
Fθ(d,r, i) of d ∈ D is

Fθ(d,r, i) =
1
∆
· ∑
τ j∈ Iθ

|{r(d1, . . . ,dι(r)) ∈ D j | di = d}|.

The frequency indicates how often the value d occurs on aver-
age in the i-th attribute of r. The set of heavy hitters at time θ
is Hθ(r, i) = {d ∈ D | Fθ(d,r, i) > γθ(r)/p}, where p ∈ N−
{0} is a fixed parameter. This follows the definition of heavy
hitters for databases from the previous subsection: heavy hit-
ters are those values whose frequency exceeds the threshold
γθ(r)/p. For slicing, we set p = |K|, the number of slices.

Scalable Online First-Order Monitoring 11

Example 6 Let ∆= 2 and |K|= 2. Given the prefix

0 1 2 3 4

[0,∆) [∆,2∆)

{A(1), A(2)} {A(3), B(7)} {A(1)}

of some event stream, we can infer the following stream
statistics: γ0(A) = 3

2 , γ0(B) = γ1(A) = γ1 = 1
2 , γ1(B) = 0,

γ0 = 2,H0(A,1) = {},H0(B,1) = {7}, andH1(A,1) = {1}.

Let f ∈ (V(ϕ)→D)→P(K) be a splitting strategy as in
Definition 4. The load λθ(k, f) of the slice identified by k∈ K
is the average rate of events in that slice relative to γθ, i.e.,

λθ(k, f) =
1

∆ ·γθ
· ∑
τi∈ Iθ

|{e ∈ Di | k ∈ Ŝ f (e)}|.

The maximum load λθ(f) is taken over all slices, λθ(f) =
maxk∈K λθ(k, f).

We consider the problem of finding a splitting strategy
that minimizes the maximum load for all event streams with
given relative r-event rates, heavy hitters, and number of
submonitors. Since these rates and the load are relative to the
overall event rate γθ, we thus maximize the throughput of the
parallelized monitor and the utilization of the submonitors.
We do not aim at optimal splitting strategies for arbitrary
MFOTL formulas. Instead, we are interested in heuristics
providing strategies that are effective in practice. Moreover,
we restrict our discussion to event streams with constant
relative r-event rates and heavy hitters (constant with respect
to θ). Equivalently, the choice of the splitting strategy applies
to a single interval of size ∆. We therefore omit the index θ
and write γ(r), λ(f), and so forth. We have started to address
time-varying statistics in a separate work [53].

5.3 Slicing using the Hypercube Algorithm

We instantiate our joint data slicer (Section 4.2) with a strat-
egy that is derived from the hypercube algorithm for database
queries (Section 5.1). Observe that monitoring an MFOTL
formula without any temporal operators corresponds to eval-
uating a database query for each index in the event stream.
In this case, the subproblem of computing the satisfying val-
uations at any given index on parallel workers (i.e., submoni-
tors) is solved by the hypercube algorithm. We show below
that the mapping phase of the algorithm can be rephrased as
a splitting strategy for the joint data slicer. Since we have
established this slicer’s correctness for all MFOTL formu-
las, we can thus apply the hypercube approach to temporal
formulas and event streams, too.

Recall that several copies of the basic hypercube algo-
rithm are executed in its heavy hitter-aware extension. Each
copy sends the event e to a set T (e) of workers (Equation

(1) in Section 5.1), which depends on the query q. We will
now run all copies in parallel on a single set K of workers.
For every variable subset H ⊆ V(q), we assume a bijection
ξH : [pH,1]×·· ·× [pH,n]→ K. We can then describe the map-
ping phase of the extended algorithm by the single equation

T ′(e) =
⋃

v∈matches(q,e)
{ξH(hH,1(v(x1)), . . . ,hH,n(v(xn))) |

H = heavy(q,v)},
such that e is sent to the workers in T ′(e). Note that the right-
hand side of the equation has the same structure as the one
for the joint data slicer Ŝ f (e) in Definition 4 once we replace
matches(q,e) with matches(ϕ,e). Both these sets contain the
valuations for which the event e is potentially relevant, i.e.,
for which the containment in the query result and the satis-
faction of the formula ϕ, respectively, may depend on e.

To complete the transition from queries to MFOTL formu-
las, we determine the equivalent of heavy(q,v) for ϕ. Recall
that the set heavy(q,v) contains a variable x if the image of
an atom in the query q under v contains a heavy hitter in the
corresponding relation. The variable is treated differently be-
cause it might not be possible to distribute the relation evenly
by hashing the variable. We see that heavy(q,v) depends on
the heavy hitters in all events e with v ∈ matches(q,e). Let
heavyvar(ϕ, x) be the union of all H(r, i) for which there is
a subformula r(y1, . . . ,yι(r)) in ϕ with yi = x. We then define
heavy(ϕ,v) as {x | v(x) ∈ heavyvar(ϕ, x)}.

The following set is nonempty and thus a valid splitting
strategy (see Definition 4):

f (v)= {ξH(hH,1(v(x1)), . . . ,hH,n(v(xn))) |H = heavy(ϕ,v)}.
We call f the hypercube strategy for ϕ given hH, j, ξH , andH.

Algorithm 1 outputs the slice identifiers to which the joint
data slicer (Section 4.3) sends a given event according to the
hypercube strategy f . We write 〈〉 for the partial map that
is undefined everywhere and codom(h) for h’s codomain.
Concretely, Algorithm 1 computes the union of f (v′) for
all v′ matching the event. To this end, it computes a partial
valuation v for each of the formula’s predicates by match-
ing the event with the predicate. The valuation v assigns
values to those variables that occur in the predicate. The algo-
rithm subsequently iterates over all full valuations v′ (which
assign to all free variables) that extend v. This is done in
two steps because the set of these valuations may be infi-
nite. First, the algorithm iterates over all H = heavy(ϕ,v′), of
which there are finitely many. We skip those sets H that con-
tain a variable x with heavyvar(ϕ, x) = {} because there is
no valuation v′ where H = heavy(ϕ,v′). Second, for each
H, the algorithm constructs the finite set of coordinates
(hH,1(v′(x1)), . . . ,hH,n(v′(xn))) directly by enumerating the
codomain of hH, j if x j is not assigned by v.

What remains is to choose the hash functions hH, j and the
mappings ξH . As with databases, we select hH, j uniformly
at random with a given codomain [pH, j]. The shares pH, j

12 Joshua Schneider et al.

Input: ϕ with free variables x1, . . . , xn; (hH,i)H,i, (ξH)H ,
(heavyvar(ϕ, xi))i; event e = r(d1, . . . ,dι(r))

Output: slice identifiers T =
⋃

v∈matches(ϕ,e) f (v)

1 T ←{};
2 foreach subformula r′(y1, . . . ,yι(r)) of ϕ do
3 if r = r′ then // compute partial valuation v induced by e
4 v← 〈〉;
5 for i← 1 to ι(r) do
6 if yi ∈ V then
7 if v 6=⊥∧ (v(yi) =⊥∨ v(yi) = di) then

v← v[yi 7→ di] else v←⊥;
8 else if yi 6= di then
9 v←⊥;

10 end
11 end
12 if v 6=⊥ then // recursively enumerate slices for each

heavy(ϕ,v′) where v′ extends v
13 T ← T ∪AllHeavy(v, {}, 1);
14 end
15 end
16 end

17 Function AllHeavy(v, H, i) is
18 if i > n then // recursively enumerate slices for each v′

extending v
19 return AllExtensions(v, H, 〈〉, 1)
20 else if v(xi) =⊥∧heavyvar(ϕ, xi) 6= {} then// unknown if

xi is a heavy hitter because it is not assigned
21 return AllHeavy(v, H, i+1)∪AllHeavy(v, H∪{xi},

i+1)
22 else if v(xi) ∈ heavyvar(ϕ, xi) then
23 return AllHeavy(v, H∪{xi}, i+1)
24 else
25 return AllHeavy(v, H, i+1)
26 end
27 end

28 Function AllExtensions(v, H, t, i) is
29 if i > n then
30 return {ξH(t)}
31 else if v(xi) =⊥ then // xi not assigned: consider all

coordinates
32 return

⋃
z∈codom(hH,i)

AllExtensions(v, H, t[i 7→ z],
i+1)

33 else
34 return AllExtensions(v, H, t[i 7→ hH,i(v(xi))], i+1)
35 end
36 end

Algorithm 1: Hypercube Strategy

thus parametrize a randomized family of splitting strategies.
We select the hash functions anew for every run of the par-
allel monitor, such that they are independent of the input
trace. The mappings ξH can be arbitrary; in practice, we map
coordinates to slice identifiers in [p]:

ξH(x1, x2, . . . , xn) =

x1 + pH,1 · (x2 + pH,2 · (· · ·(xn−1 + pH,n−1 · xn))).

Example 7 Assume that there are no heavy hitters in the
event stream and that p= q2 for some q∈N. Let ϕ= P(x1)∧
 P(x2) with shares p1 = p2 = q. We conceptually arrange

the slices in a square with side length q. Each P event is
assigned to one coordinate in the square’s first dimension
by the first atom, and to another coordinate in the second
dimension by the second atom. Each coordinate is associated
with q slices, and there is a single slice that agrees on both
coordinates. Therefore, 2q−1 slices receive the event. The
load is approximately λ = (2q− 1)/q2. The average event
rate per slice is lower than the event rate of the input stream
if λ < 1, i.e., q≥ 2. This improves over any combination of
single variable slicers (see Section 4.3).

Example 8 We extend the triangle query qT and the database
from Example 5 to the formula ϕ = ((�[0,10] P(x1, x2))∧
Q(x2, x3))∧¬♦[0,10] R(x3, x1) and some event stream with
γ(P) = γ(Q) = γ(R) = m, havingH(P,1) = {0} as the only
heavy hitter. We can reuse the optimal shares from Example 5
because qT and ϕ consist of the same atoms, and the stream
statistics correspond to the database statistics. Let p= 64. We
simplify the hash functions to the modulus (e.g., h{x1},2(x) =
x mod 8, since p{x1},2 = p1/2 = 8). Before applying the map-
pings ξH , we obtain the following assignment of events
to coordinate vectors (hH,1(v(x1)),hH,2(v(x2)),hH,3(v(x3))).
Note that there are no coordinates for all other H, since
heavyvar(ϕ, x) is nonempty only for x = x1.

event coordinates for H = {} coordinates for H = {x1}
P(0,1) — 010, 011, 012, 013,

014, 015, 016, 017
P(1,1) 110, 111, 112, 113 —
Q(1,7) 013, 113, 213, 313 017
R(7,0) — 007, 017, 027, 037,

047, 057, 067, 077

If these events are within 10 time units of each other, the valu-
ation 〈x1 = 0, x2 = 1, x3 = 7〉 will be recognized successfully
as satisfying: the events P(0,1), Q(1,7), and R(7,0) are all
part of the slice with the identifier ξ{x1}(017) = 57.

We apply an additional optimization to the hash functions.
The shares for two variable subsets H1 6= H2 may be equal
and hence there is no need to distinguish them. This occurs
if the variables in the symmetric difference of H1 and H2
receive a share of 1. If we choose the hash functions inde-
pendently, however, there is a large probability that the slice
sets computed with H1 and H2 differ for a given event. We
reduce this unnecessary event duplication by using the same
hash functions for H1 and H2, as shown in Example 9 below.

Example 9 Let ϕ = P(x1)∧Q(x1, x2), p{},1 = p{x2},1 = 2,
and pH,2 = 1 for all H. Assume that the attribute x1 of either
event has no heavy hitters. If h{},1 and h{x2},1 are independent
hash functions, the events are duplicated with probability 1/2.
If h{},1 = h{x2},1, each event is sent to only one of the two
slices, which reduces the expected maximum load by a third.

We can transfer the load analysis by Beame et al. [21,
Theorem 3.2] and Koutris et al. [39, Theorem 2] from the
database setting to ours. This allows us to use the algorithm of

Scalable Online First-Order Monitoring 13

Chu et al. [27] to optimize the shares. The transfer is based on
the following observation: applying our hypercube strategy
algorithm to an interval of an event stream incurs the same
load as using the hypercube algorithm (Section 5.1) on the
database constructed from that interval. This database is the
(multiset) union of all databases in the stream that belong to
the interval.2 Therefore, relation sizes correspond to r-event
rates γ(r). We overapproximate the load by summarizing the
partial loads induced for each choice of the variable set H.
We further simplify the analysis by using the rate γ(r) for
each H, even though only a subset of the r-events may be
sliced according to this H. Let r(y1, . . . ,yι(r))≤ ϕ denote the
fact that r(y1, . . . ,yι(r)) is a subformula of ϕ. The maximum
load λ is bounded from above by

λ̂=
1
γ
· ∑

H⊆V(ϕ),
r(y1,...,yι(r))≤ϕ

γ(r)
∏xi∈{y1,...,yι(r)}∩V pH,i

= ∑
H⊆V(ϕ),

r(y1,...,yι(r))≤ϕ

γ′(r)
∏xi∈{y1,...,yι(r)}∩V pH,i

with high probability over the random choice of the hash
function, up to a factor logarithmic in p. (We divide by γ
because we have defined the load relative to γ.)

Algorithm 2 optimizes the shares and selects the hash
functions. For each H ⊆ V(ϕ), it first iterates over all valid
share vectors pH = (pH,1, . . . , pH,n), where a share vector is
called valid if ∏1≤i≤n pH,i ≤ p, and pH,i = 1 for all xi ∈ H.
Note that we allow the shares’ product to be smaller than
p, which may be beneficial if p cannot be factorized opti-
mally [27]. The maximal number of submonitors p is the in-
put to the optimization, together with the relative r-event rates
γ′(r). We choose the share vector with the smallest value for

Cost(pH) = ∑
r(y1,...,yι(r))∈ϕ

γ′(r)
∏xi∈{y1,...,yι(r)}∩V pH,i

,

thereby minimizing λ̂. We adopt a heuristic by Chu et al. [27]
and break ties by choosing the vector with smallest maxi-
mum share maxi pH,i. This favors a more even distribution of
shares to increase resilience against heavy hitters that are not
accounted for in the statistics provided. Once the shares have
been computed, Algorithm 2 samples random hash functions
RandomHash(q) with codomain [q]. It implements the opti-
mization mentioned above, where the hash functions with
the same codomain are reused.

5.4 Discussion

Algorithm 1, which computes the hypercube strategy, iterates
over all combinations of the formula’s predicates with the

2 We use multisets because events may be repeated at different in-
dices. The upper bound from Beame et al. [21] extends to multisets.

Input: ϕ with free variables x1, . . . , xn; number of submonitors
p, relative event rates (γ′(r))r

Output: parameters (hH,i)H,i for the hypercube strategy

1 foreach H ⊆ V(ϕ) do // search for best shares
2 pH ← (1, . . . ,1);
3 OptimizeShares(H, 1, p, (1, . . . ,1));
4 end
5 foreach q ∈ {pH | H ⊆ V(ϕ)} do // share hash functions

among equal variable subsets
6 for i← 1 to n do
7 h← RandomHash(qi);
8 foreach H ⊆ V(ϕ), pH = q do hH,i← h;
9 end

10 end

11 Procedure OptimizeShares(H, i, p, c) is
12 if i≤ n then
13 if xi ∈ H then
14 OptimizeShares(H, i+1, p, c[i 7→ 1]); // pH,i is

always 1 if xi ∈ H
15 else
16 for c← 1 to p do OptimizeShares(H, i+1,

bp/cc, c[i 7→ c]);
17 end
18 else
19 if Cost(c) < Cost(pH)∨ (Cost(c) =

Cost(pH)∧maxi ci < maxi pH,i) then pH ← c;
20 end
21 end

Algorithm 2: Hypercube Optimization

subsets of its free variables. For each combination, it enu-
merates up to p slice identifiers. Therefore, Algorithm 1’s
complexity is bounded by O(|ϕ| ·2n ·n · p), where |ϕ| is the
size of the formula ϕ and n is the number of free variables in
ϕ. We assume n, p≥ 1 and that all operations that involve D
and slice identifiers in [p] are computed in O(1) time, includ-
ing the hash functions. The linear factor p is unavoidable:
events may need to be broadcast to all p slices, e.g., if their
arity is zero. The exponential complexity in n stems from the
generic treatment of heavy hitters.

A possible optimization is to enumerate only subsets of
those variables xi which have a share pH,i > 1 for some H.
This does not decrease the complexity for all formulas though.
By bounding the number of possible share combinations with
product q from above by nlog2 q, we find that Algorithm 2’s
complexity is in O(|ϕ| · (4n ·n+2n · p ·nlog2 p)). The 4n factor
can be improved to 2n by avoiding the innermost loop in line
8 and by iterating over the list of pH in lexicographic order
instead (lines 5–10). We omit this optimization for clarity.
Note that Algorithm 2 runs only once when the monitor is
initialized, whereas Algorithm 1 is invoked for every event.

The minimum possible load achieved using the hyper-
cube strategy depends on the pattern of free variables in the
formula’s atoms. A detailed discussion is provided by Koutris
et al. [39]. The ideal case is a formula in which all atoms
with a significant event count share a variable, together with
a stream that never assigns a heavy hitter to that variable.

14 Joshua Schneider et al.

Then the load per slice is 1/p. Atoms with missing variables,
and equivalently variables with heavy hitters, increase the
fraction to 1/pz for some exponent z > 1.

The (worst-case) optimality of the hypercube algorithm
for conjunctive queries does not extend to full MFOTL. This
already becomes evident for simple non-temporal formu-
las with disjunctions, such as P(x1, x2)∧ (Q(x1)∨Q(x2)).
If γ(P) = γ(Q) and in the absence of heavy hitters, our
approach will have load (

√
p+ 1

2)/p ≈ 1/
√

p with p sub-
monitors. However, the formula is equivalent to (P(x1, x2)∧
Q(x1))∨ (P(x1, x2)∧Q(x2)), and thus we can process each
disjunct independently. By using the optimal hypercube strat-
egy for each disjunct (with shares p1 = p and p2 = p, respec-
tively), we would obtain a total load of 2/p, which is asymp-
totically better. The load can be further improved to 3/(2p)
by using the same hash function for x1 in the first and x2 in
the second disjunct, such that the Q events are not duplicated.

Overall, it is unclear how this technique can be gener-
alized to MFOTL formulas with arbitrarily nested temporal
operators. In general, optimality for arbitrary formulas is out
of reach because it would require us to decide MFOTL: if the
formula is contradictory, the best possible slicer simply drops
all events. We therefore settle for a more pragmatic solution
and only focus on syntactic aspects of the formulas’ structure.

We assumed that the submonitors’ throughput does not
depend on the events. It was therefore sufficient to minimize
the load to optimize the throughput. This simplification is not
always appropriate for monitors like MonPoly. The reason is
that MonPoly constructs intermediate results, whose size de-
pends on the monitor’s input and which affects the complex-
ity of further operations inside the monitor. It might be pos-
sible to achieve even higher throughput by taking the events’
distribution and its impact on the monitoring performance
into account. We leave such optimizations for future work.

In contrast to offline monitoring, stream statistics (such
as γ(r) andH(r, i)) cannot be obtained for the entire stream.
Still, our approach assumes that these statistics are already
available before the start of monitoring. In practice, this is a
reasonable assumption since organizations have access to his-
torical data that can serve as a good source of representative
stream statistics before staring online monitoring.

Moreover, the statistics may change over time. In this
case, one must obtain stream statistics during monitoring.
This can be done using approximate algorithms [28], which
have minimal impact on monitoring’s performance. Further-
more a reasonable extension of the slicing framework is to
adaptively modify the splitting strategy whenever the statis-
tics change significantly. Thus, the monitor could start with a
default strategy and refine it as more data is processed. (Event-
separable slicers as defined in Section 4.2 cannot be adaptive
because they must behave uniformly on the event stream.)
We have already made first steps towards computing stream
statistics online [31] and performing adaptive slicing [53].

Our approach affects only the event rate, but not the index
rate, which is the number of databases per unit of time. The
index rate impacts the performance of monitors such as Mon-
Poly because each database triggers an update step. For a
syntactic fragment of MFOTL, MonPoly reduces the number
of update steps skipping empty databases [11]. In this case,
we could already filter empty databases in the splitter.

6 Implementation

We implemented a parallel online monitoring framework
based on the joint data slicer and built on top of the Apache
Flink stream processing framework. The source code consists
of roughly 3,100 lines of Java and Scala and is publicly avail-
able [54]. Given a formula, our framework instantiates a paral-
lel online monitor, which then reads events from a TCP socket
or a text file, monitors the events in parallel, and writes all
satisfying valuations to an output socket or file. The parallel
monitor delegates the monitoring of individual slices to exter-
nal tools, called submonitors. Our implementation supports
the tools MonPoly [16] and DejaVu [37] as submonitors.

To instantiate a parallel online monitor, our framework
uses the Flink API to construct a dataflow graph, whose
nodes are stream operators. These operators retrieve data
streams from external sources, apply processing functions to
stream elements, and output the elements to sinks. Operators
can execute in parallel. Stream elements can be partitioned
according to user-specified keys. At runtime, Flink deploys
the graph to a distributed computing cluster. We chose Flink
for its low latency stream processing and its support for
fault-tolerant computing. Fault tolerance is ensured using
a distributed checkpointing mechanism [25]. The system
recovers from failures by restarting from regularly created
checkpoints. Operators must therefore expose their state to
the framework to enable checkpointing.

The inputs to our monitoring framework are the formula,
the number and type of parallel submonitors, the stream statis-
tics for the shares’ optimization, and the heavy hitter values.
The framework precomputes the shares using Algorithm 2
and creates a parallel monitor instance as the dataflow graph
shown in Figure 4, where each node is labeled with a Flink op-
erator (e.g., flatMap) and a description of its functionality.

During the dataflow’s execution, the input events are
read, line by line, as strings. We support both MonPoly’s and
DejaVu’s input formats, as well as the CSV format used in
the RV competition [8]. The parser then converts the input
lines into an internal datatype that stores the event name and
the list of data values. The parser’s results are flattened into a
stream of single events because a single line in MonPoly’s
format may describe several events at once.

After parsing, the splitter computes the set of target slices
for each event. To do so, it executes Algorithm 1 using the
optimized shares, precomputed by the framework, and heavy

Scalable Online First-Order Monitoring 15

source

read from a
socket/file

flatMap
parse

flatMap

add the slice
identifiers

︸ ︷︷ ︸
splitter

partitionCustom

partition
into slices

externalProcess

externalProcess

externalProcess

print→ MonPoly
or DejaVu → filter

sink

write to a
socket/file

Fig. 4 Our parallel online monitor’s dataflow graph

hitter sets as well as the heavy hitter values. For each event
and each of its target slices, a copy of the event is sent to the
next operator along with the target slice identifier. Then, the
stream is partitioned into slices based on the slice identifiers
and the slices are sent to the parallel submonitors.

We use the custom externalProcess operator in each
parallel flow. This operator is responsible for initiating and
interacting with an external process, in our case MonPoly or
DejaVu. The operator prints, in MonPoly or DejaVu format,
one database at a time to the standard input of the exter-
nal process. (For DejaVu, which expects exactly one event
at a time, empty databases are encoded as an event with a
name that does not occur in the formula.) The operator si-
multaneously reads verdicts from the standard output of the
process and applies the intersection from J f ’s definition (Def-
inition 4), thereby filtering the monitor’s output. Finally, all
remaining verdicts are combined into a single stream, which
is written to an output socket or file.

The above communication with the external process is
asynchronous with respect to the Flink pipeline, which pre-
vents these operations from blocking other operators. Flink’s
AsyncWaitOperator supports asynchronous requests to ex-
ternal processes, but it does not manage their state. To option-
ally provide fault-tolerance, we must checkpoint the submon-
itors’ states because they summarize the events seen so far.
Our implementation of the externalProcess operator ex-
tends the AsyncWaitOperator with an interface to retrieve
and restore an external state.

We have extended MonPoly with control commands that
implement the interface for retrieving and restoring an exter-
nal state. Whenever Flink instructs the externalProcess
operator to create a checkpoint, the operator first waits until
all prior events have been processed. Then, the command for
saving the state is sent to the external process. In response,
MonPoly writes its state to a temporary file. The part of the
monitor’s output received after the checkpoint instruction’s
arrival at the externalProcess operator is also included in
the checkpoint. This ensures that no output is lost when other
operators create their own checkpoint concurrently. We did
not implement a state interface for DejaVu, since we opted
to use DejaVu in a black-box manner to demonstrate our
framework’s generality. Therefore, our parallel monitor is
currently not fault-tolerant if DejaVu is used as a submoni-
tor. We conjecture that implementing the state interface in
DejaVu is possible with modest effort.

DejaVu monitors closed formulas only and reports violat-
ing instead of satisfying valuations. Therefore, when using
DejaVu, our framework first closes the input formula ϕ by
adding a prefix of existential quantifiers. Then it negates the
closed formula before passing it to the parallel monitor. Thus
it ensures that DejaVu’s output is consistent with MonPoly’s
output whenever they are used as submonitors within our
framework. The splitter uses the original formula ϕ because
it is only effective if there are free variables. As the output of
DejaVu consists only of the violating indices for the closed
and negated formula, we cannot compute the intersection
from J f ’s definition with ϕ’s valuations. Hence, we must
use the simplified joiner J′, which is correct under the as-
sumptions of Theorem 3. This limits the applicability of our
approach using DejaVu to monitor certain formulas, and we
cannot account for heavy hitters because otherwise the hyper-
cube strategy would not satisfy condition (4) of Lemma 3.

The parts of the dataflow preceding the submonitors cur-
rently operate sequentially. This is a bottleneck that limits
scalability, since all input events must be processed sequen-
tially by the splitter. Despite this limitation of our imple-
mentation, the splitter and the surrounding operators could
be parallelized too: Our splitter processes events separately
because it implements the event-separable joint data slicer
(Section 4.2). A parallel splitter would be particularly effec-
tive if the event source itself is distributed. However, we must
ensure that events arrive at the submonitors in chronologi-
cal order. This order is no longer guaranteed if the splitter
is partitioned into concurrent tasks. In a separate line of
work [13], we propose a possible solution that buffers and
reorders events before forwarding them to each submonitor.

7 Evaluation

We structure our evaluation to answer the following research
questions, which assess the scalability, practicality, overhead,
and generality of our framework.
RQfrm: How does our monitor scale for different formulas?
RQrate: How does our monitor scale with respect to the index

rate and the event rate?
RQstats: Can knowledge about the relative event rates improve

performance?
RQskew: Can knowledge about heavy hitter values improve

performance?

16 Joshua Schneider et al.

RQreal: Are the scalability improvements applicable to real-
world monitoring use cases?

RQoh: How much overhead is incurred by using our frame-
work? Specifically, how does it compare to the standalone
tools MonPoly and DejaVu?

RQft: How much overhead is incurred by supporting fault
tolerance (FT)?

RQgen: Can our framework scale with different submonitors?
The scalability (RQfrm and RQrate) of our framework is

its ability to handle growing event rates by using more sub-
monitors. This includes the framework’s ability to leverage
its knowledge about the event stream to further improve mon-
itoring performance (RQstats and RQskew). The framework
is practical (RQreal) if it can be used in a real-world setting,
i.e., to scalably monitor a real event stream. The overhead of
the framework is the fraction of its time and memory usage
that is not spent on running the submonitors (RQoh and RQft).
Finally, the framework’s generality is its ability to be used
with different first-order (sub)monitors (RQgen).

To answer the above questions, we organize our evalu-
ation into two families of experiments, each monitoring a
different type of input stream, either synthetic or real-world.
The synthetic streams are used to analyze the effects of indi-
vidual parameters, such as the event rate, whereas the real-
world streams attest to our framework’s ability to scalably
solve realistic problems. Figure 5 summarizes the parameters
used for each experiment, which we explain next.

Synthetic Experiments. In the experiments with synthetic
streams (Figure 5), we monitor the three formulas star, linear,
and triangle and their past-only, non-metric variants star-past,
linear-past, and triangle-past (Figure 6). Different occur-
rence patterns of free variables in the formulas are used to
test RQfrm. The formulas cover common patterns in database
queries [21], which we additionally extend with temporal
operators. We focus on variable occurrence patterns over
other formula features (e.g., formula size) since they affect
our framework directly, rather than just the submonitors.

We have implemented a stream generator tailored to each
of the three formulas. The generator takes a random seed and
synthesizes streams with configurable characteristics. Specif-
ically, the synthesized streams on average have constant char-
acteristics across all time indices θ. The streams contain
binary events labeled with P,Q, or R and have configurable
event rates and index rates. This setup allows us to test RQrate.

Figure 5 summarizes the event rates used in our exper-
iments. Note that we evaluate only those combinations of
event rates and number of submonitors that do not take too
long to execute. Specifically, we limit individual monitoring
runs to 5 minutes of total execution time. For example, in the
SyntheticMonPoly experiments, we monitor the star formula
with the standalone MonPoly instance on streams with event
rates up to 20 000 (denoted as 20k in Figure 5).

To test RQstats and RQskew, the generator can also syn-
thesize streams with configurable relative event rates (γ′θ(P),
γ′θ(Q), γ′θ(R)) and force some event attribute values to be
heavy hitters. Attribute values are sampled from two possible
types of distributions. Non-heavy hitter values are selected
uniformly at random from the set {0,1, . . . ,109−1}; heavy
hitter values are drawn from a Zipf distribution. The Zipf dis-
tribution’s probability mass function is p(x) = x−z/∑

109

n=1 n−z

for x∈{1,2, . . . ,109}, i.e., the larger the exponent z> 0 is, the
fewer values have a large relative frequency. To prevent exces-
sive monitor output, all Zipf-distributed values of R events are
increased by 106. The distribution type (uniform or Zipf) and
the exponent z are defined per variable x (the exponent is thus
denoted zx) and can be supplied as inputs to the generator.

All synthetic streams in our experiments are generated
with relative event rates γ′θ(P) = 0.01 and γ′θ(Q) = γ′θ(R) =
0.495 and with attribute values sampled uniformly at random.
In the Syntheticheavy hitters experiments (Figure 5), we also
generate streams with heavy hitter values in valuations of
variable a in the star formula and variable b in the linear and
triangle formulas, with their Zipf exponents set to 2.

Real-world Experiments. To test RQreal, we use logs from
Nokia’s Data Collection Campaign [14]. The campaign col-
lected data from the mobile phones of 180 participants and
propagated the data between three databases, db1, db2, and
db3. The phones uploaded the data directly to db1, then a syn-
chronization script script1 periodically copied the data from
db1 to db2. Next, db2’s triggers anonymized and copied the
data to db3. The participants could query and delete their own
data from db1. Deletions were propagated to all databases.

To obtain streams suitable for online monitoring, we have
developed a tool (called replayer) that replays log events and
simulates the event rate at the log creation time, which is cap-
tured by the events’ time-stamps. The tool can also replay the
log proportionally faster than its event rate, which is useful
for evaluating the monitor’s performance while retaining the
log’s other characteristics. Since the log from the campaign
spans a year, to evaluate our tool in a reasonable amount of
time, we pick a one day fragment with a high average event
rate from the log, starting at time-stamp 1 282 921 200. We
use the replayer to accelerate the fragment up to 5 000 times.
The fragment contains roughly 9.5 million events with an
average event rate of 110 events per second. Using the accel-
eration, we have subjected our tool to streams of over half a
million events per second. The logs used [1] and the scripts
that synthesize and replay streams [54] are publicly available.

We monitor the formulas insert, delete, and custom (Fig-
ure 6). The formulas insert and delete come from Nokia’s
Data Collection Campaign, where they proved to be challeng-
ing to monitor. Specifically, the two formulas are the negated
versions of the ins-1-2 and del-1-2 formulas from Basin et
al.’s formalization [14], which require a large amount of

Scalable Online First-Order Monitoring 17

Synthetic streams Real-world streams
Experiment group SyntheticMonPoly SyntheticDejaVu Syntheticheavy hitters NokiaMonPoly NokiaDejaVu

Tools MonPoly MonPoly, DejaVu MonPoly MonPoly MonPoly, DejaVu
Formulas star, linear, triangle star-past, linear-past, triangle-past star, linear, triangle insert, delete, custom custom
Submonitors 1, 4, 8, 16 1, 4, 8, 16 4, 8, 16 1, 2, 4, 8 1, 2, 4, 8
Event rates (1/s) 10k, 15k, 20k, 25k, 30k, 35k, 40k, 45k,

50k, 55k, 60k, 65k, 70k, 75k
1k, 2k, 4k, 6k, 10k, 15k, 20k, 30k,
50k, 60k

50k

a one day
fragment from
the Nokia log

a one day
(linearized)

fragment from
the Nokia log

Index rates (1/s) 1, 1000 equal to event rate 1
Relative event rates γ′θ(P) = 0.01, γ′θ(Q) = 0.495,

γ′θ(R) = 0.495
γ′θ(P) = 0.01, γ′θ(Q) = 0.495,
γ′θ(R) = 0.495

γ′θ(P) = 0.01, γ′θ(Q) = 0.495,
γ′θ(R) = 0.495

Value
distributions

uniform uniform uniform,
Zipf with za = 2 for star,
Zipf with zb = 2 for
linear and triangle

Time span 60 s 60 s 60 s
Total events event rate × 60 s event rate × 60 s event rate × 60 s 9.5 million 9.5 million
Accelerations 1 1 1 1k, 2k, 3k, 4k, 5k 500, 1k, 1.5k, 2k
Stages online, offline online, offline offline online online
Fault tolerance yes, no no no yes, no no

Fig. 5 Summary of parameters used in our experiments

star =
(
(�[0,10s) P(a,b))∧Q(a,c)

)
∧♦[0,10s) R(a,d) star-past =

(
�[0,∞)((�[0,∞) P(a,b))∧Q(a,c))

)
∧R(a,d)

linear =
(
(�[0,10s) P(a,b))∧Q(b,c)

)
∧♦[0,10s) R(c,d) linear-past =

(
�[0,∞)((�[0,∞) P(a,b))∧Q(b,c))

)
∧R(c,d)

triangle =
(
(�[0,10s) P(a,b))∧Q(b,c)

)
∧♦[0,10s) R(c,a) triangle-past =

(
�[0,∞)((�[0,∞) P(a,b))∧Q(b,c))

)
∧R(c,a)

insert = (insert(u,db1,pid,dt)∧dt 6≈ unknown)∧
(
¬♦[0,30h) ∃u′.(insert(u′,db2,pid,dt)∨delete(u′,db1,pid,dt))

)

delete =
((
(delete(u,db1,pid,dt)∧dt 6≈ unknown)∧ (¬�[0,30h) ∃u′,p′. insert(u′,db1,p′,dt))

)
∨(

(delete(u,db1,pid,dt)∧dt 6≈ unknown)∧ ((�[0,30h) ∃u′,p′. insert(u′,db2,p′,dt))∨♦[0,30h) ∃u′,p′. insert(u′,db2,p′,dt))
))
∧

(¬♦[0,30h) ∃u′,p′.delete(u′,db2,p′,dt))

custom = ∃u1 db1. select(u1,db1,pid1,dt)∧
(
�[0,∞) ∃u2 db2. insert(u2,db2,pid2,dt)

)

Fig. 6 MFOTL formulas used in the evaluation

memory when monitored by a single MonPoly instance. We
used our knowledge of the data set also to craft the past-only,
non-metric custom formula with an expensive temporal join
involving the (very frequently occurring) insert event.

Since we monitor only a one day fragment of the Nokia
log, we must initialize our monitor with the appropriate state
to obtain the correct output. Therefore, we monitor each
formula once on the part of the log preceding the chosen frag-
ment and spanning an appropriate amount of time as defined
by each formula’s temporal reach. We store the monitor’s
state obtained at the end of the proceeding fragment and
initialize the monitor with the stored state in the experiments.

We have additionally computed the relative event rates for
all events, and identified all heavy hitter values in the one day
fragment of the Nokia log. We run our framework both with
and without this information to answer RQstats and RQskew.

Monitors. To test RQoh and RQgen, we use MonPoly and
DejaVu as parallel submonitors within our framework, and
also as standalone monitors for comparison. To accommo-
date DejaVu, which implements a slightly different monitor
function than MonPoly, we need to adapt the parameters of
our two families of experiments (see the SyntheticDejaVu and
NokiaDejaVu experiments in Figure 5). First, we use the for-
mulas star-past, linear-past, triangle-past, and custom (Fig-
ure 6), which belong to the past-only non-metric fragment
of MFOTL supported by DejaVu. The formulas are closed
and negated prior to invoking DejaVu, since it only monitors

closed formulas and just reports violations. DejaVu expects
input streams without time-stamps and with databases con-
taining exactly one event. Thus, we modify the streams in
our experiments accordingly: each database with more than
one event is linearized, i.e., translated into a sequence of sin-
gleton databases with all time-stamps set to 0. The verdicts
of the used formulas are not affected by this transformation.

Moreover, we run the experiments both with and without
Flink’s fault tolerance mechanism to determine its impact on
performance (RQft). This is only done when MonPoly is the
submonitor, since DejaVu does not support checkpointing.

Measurements. We ran all our experiments on a server with
two sockets, each containing twelve Intel Xeon 2.20GHz
CPU cores with hyperthreading, which effectively gives us
48 independent computation threads.

To assess our framework’s scalability, we measure the
(maximal) latency and throughput achieved during our exper-
iments. Latency is the difference between the time a monitor
consumes an event and the time it is done processing it.
Throughput is the number of events that a monitor processes
in a unit of time. We use the wall-clock time values provided
by the UNIX time command to measure the total execution
time, i.e., the time between the moment when the replayer
starts emitting events to the monitor and the moment the mon-
itor processes the last emitted event. We also measure the ex-
ecution time and maximal memory usage of each submonitor.
To measure the latency during execution, our replayer injects

18 Joshua Schneider et al.

a special event, called a latency marker, into the stream. Ev-
ery second, the replayer generates a latency marker, which
is tagged with the current time. The marker is then propa-
gated by our framework, preserving its order with respect to
the databases containing other events from the input stream.
We measure the latency at the framework’s output by com-
paring the current time with the time in the marker’s tag.
Besides measuring the current latency, we also calculate the
maximum latency up to the current point in the experiment.

Since MonPoly’s unit of input is a database of events
(rather than a single event), it does not perform any pro-
cessing before it receives an entire database. Its particular
input format allows MonPoly to detect that the currently re-
ceived database is complete only once the first event from
the next database is received. This means that our latency
measurements as described above would treat the timestamp
difference between two consecutive databases in the input
as the monitor’s processing latency. Thus, we task our re-
player to additionally send watermark events as part of the
input, signaling to MonPoly whenever the currently received
database is complete. This effectively allows us to measure
the monitor’s exact processing time latency, excluding any
delay introduced by the delays already present in the input.

When the latency is higher than one second, the latency
marker gets delayed too and a timely value cannot be pro-
duced. Flink reports zeros for the current latency in this case,
while we consider the latest non-zero value. This significantly
reduces the noise in our measurements.

In addition to online experiments, where we use our re-
player to simulate event streams, we also execute all our syn-
thetic experiments offline. Specifically, we directly supply the
monitored log as a file to the monitor. The monitor consumes
the log at a rate defined by its current processing speed. We
can then calculate our framework’s throughput as the ratio of
the total number of events and the measured offline execution
time. The stage [30] (offline or online) at which we run our
monitor in each of the experiments is specified in Figure 5.

Since we focus on performance measurements, we dis-
card the tool’s output during all of our experiments. Each run
of a monitor with a specific configuration is repeated three
times and the collected metrics are averaged to minimize the
noise in the measurements.

Results. Figure 7 shows the results of using our framework
with MonPoly to monitor synthetic streams. We show the
results when fault tolerance is enabled, since they are less
favorable for our framework. Plots labeled with ToolN denote
that our framework used N instances of Tool as submonitors.
Omitting the number of submonitors indicates a standalone
run of the Tool. Our experiments demonstrate our frame-
work’s low overhead (RQoh): a standalone run of a Tool
exhibits the same performance as a run of our framework
with one submonitor (Tool1).

Figure 7a shows the achieved throughput (top), the max-
imum latency (middle), and the maximal memory consump-
tion across all submonitors (bottom) when monitoring the
formula star with different numbers of submonitors. For
example, our tool exhibits a latency of 27 seconds for an
event rate of 15 000 events per second if a single submoni-
tor is used. Similar latency is exhibited with 4 submonitors
when monitoring events rates above 45 000 events per sec-
ond. In contrast, using 16 submonitors achieves sub-second
latency for all event rates in our experiments. With an in-
creasing number of submonitors, each submonitor receives
fewer events and hence uses less memory, while collectively
the submonitors handle larger throughput. This experiment
answers RQrate: our tool handles significantly higher event
rates by using more parallel submonitors.

Figure 7b shows the achieved throughput (top), the max-
imum latency (middle), and the maximal memory consump-
tion (bottom) of our tool when monitoring star, triangle,
and linear formulas using 4 submonitors. The plots show
six graphs, where each graph shows the results of monitor-
ing one of the three formulas over a stream with an index
rate of either 1 or 1 000. Since the index rate affects the per-
formance of MonPoly [15], the overall framework is also
affected (RQrate). The event rate gain due to parallel mon-
itoring depends on the variable occurrence patterns in the
monitored formula (RQfrm). Namely, the variable pattern in
the star formula is the one that exhibits the best scalability
due to variable a’s occurrence in all the formula’s atoms.

In the experiments described so far, we did not supply
our framework with the relative event rates for the event
names in the stream. Figure 7c positively answers RQstats by
showing that our tool’s performance substantially increases
when using 4 and 8 submonitors and when the statistics about
the stream are known in advance. We use ToolN

stats to denote
that our framework runs Tool on N submonitors with relative
event rates provided ahead of time.

Figure 8 shows the results of the same experiments as
in Figure 7 but now using our framework with DejaVu as
the submonitor. Fault tolerance was disabled in these ex-
periments. Similarly as before, the experiments show that
our framework can handle higher event rates by using more
parallel submonitors (RQrate). Regarding RQgen, our results
demonstrate improved throughput, latency, and memory con-
sumption with two different first-order monitors. Both Fig-
ure 7a and Figure 8a answer RQoh: they show that our frame-
work achieves better performance than MonPoly and DejaVu
on their own, except when only a single submonitor is used,
where it exhibits essentially the same performance.

Figure 9 summarizes the results of using our framework
with MonPoly to monitor the real-world log from the Nokia
case study (RQreal). The event and index rates are defined by
the log; we only control the acceleration used by the replayer.
As we anticipated earlier, the custom formula is the hardest

Scalable Online First-Order Monitoring 19

10000 15000 20000 25000 30000 35000
0

100

200

T
hr

ou
gh

pu
t(

10
3

ev
en

ts
/s

)

star formula, index rate 1 000

10000 20000 30000 40000 50000 60000 70000 80000
0

20

40

60

M
ax

.l
at

en
cy

(s
)

10000 20000 30000 40000 50000 60000 70000 80000
0

50

100

150

200

Event rate (events/s)

M
em

or
y

(M
B

)

MonPoly1 MonPoly4

MonPoly8 MonPoly16

MonPoly

(a) Different cores

10000 15000 20000 25000 30000 35000

MonPoly4

10000 20000 30000 40000 50000

10000 20000 30000 40000 50000

Event rate (events/s)

star, 1 star, 1000

linear, 1 linear, 1000

triangle, 1 triangle, 1000

(b) Different formulas and index rate

10000 15000 20000 25000 30000 35000

linear formula, index rate 1

10000 20000 30000 40000 50000

10000 20000 30000 40000 50000

Event rate (events/s)

MonPoly4 MonPoly4
stats

MonPoly8 MonPoly8
stats

MonPoly16 MonPoly16
stats

(c) Using stream statistics

Fig. 7 SyntheticMonPoly experiments: monitoring synthetic streams with MonPoly and with fault tolerance

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

T
hr

ou
gh

pu
t(

10
3

ev
en

ts
/s

)

star-past formula

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

M
ax

.l
at

en
cy

(s
)

0 2000 4000 6000 8000 10000 12000 14000 16000

200

400

600

800

Event rate (events/s)

M
em

or
y

(M
B

)

DejaVu1 DejaVu4

DejaVu8 DejaVu16

DejaVu

(a) Different parallelism

0 5000 10000 15000 20000 25000 30000

DejaVu4

0 5000 10000 15000 20000 25000 30000

1000 2000 3000 4000 5000 6000

Event rate (events/s)

star-past linear-past

triangle-past

(b) Different formulas

0 10000 20000 30000 40000 50000 60000

linear-past formula

0 10000 20000 30000 40000 50000 60000

0 5000 10000 15000 20000 25000 30000

Event rate (events/s)

DejaVu4 DejaVu4
stats

DejaVu8 DejaVu8
stats

DejaVu16 DejaVu16
stats

(c) Using stream statistics

Fig. 8 SyntheticDejaVu experiments: monitoring synthetic streams with DejaVu and without fault tolerance

20 Joshua Schneider et al.

1000 2000 3000 4000 5000
0

10

20

Acceleration

M
ax

.l
at

en
cy

(s
)

delete formula, without FT

MonPoly MonPoly1

MonPoly2 MonPoly4

0 20 40 60 80
0

2

4

Time (s)

L
at

en
cy

(s
)

delete formula, without FT, acceleration 1 000

1000 2000 3000 4000 5000

Acceleration

delete formula, with FT

MonPoly MonPoly1

MonPoly2 MonPoly4

0 20 40 60 80

Time (s)

delete formula, with FT, acceleration 1 000

1000 2000 3000 4000 5000

Acceleration

with FT

MonPoly4 MonPoly

delete delete

insert insert

custom custom

0 10 20 30 40

Time (s)

delete formula, with FT, acceleration 2 000

MonPoly MonPoly1 MonPoly2 MonPoly4

Fig. 9 NokiaMonPoly experiments: monitoring the real-world stream with MonPoly

400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

Acceleration

M
ax

.l
at

en
cy

(s
)

custom formula, without FT

MonPoly MonPoly1

MonPoly2 MonPoly4

400 600 800 1000 1200 1400 1600 1800 2000

Acceleration

custom formula, without FT

DejaVu DejaVu1

DejaVu2 DejaVu4

0 20 40 60 80 100 120 140 160 180

Time (s)

custom formula, without FT, acceleration 1 000

DejaVu DejaVu1

DejaVu2 DejaVu4

Fig. 10 NokiaDejaVu experiments: monitoring the real-world stream with MonPoly and DejaVu

to monitor (top right plot), followed by the delete, and insert
formulas, respectively. The other plots focus on the delete for-
mula as it comes from the real use case and was not crafted by
us. In contrast to the synthetic experiments, our framework’s
performance does not improve beyond 4 submonitors. How-
ever, if one considers the acceleration (up to 5 000) and the
log’s average event rate (110 events per second), our frame-
work can process event rates higher than 500 000 events per
second on average. At this point, the centralized parsing and
slicing become the main performance bottleneck, which ex-
plains the marginal performance gains beyond 4 submonitors.

The top left and middle plots in Figure 9 contrast the per-
formance overhead for fault tolerance (RQft). The maximal
latency is most visibly affected when the framework uses
a single submonitor. The bottom three plots show how the
latency changes over time during monitoring. These plots

correspond to three individual runs while monitoring the
delete formula. The leftmost plot shows the monitoring of
the formula with respect to the stream sped up 1 000 times,
with fault tolerance disabled. The middle and rightmost plots
show runs with fault tolerance enabled for the accelerations
of 1 000 and 2 000. The regularly occurring spikes in the la-
tency graphs are caused by Flink’s state snapshot algorithm,
which is invoked every ten seconds.

Figure 10 compares the performance of our framework
using MonPoly and DejaVu as submonitors when monitoring
the custom formula on the log from the Nokia case study.
Namely, MonPoly has lower maximum latency and in both
cases our framework improves the latency (RQgen) when
more submonitors are used. Figure 10’s right-most plot shows
how our framework improves DejaVu’s current latency when
monitoring the custom formula. The regular increases in la-

Scalable Online First-Order Monitoring 21

4 8 16
0

0.5

1

1.5

2
·106

Number of submonitors

Sl
ic

e
si

ze
s

star formula, without skew and skew info

(a) Streams without skew

4 8 16

Number of submonitors

star formula, with skew but without skew info

(b) Streams with skew

4 8 16

Number of submonitors

star formula, with skew and skew info

(c) Monitoring with skew information

Fig. 11 Syntheticheavy hitters experiments: impact of the skew and skew information on parallel monitoring

tency seen in each run are due to DejaVu’s internal garbage
collection, which tries to reduce its memory usage when
storing previously seen parameter values [36].

Interestingly, using our framework with a single sub-
monitor (MonPoly1) and without fault-tolerance lowers the
maximum latency compared to a standalone run of MonPoly
(top left plots in Figures 9 and 10). We conjecture that this re-
sults from the more efficient parsing and filtering of irrelevant
events in our framework.

Finally, Figure 11a shows the number of events sent per
submonitor when no skew is present in the stream. In the
presence of skew, the event distribution is much less uniform
(Figure 11b). When our framework is aware of the variables
in the formula whose instantiations in the stream are skewed,
it can balance the events evenly (Figure 11c), effectively
reducing the maximum load of the submonitors (RQskew).

8 Conclusion and Future Work

Our work takes a substantial step towards efficient, parallel
online monitoring of event streams with respect to policies
written in expressive first-order languages. This entailed gen-
eralizing the offline slicing framework [11] to support online
monitoring and the simultaneous slicing with respect to all
free variables in the formula. Our work also builds a bridge to
related research on query processing for databases and data
streams. We adapted hash-based partitioning techniques from
databases to obtain an automatic splitting strategy. We imple-
mented a general approach to automatic slicing in Apache
Flink and instantiated it with two existing tools for moni-
toring events with data, namely MonPoly and DejaVu. Our
results demonstrate a significant performance improvement.
For example, 16-fold parallelization allows us to increase the
event rate from 10 000 to 75 000, while retaining sub-second
maximum latency (Figure 7a).

In this article, we assumed that the stream’s statistics
are fixed. However, the automatic splitting strategy can be
dynamically reconfigured by redistributing the submonitors’
states coupled with the online collection of the statistics. We
have already made some progress in implementing this exten-

sion and analyzing the tradeoff between the reconfiguration
costs and the cost of using an imperfect splitting strategy [31,
53]. We also plan to refine our automatic splitting strategy to
account explicitly for communication costs and to evaluate
our approach in a distributed cluster. To achieve maximal
scalability, it will be necessary to parallelize the splitter and to
process events from multiple independent input streams [13].

References

1. The Nokia case study log file. https://sourceforge.net/
projects/monpoly/files/ldcc.tar/download (2014)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.
Addison-Wesley (1995)

3. Afrati, F.N., Joglekar, M.R., Ré, C., Salihoglu, S., Ullman, J.D.:
GYM: A multiround distributed join algorithm. In: ICDT 2017,
LIPIcs, vol. 68, pp. 4:1–4:18. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik (2017)

4. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-
reduce environment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–
1298 (2011)

5. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J., Hueske, F.,
Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., Naumann, F.,
Peters, M., Rheinländer, A., Sax, M.J., Schelter, S., Höger, M.,
Tzoumas, K., Warneke, D.: The Stratosphere platform for big data
analytics. VLDB J. 23(6), 939–964 (2014)

6. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.A., Hallé, S.:
MapReduce for parallel trace validation of LTL properties. In: RV
2012, LNCS, vol. 7687, pp. 184–198. Springer (2012)

7. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,
D.E.: Quantified event automata: Towards expressive and efficient
runtime monitors. In: FM 2012, LNCS, vol. 7436, pp. 68–84.
Springer (2012)

8. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international
competition on software for runtime verification. In: RV 2014,
LNCS, vol. 8734, pp. 1–9. Springer (2014)

9. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction
to runtime verification. In: Lectures on Runtime Verification, LNCS,
vol. 10457, pp. 1–33. Springer (2018)

10. Basin, D., Bhatt, B., Traytel, D.: Almost event-rate independent
monitoring of metric temporal logic. In: TACAS 2017, LNCS, vol.
10206, pp. 94–112. Springer (2017)

11. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel,
H.: Scalable offline monitoring of temporal specifications. Form.
Methods Syst. Des. 49(1-2), 75–108 (2016)

12. Basin, D., Dardinier, T., Heimes, L., Krstić, S., Raszyk, M., Schnei-
der, J., Traytel, D.: A formally verified, optimized monitor for
metric first-order dynamic logic. In: IJCAR 2020, LNCS, vol.
12166, pp. 432–453. Springer (2020)

https://sourceforge.net/projects/monpoly/files/ldcc.tar/download
https://sourceforge.net/projects/monpoly/files/ldcc.tar/download

22 Joshua Schneider et al.

13. Basin, D., Gras, M., Krstić, S., Schneider, J.: Scalable online moni-
toring of distributed systems. In: RV 2020, LNCS. Springer (2020).
To appear.

14. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring data
usage in distributed systems. IEEE Trans. Software Eng. 39(10),
1403–1426 (2013)

15. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric
first-order temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

16. Basin, D., Klaedtke, F., Zălinescu, E.: The MonPoly monitoring
tool. In: RV-CuBES 2017, Kalpa Publications in Computing, vol. 3,
pp. 19–28. EasyChair (2017)

17. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent
monitoring of metric dynamic logic. In: RV 2017, LNCS, vol.
10548, pp. 85–102. Springer (2017)

18. Bauer, A., Küster, J., Vegliach, G.: From propositional to first-order
monitoring. In: RV 2013, LNCS, vol. 8174, pp. 59–75. Springer
(2013)

19. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for
LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–
14:64 (2011)

20. Beame, P., Koutris, P., Suciu, D.: Skew in parallel query processing.
In: PODS 2014, pp. 212–223. ACM (2014)

21. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel
query processing. J. ACM 64(6), 40:1–40:58 (2017)

22. Bersani, M.M., Bianculli, D., Ghezzi, C., Krstić, S., Pietro, P.S.:
Efficient large-scale trace checking using MapReduce. In: ICSE
2016, pp. 888–898. ACM (2016)

23. Bianculli, D., Ghezzi, C., Krstić, S.: Trace checking of metric
temporal logic with aggregating modalities using MapReduce. In:
SEFM 2014, LNCS, vol. 8702, pp. 144–158. Springer (2014)

24. Bundala, D., Ouaknine, J.: On the complexity of temporal-logic
path checking. In: ICALP 2014, LNCS, vol. 8573, pp. 86–97.
Springer (2014)

25. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas,
K.: State management in Apache Flink®: Consistent stateful dis-
tributed stream processing. PVLDB 10(12), 1718–1729 (2017)

26. Chothia, Z., Liagouris, J., Dimitrova, D.C., Roscoe, T.: Online
reconstruction of structural information from datacenter logs. In:
EuroSys 2017, pp. 344–358. ACM (2017)

27. Chu, S., Balazinska, M., Suciu, D.: From theory to practice: Ef-
ficient join query evaluation in a parallel database system. In:
SIGMOD 2015, pp. 63–78. ACM (2015)

28. Cormode, G., Hadjieleftheriou, M.: Methods for finding frequent
items in data streams. VLDB J. 19(1), 3–20 (2010)

29. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on
large clusters. In: OSDI 2004, pp. 137–150. USENIX Association
(2004)

30. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for
classifying runtime verification tools. In: RV 2018, LNCS, vol.
11237, pp. 241–262. Springer (2018)

31. Fania, C.: Self-adaptive online monitoring. Bachelor’s thesis, ETH
Zürich (2019)

32. Feng, S., Lohrey, M., Quaas, K.: Path checking for MTL and TPTL
over data words. Log. Methods Comput. Sci. 13(3) (2017)

33. Ganguly, S., Silberschatz, A., Tsur, S.: Parallel bottom-up pro-
cessing of Datalog queries. J. Log. Program. 14(1&2), 101–126
(1992)

34. Hallé, S., Khoury, R.: Event stream processing with BeepBeep 3.
In: RV-CuBES 2017, Kalpa Publications in Computing, vol. 3, pp.
81–88. EasyChair (2017)

35. Hallé, S., Khoury, R., Gaboury, S.: Event stream processing with
multiple threads. In: RV 2017, LNCS, vol. 10548, pp. 359–369.
Springer (2017)

36. Havelund, K., Peled, D.: Efficient runtime verification of first-order
temporal properties. In: SPIN 2018, LNCS, vol. 10869, pp. 26–47.
Springer (2018)

37. Havelund, K., Peled, D., Ulus, D.: First order temporal logic moni-
toring with BDDs. In: FMCAD 2017, pp. 116–123. IEEE (2017)

38. Joglekar, M., Ré, C.: It’s all a matter of degree – using degree
information to optimize multiway joins. Theory Comput. Syst.
62(4), 810–853 (2018)

39. Koutris, P., Beame, P., Suciu, D.: Worst-case optimal algorithms
for parallel query processing. In: ICDT 2016, LIPIcs, vol. 48,
pp. 8:1–8:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2016)

40. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently paral-
lelizable. In: ICALP 2009, LNCS, vol. 5556, pp. 235–246. Springer
(2009)

41. Leucker, M., Schallhart, C.: A brief account of runtime verification.
J. Logic Algebr. Progr. 78(5), 293–303 (2009)

42. Nagmote, S., Phadnis, P.: Massive scale data pro-
cessing at Netflix using Flink. Flink Forward
San Francisco 2019. https://www.ververica.com/
resources/flink-forward-san-francisco-2019/
massive-scale-data-processing-at-netflix-using-flink
(2019). Accessed 31 May 2019

43. Nasir, M.A.U., Morales, G.D.F., García-Soriano, D., Kourtellis, N.,
Serafini, M.: The power of both choices: Practical load balancing
for distributed stream processing engines. In: ICDE 2015, pp.
137–148. IEEE Computer Society (2015)

44. Nasir, M.A.U., Morales, G.D.F., Kourtellis, N., Serafini, M.: When
two choices are not enough: Balancing at scale in distributed stream
processing. In: ICDE 2016, pp. 589–600. IEEE Computer Society
(2016)

45. Okcan, A., Riedewald, M.: Processing theta-joins using mapreduce.
In: SIGMOD 2011, pp. 949–960. ACM (2011)

46. Pnueli, A., Zaks, A.: PSL model checking and run-time verification
via testers. In: FM 2006, LNCS, vol. 4085, pp. 573–586. Springer
(2006)

47. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: Multi-head monitor-
ing of metric temporal logic. In: ATVA 2019, LNCS, vol. 11781,
pp. 151–170. Springer (2019)

48. Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric
dynamic logic. In: ATVA 2020, LNCS, vol. 12302. Springer (2020).
To appear.

49. Reger, G., Rydeheard, D.E.: From first-order temporal logic to
parametric trace slicing. In: RV 2015, LNCS, vol. 9333, pp. 216–
232. Springer (2015)

50. Rivetti, N., Querzoni, L., Anceaume, E., Busnel, Y., Sericola, B.:
Efficient key grouping for near-optimal load balancing in stream
processing systems. In: DEBS 2015, pp. 80–91. ACM (2015)

51. Roşu, G., Chen, F.: Semantics and algorithms for parametric moni-
toring. Log. Methods Comput. Sci. 8(1) (2012)

52. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable
online first-order monitoring. In: RV 2018, LNCS, vol. 11237, pp.
353–371. Springer (2018)

53. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Adaptive
online first-order monitoring. In: ATVA 2019, LNCS, vol. 11781,
pp. 133–150. Springer (2019)

54. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Imple-
mentation associated with this paper. https://bitbucket.org/
krle/scalable-online-monitor (2019)

55. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified
monitor for metric first-order temporal logic. In: RV 2019, LNCS,
vol. 11757, pp. 310–328. Springer (2019)

56. Schneider, J., Traytel, D.: Formalization of a monitoring algo-
rithm for metric first-order temporal logic. Archive of Formal
Proofs (2019). https://devel.isa-afp.org/entries/MFOTL_
Monitor.html. Entry point Slicing.thy.

57. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the
last reducer. In: WWW 2011, pp. 607–614. ACM (2011)

58. Vitorovic, A., Elseidy, M., Guliyev, K., Minh, K.V., Espino, D.,
Dashti, M., Klonatos, Y., Koch, C.: Squall: Scalable real-time ana-
lytics. PVLDB 9(13), 1553–1556 (2016)

https://www.ververica.com/resources/flink-forward-san-francisco-2019/massive-scale-data-processing-at-netflix-using-flink
https://www.ververica.com/resources/flink-forward-san-francisco-2019/massive-scale-data-processing-at-netflix-using-flink
https://www.ververica.com/resources/flink-forward-san-francisco-2019/massive-scale-data-processing-at-netflix-using-flink
https://bitbucket.org/krle/scalable-online-monitor
https://bitbucket.org/krle/scalable-online-monitor
https://devel.isa-afp.org/entries/MFOTL_Monitor.html
https://devel.isa-afp.org/entries/MFOTL_Monitor.html

	Introduction
	Related Work
	Metric First-Order Temporal Logic
	Slicing Framework
	Automatic Slicing
	Implementation
	Evaluation
	Conclusion and Future Work

