Noname manuscript No.
(will be inserted by the editor)

A Taxonomy for Classifying Runtime Verification Tools

Yliés Falcone - Srdan Krsti¢ - Giles Reger -

the date of receipt and acceptance should be inserted later

Abstract Over the last 20 years Runtime Verification (RV)
has grown into a diverse and active field, which has stimulated
the development of numerous theoretical frameworks and
practical tools. Many of the tools are at first sight very different
and challenging to compare. Yet, there are similarities. In
this work, we classify RV tools within a high-level taxonomy
of concepts. We first present this taxonomy and discuss its
different dimensions. Then, we survey the existing RV tools
and, where possible with the support of tool authors, classify
them according to the taxonomy. While the classification
continually evolves, this article presents a snapshot with 60
state-of-the-art RV tools. We believe that this work is an
important step in establishing a common terminology in RV
and enabling a meaningful comparison of existing RV tools.

1 Introduction

Runtime Verification (RV) [24,76,78, 115] (or runtime mon-
itoring) is (broadly) the study of methods to analyse the dy-
namic behaviour of computational systems. The most typical
analysis is to check if a given run of a system satisfies a given
specification, otherwise, when possible, alter the run such that

Y. Falcone

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, Laboratoire
d’Informatique de Grenoble, 38000 Grenoble, France

E-mail: ylies.falcone @univ-grenoble-alpes.fr

S. Krsti¢

Institute of Information Security, Department of Computer Science,
ETH Ziirich, Switzerland

E-mail: srdan krstic@inf.ethz.ch

G. Reger
University of Manchester, Manchester, UK
E-mail: giles.reger@manchester.ac.uk

D. Traytel
Department of Computer Science, University of Copenhagen, Denmark
E-mail: traytel@di.ku.dk

Dmitriy Traytel

it does. It is this general setting (and its variants) that we con-
sider in this article. Whilst topics such as specification mining
or trace visualisation are generally considered to be within
this broad field, we do not include them in our discussion.
This article presents a taxonomy of RV frameworks and
tools and uses this taxonomy to classify a large number of ex-
isting tools. It thereby extends an earlier work presented at the
RV 2018 conference [79]. Specifically, this article expands and
refines a number of points in the taxonomy and provides addi-
tional explanations. It also significantly extends the classifica-
tion from 20 to 60 tools. Most newly added tools were classi-
fied by the tool authors themselves as part of a comprehensive
survey within the RV community, which we have conducted.
This work is timely for a number of reasons. Firstly, after
more than 15 years of maturing, the field has reached a point
where such a general view is needed. The last significant
attempt at a taxonomy was in 2004 [64] and had a distinctly
different focus to our own. Secondly, a number of activities,
such as the runtime verification competitions [21,23,81,139],
the RV-CuBES workshop [137, 140], two schools dedicated
to RV [54,77], and a COST action [1], which included the
development of a tutorial book on the topic [22], have put the
development of runtime verification tools into focus.
Contributions. This article has two main contributions:

— We present a detailed taxonomy that defines seven major
concepts used to classify RV approaches (Section 3). Each
concept is refined and explained, with areas of possible
further refinement identified.

— We carry out a survey among the RV tool authors that re-
sults in the classification of 60 tools according to our taxon-
omy (Section 4). This both extends and subsumes the pre-
vious classification [79], which focused on only 20 tools
and was performed without involving the tool authors.

We then discuss what we have learned from these two activities
(Section 5) before concluding with some comments on how
we see this work developing in the future (Section 6).

Y. Falcone et al.

2 A Brief Introduction to Runtime Verification

The field of RV is broad and the used terminology is not yet
unified, although there have been attempts to standardise some
concepts [24,78, 115]. One issue with terminology is that it
often fixes some part of the taxonomy which we introduce
shortly. For instance, terminology may assume something
about the role of a particular component or its relation with
another component. For the sake of clarity within this article,
we fix the following terms at a relatively abstract level:

— Monitored system. The system consisting of software,
hardware, or a combination of the two, that is being
monitored. Its behaviour is usually abstracted as a trace.

— Initial system. A version of the monitored system that is
not monitored and thus not affected by monitoring.

— Trace. A finite sequence of observations that represents
(or in some cases approximates) the behaviour of interest
in the monitor system. The process of extracting/recording
the trace is usually referred to as instrumentation.

— Property. A partition of the set of all traces. This may
simply be a separation of traces into two sets or a more
refined classification of traces.

— Specification. A concrete description of a property using
a well-defined formalism.

— Monitor. A runtime object that is used to check properties.
The monitor will receive observations from the trace (usu-
ally incrementally) and may optionally send information
back to the monitored system, or to some other source.

— RV framework. A collection consisting of a specifica-
tion formalism, monitoring algorithm(s) (for generating
and executing monitors), and (optional) instrumentation
techniques that allows for runtime verification.

— RV tool. A concrete instance of an RV framework.

— Overhead. Any form of performance penalty sustained
by the monitored system and caused by the RV tool.

To make these terms more concrete, without committing to a
particular interpretation, we present two illustrative example
scenarios that will be used throughout the following section.

Example 1 (File system) Consider the setting of ensuring that
the usage of a file system is correct. The monitored system
may be the file system itself or it may be an application using
the file system. Either system could be instrumented to record
a sequence of file operations as discrete events to form a trace.
Events would contain information about the name of each
executed file operation as well as additional metadata such
as the relevant file handler, the user, access permissions and
so on. Properties of interest would include ensuring that files
are opened before being read, that opened files are eventually
closed, and that files are accessed with the correct permissions.

Example 2 (Hybrid engine) Consider the setting of monitor-
ing the behaviour of a hybrid engine in an automobile. The
monitored system is the embedded system, which itself con-

sists of a combination of distributed software and hardware
components. The trace may be a set of continuous signals
recorded at different locations within the monitored system.
The monitor is itself an embedded system and may either
be centralised or distributed. Properties of interest would
include checking that the electric power does not fall below a
certain threshold for more than a given period, the average
fuel consumption is within a given range, or the shift between
engine modes occurs within a certain delay of being triggered.

Later, we will see examples of how properties for each
example may be specified and monitored.

3 A Taxonomy of Runtime Verification

This section describes a taxonomy of runtime verification. Fig-
ure 1 provides a general overview of the taxonomy which iden-
tifies the seven major concepts (and is limited to the first two
levels for readability reasons). This taxonomy provides a hier-
archical organisation of the major concepts used in the field.

Development process. This taxonomy was developed in an
iterative process alongside the classification presented in
Section 4. The seven main conceptual areas were identified
as an initial starting point and extended with established
dichotomies (e.g., offline vs online monitoring). Sub-concepts
were then added and refined based on the focused classification
process and a wider survey of tools (involving over 50 tools,
not described in this article). We have attempted to ensure
that the taxonomy remains as general and flexible as possible.

Relations between nodes. We do not capture concepts such
as mutual exclusion or interdependence between nodes graph-
ically but aim to describe these in the text. In most cases the
final level of the taxonomy captures some concrete instances
of a particular (sub-)concept and it is at this level where such
relations are most important.

The remainder of this section focuses on each of the
seven major concepts and expands the description along the
corresponding branches.

3.1 Specification

The specification part of the taxonomy is depicted in Figure 2.
A specification describes the intended system behaviour
(property), that is what one wants to check when monitoring
the system. It is one of the main inputs to an RV framework
and it is formulated before running the system.

A specification exists within the context of a general sys-
tem model i.e., the abstraction of the monitored system. The
main purpose of such a model is to define the information that
can be obtained by observing the monitored system (see Sec-
tion 3.5), but it may also define other contextual information.

A Taxonomy for Classifying Runtime Verification Tools

information
collection

failure
prevention
& reaction

application

organisation area

testing
behaviour

specification

monitorability

enforceability

evaluation

information

software
& system
engineering

debugging

architecture

analysis
stage

deployment

instrumentation

Runtime
Verification

monitor generation

execution

decision
procedure

reaction

Fig. 1: Mind map overviewing the taxonomy of Runtime Verification

A specification itself can be organised in a centralised
or decentralised fashion, in relation to the system being moni-
tored. Centralised specifications are more common; they are
monolithic descriptions of the intended system behaviour and
abstract away from the system architecture. Decentralised
specifications are organised in interdependent modules; their
organisation can follow the monitored system’s architecture
or some other logical structure [72,74,85, 114,130,131, 146].

Moreover, a specification can be either implicit or ex-
plicit, depending on the desired behaviour to be monitored.

Implicit specifications. An implicit specification is used in
an RV framework when there is a general understanding of
the particular desired behaviour. RV tools do not require their
users to explicitly formulate and enter implicit specifications.
Implicit specifications generally aim at avoiding runtime
errors/violations (that typically would not be caught by a com-
piler or before the system deployment). Such runtime errors
can be critical. Three categories of implicit specifications can
be distinguished. First is (memory) safety [153, 156], whose
purpose is to ensure proper accesses to the system memory
by avoiding accesses to undefined memory. Safety precludes
memory errors [162] such as use after free, buffer over-reads
and overflows, null pointer dereferences, as well as divisions

(or moduli) by zero, arithmetic overflows, incorrect downcasts
and coercions, uncaught exceptions, etc. Second is correct
concurrent behaviour which aims at guaranteeing absence of
deadlocks, the atomicity of operations, the absence of data
races, missed signals and order violations [116]. Third is
system security which revolves around specifying flavors of
integrity, confidentiality, and availability. The final layers of
implicit specification sub-concepts shown in Figure 2 are
non-exhaustive lists of prominent examples.

Explicit specifications. An explicit specification is one pro-
vided by the user of an RV framework and formally expresses
a monitored system’s property. It can complement the proper-
ties checked by the compiler of a language (e.g., errors that
would not be caught by type checking). An explicit specifica-
tion denotes a function from traces to some output domain
(discussed below), which encodes the classification of traces
as defined by the specified property. An explicit specification
is written in the RV framework’s specification formalism,
which belongs to some paradigm. For instance, specifications
may describe the above-mentioned function operationally
(e.g., as a finite-state automaton) or declaratively (e.g., as
a temporal logic formula). The specification formalism can

Y. Falcone et al.

UONB[OIA
19pI10

Kusaur

eusis ou

QdrI BIRp

ou JUALINOUOD

Wopa2I)

A2OIRESR papunoq

2913 19178 921J pIfeAul

asn ou

9[qeadIOJUD
(-uou)

uoneaurop

sontadoxd jo
UONEIYISSt

AKwouoxe) ay) jo 1red uoneoyroads oy Jof dew pury g “S1

19pI0
[e10) I ENiE

19pI0
enaed

Apiqeieae
[ea130] [eorsAyd 2ouanbas

JSurs

A1nodas Anfenuapyuod o fonsnbon

21N> Aiepow

uoneuLIojur

InorAeyaq o1 dxo ndino

ssaujsnqor

Kyoyes CRUEREIEAEY wSrpered [euoneiodo
J 10yutod

ouraur) [Inu ou siojerado

Treuonisodoid
QATIRIR[O3P

29 2[qnop ou

9[qeIo)IuOW
(-uou)

KI11q1qeADI0JUD COE@UE_UDQm Apiqeroyuowr uoneaurop

sontadoid jo

suonoe
w:Oﬁn_E:mmﬁ uoneoyr

JUAWIRDIOJUI

PasIEnUd uonesiuesIo PaSI[ENUIIP

A Taxonomy for Classifying Runtime Verification Tools

offer different features used to model the expected behaviour
according to the dimensions discussed below.

The specification formalism may support different modal-
ities. Some formalisms restrict assertions to the current ob-
servation whereas others support assertions over the past or
future observations. In some cases, these different modalities
are crucial for the formalism’s expressiveness; in other cases
they only improve usability (e.g., by improving conciseness).

Example 3 (Specification paradigm and modality) For the
file system from Example 1, we consider the simple property:
a file must be opened before being read and must be closed
before the end of the program. The property may be formally
expressed as below by a finite state automaton (left) or in
linear temporal logic (right), assuming that the system model
is a trace consisting of individual file operations.

close read, open
open
(read — (—close S open))
—> A(open — ¢ close)
close

An automaton is operational, it describes the operations that
should be taken to process the input to compute the output. The
states capture information about the past and the transitions
capture requirements about future actions/requirements. As
such, automata can be considered as capturing a past implies
future modality scheme. Automata that process the input in
the reverse order capture the dual future implies past modality.

The temporal logic formula uses a past-time operator
S to state that if read is observed then in the past the file
should have been opened and not closed in the meantime.
The formula also uses the future-time operator < to capture
the requirement that the file is eventually closed. As the
specification simply declares what should happen (and not
how to check this) the approach is declarative.

A key dimension is how specifications or a specification
formalism handle data in observations. The simple case is
when observations are propositional, i.e., they are assumed
to be atomic and unstructured (e.g., simple names). Other-
wise, we say that the approach is parametric: observations
are associated with a list of (possibly named) runtime values,
called parameters. The structure of these parameters may have
different complexity, e.g., they may be simple primitive val-
ues or values with a complex hierarchical structure, like XML
documents or runtime objects. The specification formalism
must support ways of predicating on the structure of complex
parameters. The operators over parameters supported by the
specification language may also vary. For example, whether
it is possible to compare parameters in different ways (e.g.,
more than equality) or whether quantification (e.g., first-order,
freeze quantification, or pseudo-quantification via templates)
over parameters is supported [95,97,101].

Example 4 (Parametric specification) In Example 3, we saw
a property over propositions indicating whether a file was
opened, read, or closed. However, we may wish to iden-
tify different files and use parametric observations such as
open(readme.txt), which contains a runtime value denoting
the opened file name. The specification formalism may then
introduce new operators such as quantification or counting
over the parameters. One could then specify that when open-
ing a file f the file can be read at most m times (reset when
the file is opened again), where the bound m is given when
the file is opened as shown below.

v f.a(open(f,m) — (#[read(f)| e 3Im’.open(f,m’)] < m))

The expression #[A | B] counts the number of occurrences of
A over the (shortest) part of the previous trace making B true.

Example 5 (Operators over parameters) In Example 2 (Hy-
brid engine), we may have access to areal-valued signal ep that
provides values of the current electric power. In our taxonomy,
a real-valued signal can be seen as a special case of a para-
metric observation with a single real-valued parameter. In the
trace part of the taxonomy (Section 3.5), we capture the distinc-
tion between signals represented as a (discrete) sequence of
observations and as a (continuous) closed-form expressions.

In stream-based specification formalisms it is common
to use functions on signals to transform them into Boolean
signals, which indicate whether a property is satisfied by
the system over time. Such functions are examples of the
operators over parameters. For instance, we might specify
that electric power stays above a threshold E simply as

O(ep > E)

Alternatively, we may have a reference signal epyes that we
want ep to track with some allowed deviation (A), for example:

diff = abs(ep — epref)
error = diff > A

Note that the two specifications above differ in the way
they formalise the respective properties. The former captures
desirable behaviour, while the latter captures undesirable be-
haviour. Operators >, —, and abs are applied point-wise to the
values of signals ep, epyet, and diff, as well as to the constant
values E and A. The relation of such real-valued signals to
the system and each other is discussed later (Section 3.5).

A specification can also express constraints over time.
Such constraints refer either to logical time or physical time.

In the case of logical time, the specification describes
the desired relative ordering between observations. Such
an order can be total (e.g., when monitoring a monolithic
single-threaded program) or partial (e.g., when monitoring
a multi-threaded program or a distributed system).

Y. Falcone et al.

In the case of physical time, the specification describes
the desired physical time that must elapse between the obser-
vations of a running the system. The observations are then
associated with physical time (called timestamps), the domain
of which can be discrete or dense.

To exploit the properties of physical time (e.g., monotonic-
ity) to improve performance, RV tools typically implement
special provisions to monitor constraints over physical time.
However, there is a special case where some tools treat
physical time as any other parameter associated with obser-
vations. Such approaches typically do not offer specification
formalisms with native support for expressing physical time
constraints, but rather rely on the operators over parameters.

Example 6 (Logical and physical time) For Example 1 (File
system), let us consider the property that a file should only be
read if it was opened in the last five minutes. We might specify
this in a past-time metric temporal logic where temporal
operators are extended with time intervals. For example

O (read — (—close Sjo,5) open))

should be read as it is always the case that if a read occurs then
at some point in the past 5 time units a open occurred with
no close occurring in-between. Note that the specification
assumes that the granularity of the physical time is in minutes.

In contrast to the specifications in Example 3, which
express constraints over logical time, the specification in this
example expresses a constraint over physical time.

Example 7 (Time as data) The property from Example 6 can
also be expressed using the time as data paradigm where
events are extended with timestamps. For example

read(f,t) —

/1.0 (—close(f) S (open(f,s) As+5>1))

introduces two timestamps (¢ and s) as well as quantifying
over the file being operated on (f). The time-as-data paradigm
is more common in some operational languages, such as the
following quantified automaton, where time is more difficult
to incorporate into standard operators.

Vf open(f, s)
read(f, r)s32=L
— open(f, s)
close(f)

This automaton states that, for each file, the system can be
in one of two safe states: either the file is closed and cannot be
read; or it is open and each read must occur within 5 minutes
of the previous open event.

Example 8 (Dense time) Extending Example 5, we may want
to allow ep to track epres with some delay, i.e., the signal may
deviate from the reference for a brief period of time.

Consider specifying that electric power does not fall
below the threshold E for more than a given time period €.

fall = ep(t) < E
recover = ep(t + €) > E
error = fall A —recover

Here, signals are indexed using physical time. Signals in
Example 5 are indexed implicitly with the same time.

Operational languages for specifications over dense time
also include timed automata and their extensions to handle
data. Such automata are extended with a (finite) set of real-
valued clocks that can be checked and reset along transitions.

The last dimension of an explicit specification concept
is the output assigned to the traces. Specifically, it is the
codomain of the function fixed by the explicit specification.

In the standard case, the specification associates verdicts
to a trace. The verdicts indicate specification satisfaction or
violation and may range over a domain extending the Boolean
domain. A more refined output includes a witness in addition
to the verdict, e.g., a set of bindings of values to free variables
in the specification that lead to violations. Another form of
refinement is to output events, which may be created or come
from the execution. When events are created, these are aggre-
gation or fusion of existing (information) events, while when
events come from the execution these are typically important
events witnessing violation or satisfaction of the specification.
Robustness information extends classical verdicts by provid-
ing a quantitative assessment of the (degree of) specification
satisfaction or violation. Finally, the output frequency can be
a single piece of information or a sequence of information.
For instance, the standard semantics of temporal logic defines
formula satisfaction at any point in an infinite word. Hence,
such specifications may denote functions from words to se-
quences of verdicts. Note that for specifications in general the
output may be a sequence of some arbitrary information (e.g.,
witnesses). These are computed based on the specification
and the data from the observations.

Example 9 (Verdicts) Given the property and its specification
in Example 6, we might observe a timed trace

open, reads reads close; readg closeg open;, readis

that violates the property. Note that besides having a file
operation name, each observation also has a timestamp.
The output may simply be to report that the trace violates
the specification. It may additionally identify the 3rd event
as the (first) witness of the violation. Another approach
might be to quantify the violation by measuring the distance
between the given trace and an accepting one based on some
established distance measure. In this case, two events (the 3rd
and 5th) should be altered to get a satisfying trace. Finally, we
may want a sequence of verdicts each stating if the formula
is satisfied at a point in the trace. This effectively amounts to

A Taxonomy for Classifying Runtime Verification Tools

evaluating the subformula ¢ of a formula O ¢ at each point in
the trace. In this case, the stream would be:

true true false true false true true true

which is straightforward to compute if ¢ is a past-time formula.
For bounded future formulas the result is potentially delayed,
while for arbitrary future formulas the definitive true or false
verdicts may not be known without inspecting an infinite
trace. To address this, some specifications refine the set of
verdicts to {true, false, ?}, where ? indicates an inconclusive
result. Further refinements of this set also exist.

Example 10 (Witnesses) Given the property and its specifi-
cation in Example 7, we expect a trace with time encoded as
an additional parameter in some observations.

open(f1,0) read(fi,3) read(fi,6) read(f2,38)
When monitoring this trace, the output may look as follows:
true true false(f — fi,s — 0,¢ — 6) false(f — f>,t > 8).

In particular it includes bindings of variables f, s, and # from
the specification as witnesses for each violation in the trace.

Finally, the two last concepts related to specifications in
general are their monitorability and enforceability. At an
abstract level, a specification is said to be monitorable if
it is worth runtime verifying such specification because a
verdict can be reached eventually. While a specification is
said enforceable if such specification can be enforced on the
system. Both monitorability and enforceability rely on various
assumptions, e.g., on the faithfulness of the observations or on
the effectiveness of the enforcement actions used to modify
the initial system behaviour. We refer to [24] and [76, 80] for
overviews of monitorability and enforceability, respectively.

3.2 Monitor

The monitor part of the taxonomy is depicted in Figure 3.
A monitor is a main component of a runtime verification
framework. The monitor is a component that performs checks
on the execution of a system as prescribed by the specification.
The checks can be seen as decision problems solved by a
decision procedure, which the monitor implements.

A decision procedure implemented by a monitor can
be either analytical or operational. Analytical decision pro-
cedures query and scan information about the observations
(e.g., from a database) to determine whether some condition
holds in the current execution. Operational decision proce-
dures are those based on automata or formula rewriting. In
an automata-based decision procedure, the monitor relies
on some automata-like formalism (either classical finite-state
automata or richer variants) to perform the required checks.
The rewrite-based decision procedure is based on a set of
(possibly predefined) rewrite rules triggered by a new event.

generation

execution 19010)00110)8

implicit

direct explicit

rewrite

based anticipation impartiality

decision .
operational realisation properties prediction
procedure

completeness soundness

automata
based

analytical

Fig. 3: Mind map for the monitor part of the taxonomy

Example 11 (Decision Procedures) To contrast the different
forms of decision procedures, we consider different monitor-
ing algorithms for a form of first-order LTL and a new property
in the setting of Example 1: every file that is written to is
eventually saved and then closed. We might specify this as

def

Y = Yf.oO(write(f) — o(save(f) A ¢ close(f)))

There are then three approaches to monitoring that we exem-
plify on the following simple trace

write(A) save(A) write(B) close(A) close(B)

which does not satisfy the property as file B is not saved.

An analytical approach might store the trace as a tempo-
ral database, e.g., a sequence of tables where each table gives
the interpretation of an event at a current time point. We can
then identify which files violate the property by interpreting
the logical operations using operations from relational alge-
bra. In this case, we would incrementally perform a union
with the write table and antijoins with the (union of the) save
and close tables. Here the result would be table consisting of
a single line for the B file. While approaches that work with
finite tables are limited to a safety-fragment in which queries
guarantee finite output, there also exist generalisations that
operate on finite representations of infinite relations [31,99].

An automata-based operational approach might gener-
ate the following non-deterministic automaton where vari-
ables are bound on their first match.

write(f)

Evaluating the trace on this would identify a final set of
configurations {(4,[f + A]), (2,[f +— B])}. The existence

Y. Falcone et al.

of a non-accepting state in this configuration would indicate
that the trace does not satisfy the property.
A rewrite-based operational approach might directly
rewrite the formula using the trace as follows
write(A)

= ¥ A o(save(A) A ¢ close(A))

save(A)
=" ¥ A o close(A)

write(B)
= ¥ A oclose(A) A o(save(B) A ¢ close(B))

close(A)
= ¥ A o(save(B) A ¢ close(B))

close(B)
= " A o(save(B) A ¢ close(B))
As the final formula is not satisfied by the empty trace, the
trace does not satisfy the property.

When designing monitors, it is desirable that its decision
procedure guarantees several properties. Intuitively, a sound
monitor never provides incorrect output, while a complete
monitor always provides an output. The properties reflect
how much confidence one can have in the output of monitor
and how much confidence one can have that a monitor will
produce an output, respectively.

Soundness and completeness cannot be guaranteed in
situations where, for instance, some form of sampling is used
and thus not all observations are received by the monitor.
Similarly, when the order of observations as received by the
monitor does not match the execution order. In such cases,
the monitor can perform two kinds of prediction. Firstly, a
monitor may use a model of the monitored system to predict
the possible future system executions, evaluate all of them,
and output a prediction. Secondly, a monitor may predict
potential errors in alternative concurrent executions (which
are not actually observed by the monitor).

A monitor is impartial when the produced outputs are
not contradictory over time. Finally, a monitor can anticipate
the output. This resembles prediction but the knowledge used
by the monitor in this case comes only from the monitored
specification. Impartiality and anticipation are properties
of the semantics of the specification language itself, which
may or may not be realised by the given decision procedure.
For example, a language may allow anticipation but a given
decision procedure may not realise this property.

Example 12 (Impartial and anticipatory verdicts) To demon-
strate the different properties of a decision procedure consider
the property given in Example 3 that a file must be opened
before being read and must be closed before the end of the
program. A decision procedure that returns a false verdict
when a file has been opened but not closed (e.g., from state 2
in the automaton given in Example 3) would not be impartial
as the verdict could become frue on observing a file close
event. A decision procedure that returns a false verdict when
a file is read without being opened correctly anticipates that
no future events can change the outcome.

The monitor may be generated explicitly from the speci-
fication (e.g., an automaton synthesised from an LTL formula)
or may exist implicitly (e.g., a rewrite system defined in an
internal domain-specific language). Finally, a monitor must be
executed. This might proceed directly if the monitor is given
as code, e.g., when the monitor is either already implemented
as some extension of a programming language (i.e., an in-
ternal domain-specific language), or the synthesis step from
generation directly produced executable code. Otherwise, the
monitor is said to be interpreted. The key difference between
the two approaches is whether each monitor is implemented
by a separate piece of code (direct) or there is a generic moni-
toring code that is parametrised by some monitor information
(interpreted). Fig. 4 illustrates the different approaches to
generation and execution.

Example 13 (Generation and execution) To illustrate the dif-
ferent notions of generation and execution, let us return to
the approaches discussed in Example 11. In the automata-
based operational approach we had to generate the automaton
from the logical specification but in the other approaches
the monitor (e.g., the structure required to evaluate the trace)
was implicit. In all cases, we could view monitoring as inter-
preting the monitor over the data. But the automaton-based
approach could have been further compiled down into code
that directly computed the next configurations without the
need for interpretation.

To make the different approaches illustrated in Fig. 4 con-
crete we provide examples of tools (from the classification,
see Section 4) that fit into each category. DejaVu [98] explic-
itly generates Scala monitors from FO-PLTL formulas and
then directly executes these monitors (as programs) on traces.
Eagle [16] explicitly generates monitors (from fixed-point tem-
poral logic formulas) as in-memory objects that are then inter-
preted by the (rewriting-based) monitoring algorithm. Moni-
tors in BeepBeep [92] are implicitly constructed from a library
and then executed directly. Monitors in MonPoly [31] are im-
plicitly defined as formulas that are then interpreted as queries.

explicit-direct

Generate

Trace

or

RV Tool Spec
o0 Generate

explicit-interpreted

implicit-direct

Code Output Output

Fig. 4: The different generation and execution approaches.

RV Tool Output
Interpret

Execute Interpret

A Taxonomy for Classifying Runtime Verification Tools

hardware centralised

deployment

instrumentation architecture

software decentralised

stage offline

outline asynchronous

inline placement online synchronisation synchronous

Fig. 5: Mind map for the deployment part of the taxonomy

3.3 Deployment

The deployment part of the taxonomy is depicted in Figure 5.
By deployment, we refer to how the monitor is effectively
implemented, organised, how it retrieves the observations
from the system, and when it does so.

The notion of stage describes when the monitor operates,
with respect to the execution of the system. Runtime verifica-
tion is said to apply offline when the monitor runs after the sys-
tem finished executing and thus has access to the complete sys-
tem execution (e.g., a log file). It is said to apply online when
the monitor runs while the system executes and thus observes
the current execution and a part of its history. In the online
case, the communication and connection between the monitor
and the system can be synchronous or asynchronous, re-
spectively depending on whether the monitored system stops
executing while the monitor analyses the retrieved observa-
tion. It is possible for a monitor to be partially synchronous
if it synchronises on some but not all observations.

The notion of placement describes where the monitor
operates in reference to the monitored system. Therefore, this
concept only applies when the stage is online. Traditionally,
the monitor is said to be inline (resp. outline) when it exe-
cutes in the same (resp. in a different) address space as/than
the monitored system.

Pragmatically, the difference between inline and outline
is a matter of instrumentation. An inline tool implicitly
includes some form of instrumentation, used to extract obser-
vations and inline the monitor in the monitored system.

In contrast, outline tools typically provide an interface
for receiving observations. Such an interface may be exposed
the monitor in the same programming language as used by
the monitored system, which would then just call it directly.

Otherwise, the interface would be invoked via some com-
munication middleware (e.g., OS pipes or RPCs). There is
a grey area between the two in the instance of tools that pro-
vide an outline interface but may also automatically generate
instrumentation code.

Instrumentation may be at the hardware or software
level with further subdivisions of these concepts covered in
Section 4.

Example 14 (Instrumentation) To highlight two different
approaches to instrumentation, let us consider the instru-
mentation required for our two running examples. In the file
system setting (Example 1), our instrumentation will be at
the software level. If we are monitoring a Java program to
ensure it uses files properly we might inline our monitors via
tools such as Aspect] [113] (instrumentation at the source
level) or BISM [154] (instrumentation at the bytecode level)
meaning that the monitored program and monitors run within
the same Java Virtual Machine. In the hybrid engine setting
(Example 2), instrumentation is likely to be at the hardware
level with specific circuitry employed to relay signals to a the
monitor, which will necessarily be outline.

Lastly, the architecture of the monitor may be centralised
(e.g., deployed as one monolithic component) or decen-
tralised (e.g., deployed as multiple synchronously or asyn-
chronously communicating components).

Example 15 (Deployment) We provide examples of tools
(from the classification, see Section 4) that fit into various
categories with respect to deployment. The detectER [50] tool
runs asynchronously alongside a monitored Erlang program
(e.g., online) placing monitors outline with instrumentation
occurring via Virtual Machine tracing. Conversely, Java-
MOP [119] uses Aspect] to weave generated monitors into
Java programs (placing them inline) to be executed online
synchronously. Finally, tools such as Hydra [135] and De-
centMon [36] operate offline on collected traces.

3.4 Reaction

The reaction part of the taxonomy is depicted in Figure 6. By
reaction, we refer to the activity that the monitor performs after
checking the specification. It may actively affect the execution
of the monitored system, or passively report information.
Reaction is said to be passive when the monitor does not
influence! the execution of the monitored system. A passive
monitor is typically an observer, only collecting information.
This means that there are assumptions and/or guarantees that
the analysis performed by monitor did not alter the execution
and thus the reported information is accurate (e.g., to ensure

! 'We note that the total absence of influence is impossible because of
the need for instrumentation; see Section 3.6.

Y. Falcone et al.

Fig. 6: Mind map for the reaction part of the taxonomy

the soundness of verdicts by the absence of false positive
and negatives). Examples of guarantees include a form of
behavioural equivalence (e.g., simulation or bisimulation,
or their weak variants) between the initial system and the
monitored system.

Passive monitors typically produce the specification out-
put (i.e., the elements of the codomain of the function denoted
by the explicit specification). Alternatively, they may provide
an explanation of a specification output (e.g., a part of the
trace containing observations that lead to the specific output)
or statistics (e.g., the number of violated/satisfied specifi-
cations, or the number of times the inconclusive verdict ?
was output before a conclusive verdict is reached) about a
specification output.

Reaction is said to be active when the monitor affects
the execution of the monitored system. Active reaction also
encompasses the cases where the monitor modifies the output
of the monitored system (e.g., by modifying the computed
results, reducing or augmenting the output information).

Active reaction is only possible when the stage of monitor-
ing is online (see Section 3.3), i.e., the monitor executes along
with the monitored system. An active monitor would typically
affect the execution of the system when a violation is detected.
Various active reactions are possible. A so-called enforce-
ment monitor can try to prevent property violations from
occurring by forcing the system to adhere to the specification.
When a violation occurs, a monitor can execute recovery
code to mitigate the effect of the fault and let the program
either terminate or pursue the execution from a safer state. A
monitor can also raise exceptions that were already present in
the initial system. Finally, the monitor can launch mechanisms
that roll back the system to its latest correct state.

3.5 Trace

The trace part of the taxonomy is depicted in Figure 7. The
notion of trace appears in two places in an RV framework
and this distinction is captured by the role concept.

An observed trace is the sequence of observations ex-
tracted from the monitored system and examined by the
monitor. Conversely the trace model is the mathematical
object forming part of the semantics of the specification
formalism. It corresponds to the system model concept in the

specification part of the taxonomy (see Section 3.1). Clearly,
RV frameworks must connect the two trace concepts, but
it is important to state the properties that each concept has
separately. For example, trace models may be infinite (as in
standard LTL) whilst observed traces are necessarily finite —
in such case the monitoring approach must evaluate a finite
trace with respect to a property over infinite traces. A trace
model must define the notions of time and data, present in
the specification (see Section 3.1).

The extraction of the observed trace depends on the
particular observation sampling technique and the precision
at which the observations are made.

Sampling is said to be event triggered if the monitor
receives an observation whenever some event of interest
happens in the monitored system. Common events of interest
are function calls/returns, relevant state changes, reception of
input, or emission of output.

Sampling is said to be time triggered when there exists
a fairly regular period at which observations are collected
in the monitored system and sent to the monitor. The term
sampling here reflects the fact that any trace will only collect
a relevant subset of actual behaviours. If the monitoring tool
assumes that the trace contains all relevant events then it is
precise. Otherwise, it is imprecise and the tool must take the
imprecision into account. Reasons for imprecision may be due
to imperfect trace collection methods, or overhead reduction.

Both the observed trace and the trace model are abstrac-
tions of the monitored system’s execution and can only contain
some of the runtime information. For instance, the trace can
contain information on the internal state of the program
or notifications that some events occurred in the program
(or both). Not exclusive of the previous option, the monitor
can also process the input and output information from
a transformational program?. Finally, the trace can contain
time-continuous information in the form of a signal, which
may be captured as a closed-form expression or by discrete
sequence of samples.

The runtime information received by the monitor rep-
resents an evaluation of the monitored system’s state. This

2 A transformational program is a program that takes some input,
processes it, delivers some output, and terminates (e.g., a compiler); as
opposed to an interactive or a reactive program.

A Taxonomy for Classifying Runtime Verification Tools

evaluation

points

intervals

precise precision

imprecise

observation

sampling

information events

signals
states
sampled

closed-form
expression

model

finiteness

Fig. 7: Mind map for the trace part of the taxonomy

information can correspond to an identified point in time (or
at a program location) or a time interval.

3.6 Interference

The interference part of the taxonomy (see Figure 1) charac-
terises RV frameworks as invasive or non-invasive.

In general, a non-invasive RV framework is impossible
due to the observer effect. However, in reality the level
of monitor interference can be seen as a spectrum. The
interference can amount to the induced overhead (time or
memory wise) or by a modification of the RAM layout or CPU
scheduling. There are two sources of interference of an RV
framework with a monitored system. First, how much an RV
framework interferes with the initial system depends on the
effect of the instrumentation applied to the system, which itself
depends on the specification as instrumentation is purposed
mainly to collect a trace. Thus, the quantity of information
in the trace and the frequency at which this information is
collected (depending on the sampling) affects the degree
of instrumentation. Moreover, interference also depends on
the monitor deployment. Offline monitoring is considered
to be less intrusive because the observation made on the
system consists only in collecting observations into a trace;
but it still requires a minimal form of instrumentation. Online
monitoring is considered to be more intrusive to a degree
depending on the coupling between the monitored system and
the monitor. Second, interference with the monitored system
also occurs when actively steering the system.

3.7 Application Areas

We have included application areas as a top-level concept
of the taxonomy (see Figure 1), since it can have a large

impact on other aspects of the RV tools. There are numerous
application areas of runtime verification.

We have identified the following (non-exhaustive) cate-
gories. First, runtime verification can be used for the purpose
of collecting information about a running system. This in-
cludes visualising its execution (e.g., with traces, graphs, or
diagrams), evaluating its runtime performance using metrics
(like execution time, memory consumption, communication,
etc.), and collecting relevant statistics.

Second, runtime verification can be used to perform an
analysis of a running system, usually to complement or in
conjunction with static analysis. Such runtime analysis can
focus on verifying the system (e.g., with respect to require-
ments, properties, or goals) to provide security, privacy,
safety, and progress/liveness assurances.

Third, runtime verification can be used to augment soft-
ware engineering techniques with a rigorous analysis of
runtime information (e.g., by augmenting code coverage [3]).

Fourth, runtime verification can be used to complement
other runtime techniques for finding defects and locating
faults in systems such as testing (e.g., by augmenting unit
testing [61]) and debugging (e.g., by augmenting interactive
debugging [106]).

Finally, leveraging the previous techniques, runtime verifi-
cation can be used to address the general problem of runtime
failure prevention and reaction, by offering ways to de-
tect faults, contain them, recover from them, and repair the
running system.

4 Classification of Runtime Verification Tools

In this section we classify a number of RV tools with respect
to the previously introduced taxonomy. The classification
presented here is a revised and substantially extended version
of the classification presented in our previous work [79]. To

12

Y. Falcone et al.

our knowledge, this is the most comprehensive classification
of the existing RV tools.

Tool selection. In our initial classification we considered a set
of well documented and recently developed tools, which are
still actively developed and maintained. We therefore focused
on the tools that participated in the runtime verification
competitions [23,81,139] taking place between 2014 and 2016
and the tools described in papers accepted at the RV-CuBES
workshop [140], which took place in2017. This led to an initial
selection of 20 tools (14 chosen from the competition and 6
from the workshop) whose classification [79] was based on
our analysis of the tools’ relevant papers and documentation.

In order to validate our classification of the tools and
further extend our tool selection, we have performed a field
study, which aimed to collect the relevant information from
the RV tools’ authors directly. To that end, we have designed a
questionnaire and disseminated it within the RV community.

Questionnaire. Our questionnaire3 consists of seven sections
each corresponding to a major concept in the taxonomy.
Each section contains questions that address its sub-concepts.
Since the version of the taxonomy at the moment of the
questionnaire’s inception may not be general (or specific)
enough to classify all the tools, we allow the tool authors to
provide a custom answer to each question in addition to the
fixed answers (corresponding to the leaves in the taxonomy).
The answers are not exclusive, i.e., the authors can select any
subset of answers including the custom answer. Additionally,
each question can be answered with not applicable if the tool
does not fit that part of the taxonomy.

We consider the fixed answers fitting, while custom and
not applicable answers as non-fitting answers. A tool’s fitness
is the fraction of its questionnaire answers that are fitting.
In total, the questionnaire has 28 questions, where 26 are
multi-choice-multi-answer and 2 free-form questions.

In addition to these questions, for each tool we have
collected its name, references, link to its source code, as well
as the email address of a contact person. Finally, in order to
facilitate further improvements, we allowed the authors to
provide their feedback on the taxonomy as part of a the last
free-form question. We intend to keep the questionnaire open
in order to be able to further revise our classification, add
new tools, and receive feedback on the taxonomy.

Although the questionnaire is open to anyone, we have
initially sent invitations to a targeted group of participants. The
criteria for selecting the initial participants is the following:
Any contact person for an RV tool (as specified on the
tool’s website)

Any corresponding author of a paper featuring an RV tool
Any author of a paper featuring an RV tool, with corre-
sponding authors not specified

— Any program committee member of the RV conference
in the last 3 years
The list of RV tools* used as a basis for deriving the list of
participants has been initially created during the Dagstuhl
seminar 17462 [95] and further populated by recursively
considering all the tools referenced in the related work sections
of tools’ relevant papers.

Classification procedure. During the classification, we have
followed an iterative procedure that alternated between the
questionnaire’s result analysis and the taxonomy refinement.
We have started from the existing classification [79] and
unified it with the results of the questionnaire, ensuring that
we can distinguish the data that came from the tool authors
directly. Then, we have checked if each tool belongs to the
general RV setting (as considered in this article) and we have
eliminated those tools that do not. We have then analysed all
the non-fitting answers. Given such an answer, for some tool
and some part of the taxonomy, we read the provided tool
references in order to understand how the tool fits that specific
part of the taxonomy. If there is a fitting answer that the authors
(potentially) misunderstood, we use it instead. Otherwise, we
refine the taxonomy and check if any of the other tools need
to be reclassified with respect to that part of the taxonomy.

Participating tools. The final list of names of 60 participating
tools is shown in the leftmost column of Table 1 along with
(where applicable) hyperlinks pointing to the tools’ website
or the source code. Other columns show tools’ references,
specification formalisms, and the description of the fragment
of the specification formalism directly supported by each
tool. The presented tools’ references are sourced from the
questionnaire participants and from additional information
about the tools that can be found in the competition reports
[23,81,139] or the RV-CuBES workshop proceedings [140].

Whenever possible, we denote a specification formalism
with its usual acronym, as used in the corresponding tool’s
references. The tools that only use implicit specifications have
the not applicable (na) symbol in this column.

The rightmost column briefly summarises the supported
fragment of each specification formalism, as reported in the
tool references or author’s answers. Note that this concept is
related to the monitorability/enforceability part of the taxon-
omy and applies only to the specification formalisms that have
formal semantics. Typically, through the concept of supported
fragments, a tool aims to characterise specifications for which
its decision procedures guarantee some properties, or they are
particularly efficient. Regarding this, some tools implement
special provisions, like syntactic restrictions that characterise
the supported fragment. Other tools analyse the input specifi-
cation, possibly rewriting it into a supported form, and provide
feedback to the user. Finally, some tools completely delegate

3 Available at https://forms.gle/mUiTZK3egSPr3Wsd9

4 Available at https://goo.gl/Mmuhdd#gid=795731900

https://forms.gle/mUiTZK3egSPr3Wsd9
https://goo.gl/Mmuhdd#gid=795731900

A Taxonomy for Classifying Runtime Verification Tools

Tool References Specification formalism Supported fragment

Adapter [47,48] uHML Safety fragment of uHML

Aerial [26,27,32,33] MTL, MDL full

AgMon/EgMon [108,109] MTL bounded future modalities

ARTiMon [132,133] ARTiMon language bounded future modalities

AVA, BCT, and Radar [13,118,124-126] method pre- & post-conditions and FSM full

BeepBeep 3 [91,92] LTL-FO+, LoLA 1.0, QEA full

Block-based atomicity checker [165] na na

(BBAC)

Breach [66,67] parametric STL Online monitoring supports a limited para-
metric STL

Commit-node atomicity checker [164] na na

(CNAC)

Contract Larva [75] DEA full

CPSDebug [25] STL full

CRL [44-46,127] Chronicle language full

DANA [70] Layered reference model full

DecentMon [36,55] LTL full

DejaVu [96,98-100] QTL Closed formulas and finitely quantified vari-
ables in rigid predicates

detectEr [10,11,50, 84] #HML Safety and co-safety fragments of uHML

E-ACSL [63,152] E-ACSL Summarised in the implementation status
section of the tool’s website

Eagle [15,16,86] Eagle full

GREP [142] Timed automata Timed languages described without using the
clock difference

HYDRA [134,135] MTL, MDL bounded future modalities

InterAspect [151] Regular expressions full

JavaMOP [107,119] MOP plugins (LTL, FSM, ERE, CFG, full

SRS, ptCaReT)

JPaX [102-105] JPaX full

jUnitRV [61,62] TDL full

Larva [56-58] DATEs full

LogFire [94] LogFire DSL full

LogScope [17,18,90] LogScope full

MarQ [14,136,138] QEA full

Modbat [8,9] Scala assertions na

MonPoly [28-31] MFOTL with aggregations Safety fragment of MFOTL

Montre [157,160,161] TRE full

MTLMapReduce (MTL-MR) [38,39] MTL full

Mufin [60] Projection Automata full

nfer [110-112] nfer full

OpenJML [53] JML Summarised in the features section of the
tool’s website

OptySim [65,145] LTL, Assertions full

Orchids [88,89, 123] Orchids specific full

ParTraP [42,51] ParTraP full

Proactive Libraries [143,144] Edit Automata with domain-specific ex- full

tensions

Reelay [158,159] MTL, Regular expressions Past MTL and Classical REs

RiTHM [43,122] LTL; LTL3 without the NEXT operator

RML [6,7] RML deterministic specifications

RMOR [93] RMOR language full

R2U2 [121, 141, 149] MTL, MLTL bounded future modalities

RTC [120] na na

RuleR [20] RuleR full

RV-Monitor [117] MOP (see JavaMOP) full

SOLOIST-ZOT [37,40,41] SOLOIST propositional fragment

StateRover [71] UML statechart assertions na

STePr Scala-internal DSL full

StreamLAB [82] RTLola full

Striver [87] Striver full

TemPsy-Check [68,69] TemPsy full

THEMIS [73,74] LTL, Automata full

TimeSquare [59] CCSL full

TiPEX [128,129] Timed automata full

TraceContract [19] TraceContract DSL full

VALOUR [12] Valour Script & Rules na

Table 1: Details of the classified tools

https://bitbucket.org/casian/adapter/
https://bitbucket.org/traytel/aerial
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/liflab/beepbeep-3
https://github.com/decyphir/breach
https://github.com/gordonpace/contractLarva
http://chroniclerecognitionlibrary.github.io/crl/o.html
https://www.dana.fraunhofer.de/
https://gricad-gitlab.univ-grenoble-alpes.fr/falconey/decentmon
https://github.com/havelund/dejavu
https://bitbucket.org/duncanatt/detecter-lite
https://frama-c.com/eacsl.html
https://github.com/matthieurenard/GREP
https://gitlab.inf.ethz.ch/mraszyk/multipass-mtl.git
http://fsl.cs.illinois.edu/index.php/JavaMOP
http://www.isp.uni-luebeck.de/junitrv
https://github.com/ccol002/larva-rv-tool
https://github.com/havelund/logfire
http://github.com/selig/qea
https://github.com/cyrille-artho/modbat
https://sourceforge.net/projects/monpoly
https://github.com/doganulus/montre
https://bitbucket.org/krle/mtlmapreduce
https://www.isp.uni-luebeck.de/mufin
http://nfer.io
https://www.openjml.org/
https://www.morse.uma.es/tools/optysim
http://projects.lsv.ens-cachan.fr/orchidsdoc/
http://vasco.imag.fr/tools/partrap/
https://github.com/doganulus/reelay
https://uwaterloo.ca/embedded-software-group/projects/rithm
https://github.com/LucaFranceschini/RML
http://temporallogic.org/research/R2U2/
http://runtimeverification.com/monitor
http://fsl.cs.illinois.edu/index.php/JavaMOP
https://github.com/fm-polimi/zot
https://www.isp.uni-luebeck.de/stepr
https://www.react.uni-saarland.de/tools/streamlab/
https://github.com/imdea-software/striver
https://github.com/weidou/TemPsy-Check
https://gitlab.inria.fr/monitoring/themis-artifact-article
http://timesquare.inria.fr/
http://srinivaspinisetty.github.io/Timed-Enforcement-Tools
https://github.com/havelund/tracecontract

14

Y. Falcone et al.

specification analysis to the user who needs to ensure that the
tool is invoked with the appropriate specification. Typically,
tools that support custom DSLs fall into this category and
therefore we write that they support the full specification
formalism. We do not classify the tools according to this cri-
terion, but only report on the specific fragments, if they exist.

The authors of the MINT [163] tool have participated
in the questionnaire. However, after reviewing their answers
and the provided references, we have decided to exclude the
tool from the final version of the classification. MINT is used
for specification mining and iterative test-generation, which
does not fit the scope of runtime verification, as defined in
this article. Another indication that the tool is not suitable
for classification is its fitness of 62%, which is significantly
lower than the average tool fitness of 82%. Once the authors
extend MINT to be applicable for online failure detection,
which is stated as future work [163], we would be happy to
reclassify the tool appropriately.

A similar concern applies in the case of the nfer tool,
which we decided to keep in the classification. In addition to
the specification mining, nfer can perform runtime verification
tasks. This is confirmed by its fitness, which is 92%.

We have also eliminated the eAOP tool (fitness 69%). In-
deed, an aspect-oriented programming framework can be used
to perform RV tasks, but the monitors must be explicitly writ-
ten. In our classification eAOP tool is subsumed by Adapter
and detectEr tools, which are implemented using eAOP.

Finally, tools AVA, BCT, and Radar share many common
characteristics and are often used together, hence they are
also classified together.

Classification results. The classification of all the tools is
given in Tables 3 and 4 with the acronyms described in Table 2.
We leave a more detailed discussion of the classification for
the next section. The classification also exists as a living
document® and we welcome comments from the community,
which we aim to incorporate both in the taxonomy and in the
classification as our work continues.

The classification non-uniformly instantiates levels for
different parts of the taxonomy. We omit parts of the tax-
onomy that are too abstract to be properly instantiated for
the participating tools (e.g., system model and monitorabil-
ity/enforceability), or if only one tool differs from all the
others (e.g., THEMIS is the only tool that supports organising
specifications in a decentralised manner).

The classification also refines the taxonomy. For instance,
software instrumentation is refined based on its implementa-
tion (via Aspect] [113], Java reflection, eAOP [49], JTrek [52],
native VM tracing, or the Xposed framework [2]). We also
instantiate concrete implicit specifications and provide a more
detailed description of the tools’ decision procedures, when-
ever the tools’ authors or references provide such information.

5 Available at https://goo.gl/Mmuhdd

Besides the taxonomy-related values specified in Table 2,
the cells in Tables 3 or 4 may contain values “all”’, or “none”
indicating that the tool supports all, or none of the features
defined by that part of the taxonomy. Value “na” states that
this part of the taxonomy is not applicable to the tool, while
“?” means that there is insufficient information about the tool
to establish a definitive classification. The Fitness column
shows the fitness of the tools based solely on the questionnaire
answers. If there are multiple entries for the same tool, we
report the tool’s average fitness. We discuss how the final
classification diverges from the authors’ answers in Section 5.
Tools whose authors participated in the questionnaire have the
v/ symbol in the Author’s input column, while the others have
the X symbol and the fitness measure does not apply to them.

Threats to validity. Whilst we believe that this is the most
comprehensive classification of existing RV tools to date,
there are three possible threats to its validity.

Firstly, the classified tools are sourced from academic
tools developed within the runtime verification scientific
community. This rules out commercial tools and tools from
other closely-related communities, like databases, stream
processing, and software engineering. Although some of these
tools could fit the taxonomy quite well, the commercial tools
are often badly documented, especially with respect to the
concepts in the taxonomy. Furthermore, other communities
do not share the same terminology with runtime verification,
e.g., it is not usual to use a trace as an abstraction of a system.

Secondly, the classification focused on software monitor-
ing with explicit specifications, which is a prominent research
theme in the runtime verification community. Indeed, we
have attempted to classify some tools that support only im-
plicit specifications and identify themselves as RV tools (e.g.
AdressSanitizer [150] or iflowTYPES.js [148]). Whilst such
tools can be categorised in the taxonomy, their classification
remains very coarse (with up to 30% fitness) and therefore
such tools are not the focus of the classification. In general,
this suggests that some areas of the taxonomy may require a
refinement in the future, but also that these refinements will
be orthogonal to the work presented here.

Lastly, the classification does not cover all known RV
tools. Such tools are not classified due to authors’ decision not
to participate in the questionnaire. Still, within our defined
scope, the coverage of tools is extensive.

5 Discussion

This section makes some observations about the taxonomy and
the classification. We also discuss our classification process
and provide details on particularly difficult classification cases.
We believe that this section contributes to the provenance of
the current state of the classification and can serve a list of
initial discussion points for the further taxonomy refinements.

https://github.com/neilwalkinshaw/mintframework
https://github.com/neilwalkinshaw/mintframework
https://github.com/neilwalkinshaw/mintframework
http://nfer.io
http://nfer.io
https://github.com/casian/eaop
https://github.com/casian/eaop
https://bitbucket.org/casian/adapter/
https://bitbucket.org/duncanatt/detecter-lite
https://github.com/casian/eaop
https://gitlab.inria.fr/monitoring/themis-artifact-article
https://goo.gl/Mmuhdd

A Taxonomy for Classifying Runtime Verification Tools

Column Values
Specification
implicit ms = memory safety,
at = atomicity,
dmz = division or modulo by zero,
ao = arithmetic overflows, bc = large bit shifts,
dc = illegal downcasts, tc = illegal typecasts
data p = propositional, s = simple parametric, ¢ = complex parametric
output sng(_) = a single _, seq(_) = a sequence of _, v = verdict, w = witness, t = robustness

logical time
physical time

tot = total order, par = partial order
di = discrete, de = dense, none = no time

modality f = future and current, p = past and current, c = current
paradigm d = declarative, o = operational
Monitor
generation e = explicit, i = implicit
execution i = interpreted, d = direct

properties of the
decision procedure

s = soundness, ¢ = completeness, i = impartiality, a = anticipation

Deployment
stage on = online, oft = offline
synchronisation sync = synchronous, async = asynchronous
architecture ¢ = centralised, d = decentralised
placement out = outline, in = inline,
instrumentation sw = software, swAJ = software with AspectJ, swRF = software with reflection,
SWEA = software with eAOP, swIT = software with JTrek,
swVM = software with VM tracing, swEX = software with Xposed framework
Interference
Interference ‘ in = invasive, ni = non-invasive
Reaction
active ex = exception, r = recovery, ro = rollback, en = enforcement
passive 80 = specification output, e = explanations, st = statistics
Trace
information e = events, s = states
sampling et = event-triggered, tt = time-triggered
evaluation p = points, i = intervals
precision p = precise, i = imprecise
model f = finite trace model, i = infinite trace model

Application area

Application area

pv = property verification, fp = failure prevention & reaction,
td = testing and debugging, cq = information collection & querying

General

all = all features supported, none = no features supported
na = not applicable, ? = insufficient information

Table 2: Abbreviations used in Tables 3, 4, and 5.

Specification Monitor Deployment Reaction Trace
explicit decision procedure g g § -
time s e EE) g = §‘
oo . EHE g 18l |E1518) ¢ 2 NHEEEIRE
k3 = —~ = | = 5] = = |S = o]) =125 |~ S 2 g
E |8] 8 |s|&E|E|& g E|%|5|8| 2 |5|=| & |E| 8§ | B |E|S|s|alé] < |& |<
Adapter none s none | tot |none|na| d automata-based S e|d|on| all | c |out|swEA |in r none| e |et|na|p|i| pv,fp |77%|V
Aerial none | p | seq(v) |[tot| di |all| d | dynamic programming |s,c,i| i | i |all|sync | ¢ |out| none |ni| none | so e |et|p|p | i pv 81% | v
AgMon/EgMon | none | p | seq(v) |[tot| di |all| d | dynamic programming | s,a | i | i [on|sync | ¢ |out| none |ni| none | so [e |tt|p |p | i pv na | X
ARTiMon none s | seq(v) |tot| all |all| d | time function evaluation | s,i | i | d |all|sync | ¢ |out| sw |in ? so | s|et|i|p|i|pvfp td|81%|V
AVA, BCT, and none c | sng(w) |tot |none|na |all automata-based s,c | ?|1ilofff na |c|na| sw |in na e elet|p|p|i td 73% | v
Radar
BeepBeep 3 none | ¢ | seq(v) |tot|none|all|all stream transducers, s,c,i| i | d [all|async| c |out| none | ni | none |[so,st| e |et|p |p | 1 [pv,td,cq|87%|V
automata-based
BBAC at na na par| na |na|na analytical ¢ |na|nafofff na | c |na| sw |in na e elet|na|p| f pv 58% | v
Breach none | s [seq(v,w,r)|tot| de | f | d analytical ? i|ial|sync|c | ? | none |in| none |so,e|all|et| i |p|i| pvtd | na | X
CNAC at na na par| na |na|na analytical ¢ |na|d|offf na | c|na| sw |in na e |e|et|na|p | f pv 65% | v
Contract Larva | none | s | sng(v) |tot| de |all| o automata-based s,c,i| i |d|on|sync|c |in| sw |in|rex,ro| na |all{et|p |p | f | pv.fp |92%|V
CPSDebug none | s | seq(w) |par| de | f | d analytical s,c|e|i|offf na |c|na| sw [in| na e |all|tw|i|p]i td 81% | v
CRL none p | seq(v,w) |tot| di | f | d duplicating automata ? i|d|on|sync| c |out| none |in| none | so |e |et|p|p|i| pvwtd | na | X
DANA none c | seq(v) |all| all |all| o automata-based and all | e |d |all|async| c |out| sw |ni| 1,ex all | e |all|p|p|al all 96% | v
rewrite-based
DecentMon none | p | sng(v) |tot|none| f | d rewrite-based s,c | i | i |offf na | d|na| none | ni na |[so,stf s |[tt|p|p|i|pwtd,cq|81%|V
DejaVu none s | seq(v) |tot|none| p | d BDD operations all | e|d|all| all | c |all| none |all| none | so |e|et|p|p| f]| pvtd |81%|V
detectEr none c | sng(v) |all |none| f | d automata-based all | e | d|on|async| d |out|swVM|all| none | so [e |et| p | p |all pv 92% | v
E-ACSL ms,dmz,| ¢ | sng(v) |na| na | p |all code rewriting s,c|e|d|on|sync|c|in| sw |in| r,ex |none| s [et|p |na| i |pv,fp,td|81% |V
ao, dc
Eagle none c | sng(v) |tot| all |all| d rewrite-based s,c,if e | i |all| all | c |all|swAl |in ex so |e|et|p|p]|f |pvfp,td|88%|
GREP none | p | sng(v) |tot| de | f | o automata-based all | e | i |all|async| c |out| none | in en so |[e|et|p|plal| pvfp |81%|V
HYDRA none | p | seq(v) |tot| di |all| d rewrite-based s,i | i | i |offf na | c |na| none | ni na so |elet|p|p|i pv 81% | v
InterAspect none | c | sng(w) |na| na |na|d automata-based s,c|e|ifon|sync|c|in| sw |in| none e |eflet|na|p | f| pvtd |77%|V
JavaMOP none | s | sng(w) |tot|none|all|all| trace slicing, per plugin ? | e|d|on|sync| c |in|swAJ | ? r e |ejet|p|lp]|f| pvtd | na | X
procedure
JPaX df,nd | p | sng(v) |tot|none|all| d rewrite-based s,c,i|all| d |all |async| ¢ |out| swJT |in ex so |efet|p|p|f| pvtd [92%|V
jUnitRV none | s | sng(v) |tot|none| f | d SMT-based ? |e|d|on|sync|c |in|swRF | ? ? ? |elet|p|p|f| pvtd | na | X
Larva none | c | sng(v) |tot| de | f | o automata-based ? | e|d|on|sync| c |out| swAJ |in| ex,r so |all|all| p|p|i]| pveq [81%]|V
LogFire none | c |sng(v,w)|tot| all |all|all rewrite-based all | i |d/|all| all | c |all| none |in| none |so,e| e |et|p|p | f |pv,tdcq|85%|V
LogScope none s |sng(v,w) |tot| all | f |all automata-based all [e|1i|offf na |c|na| sw |ni na |[so,e|lefet|p|p|f]| pvtd |85%|V
MarQ none | s | sng(v) |tot| all | f | o automata-based s,i,al i | i |all|sync| c |out| swWAJ |in| none | so | e |et|p|p | f]| pv,td |88%]|V
Modbat none | ¢ |sng(v,w) |par|none| ¢ | O na na nald|on|sync|c|in| sw |ni| none | all | e |na|p | p |na td 58% | v
MonPoly none | s |seq(v,w)|tot| all [all| d first-order queries s,c,i| i | i |all|sync | c |out| none |ni| none | so [e [et| p | p |all pv 79% | v/

Table 3: Classification of participating tools (part 1).

91

“[& 10 QUODB A

https://bitbucket.org/casian/adapter/
https://bitbucket.org/traytel/aerial
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/liflab/beepbeep-3
https://github.com/decyphir/breach
https://github.com/gordonpace/contractLarva
http://chroniclerecognitionlibrary.github.io/crl/o.html
https://www.dana.fraunhofer.de/
https://gricad-gitlab.univ-grenoble-alpes.fr/falconey/decentmon
https://github.com/havelund/dejavu
https://bitbucket.org/duncanatt/detecter-lite
https://frama-c.com/eacsl.html
https://github.com/matthieurenard/GREP
https://gitlab.inf.ethz.ch/mraszyk/multipass-mtl.git
http://fsl.cs.illinois.edu/index.php/JavaMOP
http://www.isp.uni-luebeck.de/junitrv
https://github.com/ccol002/larva-rv-tool
https://github.com/havelund/logfire
http://github.com/selig/qea
https://github.com/cyrille-artho/modbat
https://sourceforge.net/projects/monpoly

Specification Monitor Deployment Reaction Trace
explicit decision procedure g g § -
Tool time - - 5 |e g |3 g ; = &
00 4 8= 5| e = = S = =
T |g| B 3% % 2 S122|8| 2 |5|8] 5 |88 |7 |8|8]3|818] & |22
E |3 2 |&|&a|E|& g B |&|(8|28| 2 |E|=| & |E| 8 | & |E|8|5|8|E| < |E |<
Montre none | p | seq(v,w) |tot| de | f | d analytical and s,c | i|d|all|sync| c |out| sw |ni|none|so,e| s |et| i |p]| f cq 88% | v
rewrite-based
MTL-MR none | p sng(v) |tot| di |all| d analytical s,c|e|i|offf na |[d|na|none |ni| na| so |e|et|p|p]|f pv 85% | v
Mufin none | s sng(v) |tot|none| f | o automata-based ? i | d|on|sync out| none | ? none| so |e |et|p|p|f| pwtd | na | X
(union-find)
nfer none | s | seq(v,w) |par| de |all| d analytical s, C all | all |async| ¢ |[all | sw |ni|none| so |all|et| i |p | f |[pv,td, cq|92%|
Open]ML |ms,tc, | ¢ seq(v) |na| na | p |all| assertion checking ? dlon|sync|c |in| sw |in| ex | all |all|et| p |na| ? |pv,fp,td| na | X
dmz, bc
OptySim none | p sng(v) |tot|none| f | d automata-based ? |e|i|offf na | c|na|none|nifnone| so |allfet|p|p|i| pvtd | na | X
Orchids none | ¢ |sng(v,w,r)|tot| all | f | o automata-based |s,i,a| e |all |all jasync| c |out| sw |ni| ex | so |e|et|p|p| f| pvfp |88%|V
ParTraP none | ¢ sng(w) |[tot| de |all| d analytical s,c |na| i |off] na [c|na| sw |ni| na [e;st|e|et|p|p]|f]| pvtd [77%|V
Proactive none | ¢ seq(v) |[tot| di | f | o automata-based |[s,c,i| e | d |on|sync | ¢ |in [sWEX|in| en |none| e |et|p |p | i fp 88% | v
Libraries
Reelay none | s seq(v) |[tot| all | p|d dynamic s,c|i|d]|on|sync| c |out| sw |ni|none| so |all|et|all|p | f | pv,td |88%|V
programming
RiTHM none | p seq(v) |[tot|none| f | o time-triggered ? |e|d|on|async| c |in| sw | ? |none| so | s |all|p|p|i| pvtd | na | X
verification
RML none | C seq(v) |tot|none|na| d rewrite-based s,c,i| e | d |all| all | c |out| none | ni lnone| so | e |et|p | p|al| pv,td |[77%]|
RMOR none | p sng(v) |tot|none|all| o automata-based all |e|i|on|sync|c |in| sw |in| ex | so |e |et|p|p]| f |pv,fp,td|88%| v
R20U2 none | p seq(v) |[tot| di |all| d automata-based ? |e| i |on|async| c |out| none | ? none| so | e |et|p|p|i| pvtd | na | X
RTC ms | na na na| na |na|na ? ? i|d|on|sync|c |in| sw | ? | r ? | ?]et|p|p|na fp na | X
RuleR none | ¢ seq(v) |[tot| all [all| o rewrite-based all | e | i |all| all | c |all [swAJ|in| ex | so |e |et|p|p | f all 88% | v/
RV-Monitor | none | s sng(w) [tot| di |all|all (see JavaMOP) ? i|dal|sync| c |all| sw [?]| r e |eflet|p|p]| f|pv.fp,td] na | X
SOLOIST- | none | p sng(v) |[tot| di |all| d SMT-based s,c,i| e | i |off| na | c|na|none |ni| na | so |e|et|p|p]|i pv 85% | v
Z0T
StateRover | none | ¢ sng(v) |tot| di | f|o automata-based s |na|d|all| all |d|all| sw |[ni|none| so |e |all|p|p | f |pv,td,cq|88% |V
STePr none | s seq(v) |[tot| di |all| o ? ? i|d|on| ? c |out| none | ? |none| so [e|et|p|p|?| pwtd | na | X
StreamLAB | none | s seq(v) |[tot| de |all| o Stream-based all | e | i |all|async| c |out| none | ni |none|so,st| e |all |na|na| f |pv,td, cq|69%| v/
Striver none | C seq(v) |[tot| de |all| d automata-based s,i,a| e | i |on|async| ¢ |out| none | ni l[none| so | e |et| p | p |all|pv,td,cq|88%]| v
TemPsy- none | p sng(v) |tot| di | f | d |OCL constraint solver| s,c | i |all|off| na | ¢ [na|none |ni| na | so |[e|et|p|p|f| pvcq [77%|V
Check
THEMIS none | p seq(v) |[tot| di |all|all automata-based s,i | e | i |all| all | d|all| sw |ni| ex [so,st| s |tt|p|p]| f |pVtd,cq|96%]| v
TimeSquare | none | p seq(v) |par| all |all| d CCSL evaluation ? i | d|all|sync| c |out| none | ni {none| so | e |all|all| p [all| pv,td | na | X
TiPEX none | p seq(v) |[tot| de | f | o automata-based s i | i |on|async| ¢ |out|none |in| en | so |e |et|p|p| f fp 73% | v
TraceContract| none | ¢ sng(w) |tot| di |all|all rewrite-based s,c,if i | d |all| all | c |all|none |in|rex| all e |et|p|p]| f all 92% | v
VALOUR none | s sng(v) |tot| di |all| o automata-based ? i |djon| all | c|in |swAJ| ? |none| all | e |all| p|p | f |pv,td,cq| na | X

Table 4: Classification of participating tools (part 2).

S[O0], UOTJBOYLIOA dwnuny Surkjisse[) 10j AWOUOXE],

Ll

https://github.com/doganulus/montre
https://bitbucket.org/krle/mtlmapreduce
https://www.isp.uni-luebeck.de/mufin
http://nfer.io
https://www.openjml.org/
https://www.morse.uma.es/tools/optysim
http://projects.lsv.ens-cachan.fr/orchidsdoc/
http://vasco.imag.fr/tools/partrap/
https://github.com/doganulus/reelay
https://uwaterloo.ca/embedded-software-group/projects/rithm
https://github.com/LucaFranceschini/RML
http://temporallogic.org/research/R2U2/
http://runtimeverification.com/monitor
https://github.com/fm-polimi/zot
https://github.com/fm-polimi/zot
https://www.isp.uni-luebeck.de/stepr
https://www.react.uni-saarland.de/tools/streamlab/
https://github.com/imdea-software/striver
https://github.com/weidou/TemPsy-Check
https://github.com/weidou/TemPsy-Check
https://gitlab.inria.fr/monitoring/themis-artifact-article
http://timesquare.inria.fr/
http://srinivaspinisetty.github.io/Timed-Enforcement-Tools
https://github.com/havelund/tracecontract

18

Y. Falcone et al.

5.1 General Remarks and Underdeveloped Taxonomy Parts

Here we discuss some general observation on the sample of
tools that were classified according to our taxonomy. We also
discuss details and differences between the tools that are not
properly captured by the taxonomy due to its generality.

Specification. The majority of the classified tools use ex-
plicit specifications. Among them, the majority considers
totally-ordered logical time. There is an even split between
propositional and parametric tools and between the tools with
different approaches to physical time.

Among the tools supporting implicit specifications, only
BBAC, CNAC, and RTC tools do not additionally support
some form of explicit specification. Such tools are hard to
classify according to the concepts related to the explicit
specification. Tools that support both types of specification
are E-ACSL, JPaX, and OpenJML.

Regarding the data support in explicit specifications,
there is an (almost) uniform presence of the tools that support
propositional, simple parametric, and complex parametric
specifications. Note that in our classification we assume that
the support for complex objects as parameters subsumes
the support for simple (primitive) parameters, which in turn
subsumes the support for propositions. We normalised ques-
tionnaire answers with respect to this assumption.

Most of the tools use discrete time domain in their specifi-
cation formalism, with 10 tools using both discrete and dense
time domains. Some tools that use discrete time (e.g., Reelay)
interpret the received observations as if (implicitly) separated
by a unit of physical time. Others (e.g., Aerial) use explicit
timestamps, assumed available in the input. Unfortunately, our
taxonomy does not distinguish between these two ways of inter-
preting physical time. In general, the concept of physical time
should be extended beyond only considering how the tool’s
specification formalism defines the time domain. It should ad-
ditionally describe how the tool handles time in practice. The
current taxonomy is imprecise as, for instance, we assume that
tools working with the dense time domains use an appropriate
dense time approximation in their implementations.

Tools DANA, Eagle, LogScope, MarQ, Orchids, and
RuleR use a time domain based on the data they read from
the trace. We therefore decided to classify them as working
with both discrete and dense time domains.

For the physical time, which is explicitly available in the
form of timestamps, it is worth noting when it was measured.
Such a concern is widely known in stream processing, which
distinguishes between various moments when the input of
a stream processor is tagged with physical time. In the RV
setting, if an observation is tagged at the moment of its
occurrence within the monitored system, it is tagged with
its creation time. This corresponds to event time in stream
processing terminology [5]. If an observation is tagged when

it is sent to the monitor, it is tagged with its emission time.
Outline RV tools that do not provide their own instrumentation
often assume that their input contains either the creation or
emission times. The RV tools that do not receive timestamped
observations, tag them either with their ingestion time (i.e.,
the time an observation is received), or with their processing
time (i.e., the time when an observation is first used in the
monitor’s internal computation). Our taxonomy is not refined
to include this distinction, although some classified tools
differ with respect to this concept.

The distinction between operational and declarative spec-
ification languages results in two sets of tools of roughly the
same size. A total of 10 tools supports both paradigms.

Monitor. Some parts of the taxonomy were fairly straight-
forward to complete (e.g., deployment), whereas others were
more controversial. The most discussed part of the taxonomy
was the monitor concept as the term “monitor” is highly
overloaded in the RV community and many approaches do
not explicitly define the notion of a monitor. In the end, we
decided to split monitor generation from its execution, as
there is not necessarily a close link between the two concepts.

Although each tool uses custom realisations of its deci-
sion procedures, many of the tool authors opted for the (more
generic) fixed answer (e.g., analytical, automata-based, or
rewrite-based) in the questionnaire. This shows that despite
the versatility of the decision procedures, we managed to
achieve a good high-level classification.

Regarding the properties of the decision procedures, we
have to stress that the values reported in the classification
are those provided by the authors. Based on our assessment
of the questionnaire answers, we can conclude that, in most
cases, the authors did not consider the properties as defined
in this article, but rather as they are defined in the respective
tool references. Nevertheless, we decided to include this
information in the classification.

Deployment. The majority of tools are online — it is perhaps
worth observing that RV-Monitor added an offline interface
for the competition. In our previous classification [79] only
one tool was purely offline, while classification in this article
contains 13 such tools.

The exclusively offline tools have na in the synchronisation
column. A larger fraction of the rest of the (online) tools are
synchronous rather than asynchronous.

Unlike in our previous classification [79], this classifi-
cation contains five tools with a decentralised architecture.
THEMIS tool is the only tool that additionally supports a
decentralised specification formalism. Although initially de-
clared as decentralised by the tool authors, StreamlLAB and
Proactive Libraries are classified as centralised, since there is
not enough evidence to support the tools’ decentralised nature.

https://frama-c.com/eacsl.html
https://www.openjml.org/
https://github.com/doganulus/reelay
https://bitbucket.org/traytel/aerial
https://www.dana.fraunhofer.de/
http://github.com/selig/qea
http://projects.lsv.ens-cachan.fr/orchidsdoc/
https://gitlab.inria.fr/monitoring/themis-artifact-article
https://www.react.uni-saarland.de/tools/streamlab/

A Taxonomy for Classifying Runtime Verification Tools

19

Regarding the monitoring placement, outline tools are
more commonly developed. Outline tools are typically domain-
independent and designed as general-purpose tools. This is
confirmed by the fact that all tools that do not provide in-
strumentation (which is problem-specific) are outline. Note
that, according to our taxonomy offline tools do not have a
placement and hence are classified as na with respect to this
criterion. However, our definition of placement allows us to
treat offline tools as outline, since they execute in a separate
memory space from the monitored system.

Interference. The concept of interference is one of the most
underdeveloped parts of the taxonomy. Unfortunately, the
questionnaire answers were mostly fixed, hence not helpful in
refining the taxonomy. The only conclusive trend is that offline
tools that do not provide instrumentation are non-invasive.

Reaction. Almost all the tools provide some form of output,
which we classify as a passive reaction. In our classification
we see that the offline tools do not provide active reaction,
which means that there is a relation between these two major
concepts in our taxonomy. Based on our classification GREP,
Proactive Libraries, and TiPEX are the only tools that provide
full specification enforcement. Besides active reaction, some
of these tools provide a passive output as well. For instance
GREP outputs additional feedback on whether the outcome
of the enforcement was successful.

Other RV tools that allow for some form of active reaction
either stop the system with an exception or call some of
the recovery routines. Contract Larva is the only tool that
allows rolling back of the system to a last correct state.
The authors of Eagle, JPaX, Larva, Orchids, RMOR, and
RuleR provided similar custom answers in the questionnaire.
Namely, they allow for custom user code to be executed upon
specification violation. We decided to classify them as raising
exceptions and we note that our taxonomy is not precise
enough to distinguish whether the exceptions are handled
with pre-defined or user-defined procedures.

The RV tools that exclusively react in a passive way usually
provide the specification output as their output. BeepBeep 3,
DecentMon, ParTraP, StreamLLAB, and THEMIS provide
statistics, while Breach, CPSDebug, InterAspect, JavaMOP,
LogFire, LogScope, Montre, ParTraP, and RV-Monitor pro-
vide some form of explanations. Finally, DANA, Modbat,
OpenJML, TraceContract, and VALOUR provide output that
covers all possibilities enumerated in our taxonomy. We note
that, the taxonomy is not exhaustive in this respect, since
some RV tools provide other kinds of output. For instance,
MonPoly checks if its input specification belongs to the mon-
itorable fragment and if not provides feedback to the user.
Such monitoring output is not covered by our taxonomy.

Trace. Another area that was difficult for the classification
effort was the relation between the trace model and the
observed trace. It would be wrong to conflate the two, however
often these concepts overlap. On the other hand, many tools
do not formally express the notion of a trace, which makes
this part of the classification significantly harder.

Almost all the tools consider events as observations and
use event-triggered sampling. ARTiMon, DecentMon, E-
ACSL, Montre, RiTHM, and THEMIS tools only consider
states. Some event-triggered tools support timers (e.g., Larva),
hence we also consider them to use time-triggered sampling.

All tools monitor precise traces and a significant majority
evaluates specifications over observations made at individual
time points. Tools ARTiMon, Breach, CPSDebug, Montre,
nfer, and Reelay evaluate specifications over observations
coming from time intervals, with Reelay performing the
evaluation over both time points and intervals in the trace.

The trace part of our taxonomy focuses on the character-
istics of a single trace. This excludes research efforts from
the runtime verification community that deal with hyperprop-
erties, i.e., properties of sets of traces. This may explain
why no RV tools for hyperproperties such as RVHyper [83]
participated in our questionnaire. On the other hand, the same
characteristics of traces (e.g., denoting which information
they carry and how they are evaluated) apply to sets of traces.
Nevertheless, we leave the precise characterisation of RV
tools for hyperproperties within our taxonomy as future work.

Application area. Many of the tools were not developed
with a concrete application area in mind, making this part
of the taxonomy less relevant. However, in cases where an
application exists it is significant. For example, R2U2 is
designed to monitor unmanned aerial vehicles and this is
heavily reflected in the tool’s design.

Although majority of questionnaire answers chose prop-
erty verification (which is a part of the analysis concept), this
part on the taxonomy is very interesting when refined, espe-
cially in certain cases when the application area significantly
influences the tool design.

5.2 Multiple classification entries

During the process of classification, some tools were clas-
sified multiple times. Specifically, Aerial, ARTiMon, Beep-
Beep 3, DANA, detectEr, Larva, LogFire, MarQ, MonPoly,
and TemPsy-Check tools have duplicate entries in the classi-
fication, coming either from our previous classification [79]
or from multiple answers provided by the tool authors in the
questionnaire. The classification entries provided by us are
denoted with the X symbol in Table 5 in the Author’s input
column. Otherwise, tool author’s entries are denoted with the
v/ symbol. All entries in Table 5 are shown in their genuine

https://github.com/matthieurenard/GREP
http://srinivaspinisetty.github.io/Timed-Enforcement-Tools
https://github.com/matthieurenard/GREP
https://github.com/gordonpace/contractLarva
https://github.com/ccol002/larva-rv-tool
http://projects.lsv.ens-cachan.fr/orchidsdoc/
https://github.com/liflab/beepbeep-3
https://gricad-gitlab.univ-grenoble-alpes.fr/falconey/decentmon
http://vasco.imag.fr/tools/partrap/
https://www.react.uni-saarland.de/tools/streamlab/
https://gitlab.inria.fr/monitoring/themis-artifact-article
https://github.com/decyphir/breach
http://fsl.cs.illinois.edu/index.php/JavaMOP
https://github.com/havelund/logfire
https://github.com/doganulus/montre
http://vasco.imag.fr/tools/partrap/
http://runtimeverification.com/monitor
https://www.dana.fraunhofer.de/
https://github.com/cyrille-artho/modbat
https://www.openjml.org/
https://github.com/havelund/tracecontract
https://sourceforge.net/projects/monpoly
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://gricad-gitlab.univ-grenoble-alpes.fr/falconey/decentmon
https://frama-c.com/eacsl.html
https://frama-c.com/eacsl.html
https://github.com/doganulus/montre
https://uwaterloo.ca/embedded-software-group/projects/rithm
https://gitlab.inria.fr/monitoring/themis-artifact-article
https://github.com/ccol002/larva-rv-tool
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/decyphir/breach
https://github.com/doganulus/montre
http://nfer.io
https://github.com/doganulus/reelay
https://github.com/doganulus/reelay
http://temporallogic.org/research/R2U2/
https://bitbucket.org/traytel/aerial
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/liflab/beepbeep-3
https://github.com/liflab/beepbeep-3
https://www.dana.fraunhofer.de/
https://bitbucket.org/duncanatt/detecter-lite
https://github.com/ccol002/larva-rv-tool
https://github.com/havelund/logfire
http://github.com/selig/qea
https://sourceforge.net/projects/monpoly
https://github.com/weidou/TemPsy-Check

Y. Falcone et al.

20

"PIOq UI UMOYS SIdMSUE WOISNO Y} YIIM UOTIBROYISSE[O 3y} SULIND PaIsjunodus SILNua [00} aredrfdn(g :S 9[qe],

s boad | 3| d|d|0 9 e BU BU| ®BU |®U| O | ®BU |[PO|[E]| T J°s [eonAreue PlJ| 1p [103] (A)Sus | d |ouou| ooyD-Asquiay,
X A Jld|d|» 9 0s Juou { | suou |no| o | eu |[pgo| 1 |1 A IOA[OS JUIRN)SUOD TDO | P |1®| 1P [101| (A)Sus | d |Quou| ooyD-Asquuay,
Nl ppad [1] d]|d|eu 9 0s 'U BU| ®BU [INO| O [Oukse|[e| I |®BU 2°s [eonAeue p|1e| 1p [101| (aA)bss | s |ouou K[oJUOIN
X ad 1 |ea|d |30 e 0s 'U | eu [Jno| o |oukse|[e| 1 |eu 28T [eonAeue P |1E| 1p |10)|(m ‘A)bas|s ‘d|ouou K[oquUOIN
X A me|d|d|» 9 0s quou { | euou |no| o |ouou [uo| T | T I sarxanb 1opI0-1SIy plme| [101]| (a)bes | s |ouou K[oguo
Al pad | 31d|d]|r) 0s 'u ur | fyms [no| o [ouks | 1 | 1 RIS paseq-ejewio)ne o | J |eyep|ior| (a)Sus | s |ouou OIBIN
, 1A Jld|d|»r 9 0s Juou { ms |[e| o |ouks [re| p |1 i paseq-ejewrojne o3| 1p |101]| (A)Sus | s |ouou OreN
rlboprad| 3| d|d |10 9 9 ‘oS 'U ur| eu |qe|o| e [mMe|lp|! e Poseq-o)1Imal e | e | eyep [101 [(m ‘A)3us | [[e | suou 3071
X I Jld|d|»r 9 0s auou { | suou |Ino| o | ouks || p | I A LAY 0 |[re |ouou|jo} | (m)3us | s |ouou ajso|
payads Jgesn ay)
Al boad |1 [d|d]|e| ImE 0s Jsn | ur | [yms [Ino| o9 | ouks |uo | p | eu |uo spuada(q paseq-ejewone o |eu| op [101| (A)3us | [e |euou BAIRT]
X 1A Jld|d|»r 9 0s 1 A ms |qe|o| e |u|p|2 A paseq-ejewioine o|J | 1p (10| (A)Sus | s |ouou BATET]
d (fepaed)
2 ad me|d|d]ie 9 0s eU e [JNAMS |1no | e [oukse|uo | p | 9 ‘RIS paseq-vjewio)ne Pl3| w |me| (A)Sus | o |ouou I0919p
X I 1|d|difw» 9 0s uou A Ms |ur|o| qe |(uo| 1|9 A Surwrwres3oxd orwreukp | p | J |ouou|red| (A)3us | s |ouou I910919p
Paseq-9)LImal
A e me|d|d|me| e e X0 ‘I w| ms |no| o |oukse|[e (e |[® e pue -ejewio)ne o e |eyep| e | (a)bos | e |ouou VNVA
X A Jld|d]|w» 9 0s quou i i (| o|ouks |uo| p | 1 A i o || op [101| (a)bes | d |ouou VNVA
,rlbopraad| 1 | d|d |1 9 18 ‘08 'U | eu [NO| O [oukse|[e| e | [® 19°s paseq-ejewoine meime| m |10 | (a)bas | o |ouou| ¢ doogdoag
rlboprad| 1| d|d |1 9 0s 'U | ®eu |Ino| O |[oukse|[e| I [[® 19°s sweans uo sxonpsuer; (e |[e| 1 |101| (a)bes | qe |ouou| ¢ deagdoog
X { 1|d|d]|w 9 0s auou i ms |mo| o | qe |(uo|p |1 i1 Jursseooid-weans [e| J |euou|101| (aA)bas | o |ouou| ¢ deagdoog
sdjeys| I3esnay)| dsesn Ay
Alprdpad| 1 [d| 1|30 |paw], |uo spuddd(|uo spuadd | ur | ms [no| o [ouks [[e| p | T I°s (") suonouny dwLy, plie| me [101| (a)bss | s |ouou UONLLIV
X 1A r(djr|1» 3 0s auou { | euou |no| o |ouou [uo| T | T A A plme| me [101| (a)boes | s |ouou UONLLYV
2 ad 1(d|d|w» 9 0s 'U w| eu |mo| o | eU [[R| 1|1 19°s Surwwea3oxd orwreukp | p (| Ip |101| (A)bos | d |ouou [eLIOY
N ¢ 1| d|d]ie 9 0s Juou { | duou |no| o [Quou [uo| I | I A Surwwerdoxd orweudkp | p e | 1p |101| (a)bas | d |ouou [eLIOY
|z (2Elelel B 8 | & |2 E |BlE| g |g|alE] : HAEIEEERBE
5| = alel=z|8| § ¢, z S| 5 |g|E|l & |%|c|¢e 3 = Elal 2 |5| g =
] g 2le|s|=| B s @ | §E |2|g| § 2| & e £ SE| g |2 = g
o £ 215|2| B sl 2 [E|E| 2| |25 3 3 ElE| = -
gl g 5 g 2l 2 |25 % s @ S [ooL
S s = @ = °l = own
=4 2 <) =} >
g = 5 Qpaooid uorsIoap yondxa
Qoel], uonoey juowkordoq I0)TUOIAl uoneoyroadg

https://bitbucket.org/traytel/aerial
https://bitbucket.org/traytel/aerial
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/liflab/beepbeep-3
https://github.com/liflab/beepbeep-3
https://github.com/liflab/beepbeep-3
https://www.dana.fraunhofer.de/
https://www.dana.fraunhofer.de/
https://bitbucket.org/duncanatt/detecter-lite
https://bitbucket.org/duncanatt/detecter-lite
https://github.com/ccol002/larva-rv-tool
https://github.com/ccol002/larva-rv-tool
https://github.com/havelund/logfire
https://github.com/havelund/logfire
http://github.com/selig/qea
http://github.com/selig/qea
https://sourceforge.net/projects/monpoly
https://sourceforge.net/projects/monpoly
https://sourceforge.net/projects/monpoly
https://github.com/weidou/TemPsy-Check
https://github.com/weidou/TemPsy-Check

A Taxonomy for Classifying Runtime Verification Tools

21

form, with custom answers shortened for space reasons and
denoted in bold. The classification discrepancies in cases of
Aerial and MarQ tools are particularly interesting and may
hint at our own inconsistent treatment of the taxonomy, since
we are also the tools’ authors.

All the taxonomy concepts where the multiple classifica-
tion entries agree were adopted into the final classifications.
The decision procedure properties, interference, and appli-
cation area concepts are not present in the previous classifi-
cation [79], hence we simply adopt the new values instead
of the insufficient information (?) symbol for all the tools. In
the case of the non-highlighted concepts where disagreement
exists we adopted the input from the authors.

In some cases the changes in the final classification are
due to normalisation of the classification values explained
previously. For instance, value ¢ in the data column subsumes
the other values and essentially means all. Similarly, value s
subsumes p, hence we write p,s instead. The custom answer
data in the physical time column is replaced with value all.
In the architecture column we changed all all values into
d values, since decentralised tools can be trivially run in a
centralised fashion. If a tool does not provide instrumentation
we classify it with value none, rather than na. In the active
reaction column, offline tools are classified with value na,
since they are not able to perform any active reaction. On
the other hand, online tools that do not provide any active
reaction are classified with a value none. The rest of the cases
we highlighted in grey and we discuss them individually.

The Aerial tool is classified twice by us and the classi-
fications are (mostly) consistent. The tool is designed to be
online, but can be used for offline monitoring as well, which
explains the difference in the srage column. After reviewing
Aerial’s code, we classified it as a synchronous tool. Both
of the original answers ignore synchronisation due to the
misconception that a tool when run as a black box can con-
sume multiple events without explicitly halting to produce
its output. However, this is facilitated by operating system’s
buffers, which have a limited size.

ARTiMon obtains information about timed states from
its input trace, hence we classify its trace information to be
states. The vague custom answers in the reaction part of
the taxonomy led us to review ARTiMon’s documentation.
However, we were unable to find any details about its active
reaction capabilities, nor about configurable passive reaction.

Regarding BeepBeep 3, the sources of the three classifica-
tion entries are two questionnaire answers by the author and
our previous classification. The main difference between the
two answers from the author is the decision procedure, so we
decided to keep the second (more general) entry in our main
classification and list the two decision procedures explicitly.
We opted to write none for its physical time support, since
this is the trait of the specification language and BeepBeep 3
does not support metric specifications. The generation and

execution parts of the taxonomy have a very general descrip-
tion, hence understandably they are hard to discern. After
analysing the tool more closely we decided to classified as
implicitly generated and directly executed.

After considering DANA’s documentation, we concluded
that it focuses on events as the source of the trace information
(rather than on both events and states). The tool relies on
stereotyped UML state machines to specify allowed sequences
of events, which are obtained from messages generated by
the system through a mapping defined in the interface and
event definition models [70]. After studying the tool more
closely we decided to classify it as explicitly generated and
directly executed.

We treat detectEr’s partial completeness as completeness,
since the definition of completeness changes for each tool.
Still, we document its specification formalism’s supported
fragment in Table 1.

Larva supports dynamic automata with timers and events
(DATES) as its specification formalism. Since DATEs are
forward-reading automata, we classify Larva to support fu-
ture modalities. As for the properties of Larva’s decision
procedure, we did not have enough information to obtain
a definitive classification. We also added the support for
exceptions in Larva’s active reaction classification, which is
consistent with our classification of other tools where authors
provided a similar custom answer. After studying the tool
more closely we decided to classify it as explicitly generated.

Regarding MonPoly, we have classified it to additionally
provide witnesses as a part of its specification output, since
for each verdict it outputs bindings of free variables that
violate the specification. After a closer inspection of the tool,
we realised that MonPoly supports both discrete and dense
physical time. Interestingly, the classification entries from
multiple authors all claimed discrete time support only. We
also classified MonPoly as an implicitly generated monitor,
since it does not explicitly generate code for its input specifi-
cations. MonPoly processes events one by one as they arrive
(hence it is event-triggered) and it can be invoked (by means
of a flag) to monitor based on either MFOTLs finite or infinite
trace semantics. We also adopt a more refined description of
its decision procedure.

Finally, the TemPsy-Check’s companion tool provides
richer passive reaction (e.g., explanations), but not TemPsy-
Check itself. Hence, we opt for a more conservative classifica-
tion. Like in the case of MonPoly, we use a more descriptive
variant of the decision procedure.

5.3 Underpopulated Parts of the Taxonomy

The classification unveils parts of the taxonomy that are not
populated by any tools. We discuss the main ones here and
hypothesise as to why this might be the case.

https://bitbucket.org/traytel/aerial
http://github.com/selig/qea
https://bitbucket.org/traytel/aerial
https://bitbucket.org/traytel/aerial
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/liflab/beepbeep-3
https://github.com/liflab/beepbeep-3
https://www.dana.fraunhofer.de/
https://bitbucket.org/duncanatt/detecter-lite
https://github.com/ccol002/larva-rv-tool
https://github.com/ccol002/larva-rv-tool
https://github.com/ccol002/larva-rv-tool
https://github.com/ccol002/larva-rv-tool
https://sourceforge.net/projects/monpoly
https://sourceforge.net/projects/monpoly
https://sourceforge.net/projects/monpoly
https://sourceforge.net/projects/monpoly
https://github.com/weidou/TemPsy-Check
https://github.com/weidou/TemPsy-Check
https://github.com/weidou/TemPsy-Check
https://sourceforge.net/projects/monpoly

22

Y. Falcone et al.

Decentralised architecture. Decentralisation seems to be an
area that has not received much attention. It may be due to its
inherent complexity. There may also be inter-dependencies
with the monitoring setting (e.g. the language of interest)
that make such an approach more complex. Furthermore,
the selection of the RV tools based on the participation in
the competitions might have contributed to this topic being
underrepresented: the competitions did not focus on the
distributed setting.

Monitoring states. Only a small number of the tools in our
classification monitor states of a program directly. This could
be a result of the popularity of event-oriented specification
formalisms. It could also be caused by the bias of the RV
community (and thus our classification) towards tools with
explicit specifications, while many of the tools that support
implicit specifications work with state information. We have
remarked this in the paragraph on the threats to validity in Sec-
tion 4. Nevertheless, our classification provides an interesting
insight: the commonly stated dichotomy between observing
events or states is not reflected in practice. Furthermore, the
distinction between states and events is not always clear: it
is always possible to encode state as a pair of (start and end)
events, while some inline tools allow specifications to directly
query the current runtime state of the monitored system.

Richer reactions. Most tools only provide passive reactions
and the active reactions provided were fairly weak. It would
be interesting to see more work in the areas of enforcement,
recovery, and explanations for declarative specifications.

Hardware instrumentation. All the classified tools either
provide software instrumentation or no instrumentation at all.
We hypothesise that R2U?2 has some hardware instrumentation
capabilities due to its application area. However, we have not
received any direct input from the tool’s authors. Besides the
influence of the application area, hardware instrumentation
may arise from the monitor implementation technologies. For
instance, in approaches where monitors are compiled directly
to configurable hardware components.

Monitoring imprecise traces. None of the classified tools
support imprecision in their input traces. Approaches dealing
with some types of imprecision exist. For instance, monitoring
traces with imprecise timestamps [35], or traces with incom-
plete events or inconsistencies in event sources [34], or even
purposefully omitting events when sampling [155]. Authors
of the tools that support these ideas have not participated in
our questionnaire.

5.4 Relation to the Previous Taxonomy

We briefly compare our taxonomy to the previous most com-
plete taxonomy for runtime verification [64]. The context of
this taxonomy is slightly different as their focus was software-
fault monitoring. We have chosen to focus more on issues
related to the monitoring of explicit specifications and include
fewer operational issues. Delgado et al. identify four top-level
concepts: Specification, Monitor, Event-Handler, and Op-
erational Issues. Below we summarise the most significant
differences in each area.

Specification. In the previous taxonomy the focus is more
on the kind of property being captured (e.g. safety) and the
abstraction at which the property is captured (e.g. whether it
directly refers to implementation details). There is little discus-
sion on handling of data or modalities (although one concept
is language type which may be algebra, automata, logic, or
HL/VHL). They also consider which parts of a program are
(or can be) instrumented as part of the specification.

Monitor. Here, Delgado et al. again focus on the instrumenta-
tion, which this article does not consider in depth. We rather
tend to draw a clear line between instrumentation and moni-
toring. They differentiate whether instrumentation is manual
or automatic. The key observation here is that they view
placement slightly differently, as they classify monitoring
occurring using different resources (e.g. running in a different
process) as offline. We refer to [24] for a discussion on the
recent alternatives when considering instrumentation.

Event-Handler. This concept corresponds to our concept of
reaction and its sub-concepts are subsumed by ours.

Operational issues. This is a concept that we have not consid-
ered in our taxonomy. It focuses on different source program
types, i.e., the types of tools that can work in limited opera-
tional environments. For example, it is relevant whether an RV
tool only works with a monitored system written in Java, or
with a particular dependency available (e.g., a specific piece
of hardware). This concept emphasises the overall maturity
and usability of an RV tool.

While we think that our taxonomy would benefit from
such a concept, the classification of RV tools would become
significantly more difficult. In practice, we found that many
RV tools are actively developed and data relevant for this
concept may quickly become outdated.

Application areas. The chosen categories in the application
areas part of the taxonomy are somewhat subjective and
should be thought as examples. A rigorous classification of
application areas for runtime verification is out of the scope
of this article. We refer to [147] for a recent discussion on

http://temporallogic.org/research/R2U2/

A Taxonomy for Classifying Runtime Verification Tools

23

the future challenges of runtime verification in various appli-
cation areas categorised as distributed systems, hybrid and
embedded systems, hardware, security and privacy, transac-
tional information systems, contracts and policies, and huge,
reliable or approximated domains.

6 Conclusion and Future Work

We have introduced a taxonomy for classifying runtime verifi-
cation tools and used it to classify 60 tools. To our knowledge,
this is the most comprehensive classification of existing
runtime verification tools.

We believe that the proposed taxonomy and the clas-
sification activity carried out in this article are important
for a number of reasons. Firstly, the taxonomy fixes shared
terminology and dimensions for discussing RV tools — it is
very important that the community has a shared language for
what it does. Secondly, the classification exercise gives an
overview of comparable tools, making it more straightforward
to identify the tools against which new contributions should
be compared. Additionally, the taxonomy can help shape
evaluation and benchmark activities in general, in particular
the design of competitions. Finally, we believe this kind of
activity can identify interesting directions for future research,
in particular in underpopulated areas of the taxonomy.

We consider our work ongoing and plan to continue
refining the proposed taxonomy and extending the tool classi-
fication with new tools. We are also working on a visualisation
tool that would provide an easier way to interactively browse,
update, and extend the taxonomy and the classification.

Acknowledgement. The authors warmly thank Martin Leucker
for the early discussions on the taxonomy and its mind map
representation. This article is based on work from COST
Action ARVI IC1402 [4], supported by COST (European
Cooperation in Science and Technology). In particular, the
taxonomy and classification benefited from discussions within
working groups one and two of this action. We would also like
to acknowledge input from participants of Dagstuhl seminar
17462 [95]. We thank anonymous RV and STTT reviewers
for their input that helped us to improve the presentation
of this work and to refine the taxonomy. Finally, we would
like to thank all the tool authors who contributed to the tool
classification. The research is partially supported by the Swiss
National Science Foundation grant "Big Data Monitoring"
(167162), the US Air Force grant “Monitoring at Any Cost”
(FA9550-17-1-0306), and by H2020-ECSEL grants CPS4EU
2018-IA call - Grant Agreement number 826276.

References

1. 1C1402 Runtime Verification beyond Monitoring (ARVI). https:
//www.cost-arvi.eu/

10.

12.

13.

. Xposed. URL https://repo.xposed.info/
. Ahishakiye, F., Jaksic, S., Lange, F.D., Schmitz, M., Stolz, V.,

Thoma, D.: Non-intrusive MC/DC measurement based on traces.
In: D. Méry, S. Qin (eds.) 2019 International Symposium on
Theoretical Aspects of Software Engineering, TASE 2019, Guilin,
China, July 29-31, 2019, pp. 86-92. IEEE (2019). DOI 10.1109/
TASE.2019.00-15

. Ahrendt, W., Artho, C., Colombo, C., Falcone, Y., Krsti¢, S.,

Leucker, M., Lorber, F., Lourenco, J., Mariani, L., Sanchez, C.,
Schneider, G., Stolz, V.: COST action IC1402 ARVI: Runtime
verification beyond monitoring — activity report of working group 1.
CoRR abs/1902.03776 (2019)

. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Ferndndez-

Moctezuma, R., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt,
E., Whittle, S.: The dataflow model: A practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. PVLDB 8(12), 1792-1803 (2015)

. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace ex-

pressions and linear temporal logic for runtime verification. In:
E. Abrahdm, M.M. Bonsangue, E.B. Johnsen (eds.) Theory and
Practice of Formal Methods - Essays Dedicated to Frank de Boer
on the Occasion of His 60th Birthday, LNCS, vol. 9660, pp. 47-64.
Springer (2016)

. Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime

verification of multiagent systems. In: K. Larson, M. Winikoft,
S. Das, E.H. Durfee (eds.) Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
Sao Paulo, Brazil, May 8-12, 2017, pp. 1457-1459. ACM (2017)

. Artho, C., Seidl, M., Gros, Q., Choi, E., Kitamura, T., Mori, A.,

Ramler, R., Yamagata, Y.: Model-based testing of stateful apis
with modbat. In: M.B. Cohen, L. Grunske, M. Whalen (eds.)
30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
pp. 858-863. IEEE Computer Society (2015)

. Artho, C.V,, Biere, A., Hagiya, M., Platon, E., Seidl, M., Tanabe,

Y., Yamamoto, M.: Modbat: A model-based API tester for event-
driven systems. In: V. Bertacco, A. Legay (eds.) Hardware
and Software: Verification and Testing - 9th International Haifa
Verification Conference, HVC 2013, Haifa, Israel, November 5-7,
2013, Proceedings, LNCS, vol. 8244, pp. 112-128. Springer (2013)
Attard, D.P., Francalanza, A.: A monitoring tool for a branching-
time logic. In: Y. Falcone, C. Sanchez (eds.) Runtime Verification
- 16th International Conference, RV 2016, Madrid, Spain, Septem-
ber 23-30, 2016, Proceedings, LNCS, vol. 10012, pp. 473—48]1.
Springer (2016)

. Attard, D.P,, Francalanza, A.: Trace partitioning and local monitor-

ing for asynchronous components. In: A. Cimatti, M. Sirjani (eds.)
Software Engineering and Formal Methods - 15th International
Conference, SEFM 2017, Trento, Italy, September 4-8, 2017,
Proceedings, LNCS, vol. 10469, pp. 219-235. Springer (2017)
Azzopardi, S., Colombo, C., Ebejer, J.P., Mallia, E., Pace, G.:
Runtime verification using VALOUR. In: G. Reger, K. Havelund
(eds.) RV-CuBES 2017, Kalpa Publications in Computing, vol. 3,
pp. 10-18. EasyChair (2017)

Babenko, A., Mariani, L., Pastore, F.: AVA: automated interpreta-
tion of dynamically detected anomalies. In: G. Rothermel, L.K.
Dillon (eds.) Proceedings of the Eighteenth International Sympo-
sium on Software Testing and Analysis, ISSTA 2009, Chicago, IL,
USA, July 19-23, 2009, pp. 237-248. ACM (2009)

. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,

D.E.: Quantified event automata: Towards expressive and efficient
runtime monitors. In: D. Giannakopoulou, D. Méry (eds.) FM
2012, LNCS, vol. 7436, pp. 68-84. Springer (2012)

https://www.cost-arvi.eu/
https://www.cost-arvi.eu/
https://repo.xposed.info/

24

Y. Falcone et al.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program
monitoring with LTL in EAGLE. In: 18th International Parallel
and Distributed Processing Symposium (IPDPS 2004), CD-ROM
/ Abstracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico,
USA. IEEE Computer Society (2004)

Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based
runtime verification. In: B. Steffen, G. Levi (eds.) Verification,
Model Checking, and Abstract Interpretation, Sth International
Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004,
Proceedings, LNCS, vol. 2937, pp. 44-57. Springer (2004)
Barringer, H., Groce, A., Havelund, K., Smith, M.H.: An entry
point for formal methods: Specification and analysis of event logs.
In: M.L. Bujorianu, M. Fisher (eds.) Proceedings FM-09 Workshop
on Formal Methods for Aerospace, FMA 2009, Eindhoven, The
Netherlands, 3rd November 2009., EPTCS, vol. 20, pp. 16-21
(2009)

Barringer, H., Groce, A., Havelund, K., Smith, M.H.: Formal
analysis of log files. JACIC 7(11), 365-390 (2010)

Barringer, H., Havelund, K.: Tracecontract: A scala DSL for trace
analysis. In: M.J. Butler, W. Schulte (eds.) FM 2011: Formal
Methods - 17th International Symposium on Formal Methods,
Limerick, Ireland, June 20-24, 2011. Proceedings, LNCS, vol.
6664, pp. 57-72. Springer (2011)

Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for
run-time monitoring: from eagle to ruler. J. Log. Comput. 20(3),
675-706 (2010)

Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international
competition on software for runtime verification. In: B. Bonakdar-
pour, S.A. Smolka (eds.) Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25,
2014. Proceedings, LNCS, vol. 8734, pp. 1-9. Springer (2014)
Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification
- Introductory and Advanced Topics, LNCS, vol. 10457. Springer
(2018)

Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker,
N., Havelund, K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger,
G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E., Zhang,
Y.: First international competition on runtime verification: rules,
benchmarks, tools, and final results of CRV 2014. STTT pp. 1-40
(2017)

Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction
to runtime verification. In: E. Bartocci, Y. Falcone (eds.) Lectures
on Runtime Verification - Introductory and Advanced Topics,
LNCS, vol. 10457, pp. 1-33. Springer (2018)

Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Nick-
ovic, D.: Automatic failure explanation in CPS models. CoRR
abs/1903.12468 (2019). URL http://arxiv.org/abs/1903.
12468

Basin, D., Bhatt, B.N., Krsti¢, S., Traytel, D.: Almost event-rate
independent monitoring. Formal Methods in System Design
(2019)

Basin, D., Bhatt, B.N., Traytel, D.: Almost event-rate independent
monitoring of metric temporal logic. In: A. Legay, T. Margaria
(eds.) TACAS 2017, LNCS, vol. 10206, pp. 94-112. Springer
(2017)

Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: MONPOLY:
monitoring usage-control policies. In: S. Khurshid, K. Sen (eds.)
RV 2011, LNCS, vol. 7186, pp. 360-364. Springer (2011)

Basin, D., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of
temporal first-order properties with aggregations. Formal Methods
in System Design 46(3), 262-285 (2015)

Basin, D., Klaedtke, F., Miiller, S., Zalinescu, E.: Monitoring
metric first-order temporal properties. J. ACM 62(2), 15:1-15:45
(2015)

Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring
tool. In: G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa
Publications in Computing, vol. 3, pp. 19-28. EasyChair (2017)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Basin, D., Krsti¢, S., Traytel, D.: AERIAL: almost event-rate inde-
pendent algorithms for monitoring metric regular properties. In:
G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa Publications
in Computing, vol. 3, pp. 29-36. EasyChair (2017)

Basin, D., Krsti¢, S., Traytel, D.: Almost event-rate independent
monitoring of metric dynamic logic. In: S.K. Lahiri, G. Reger
(eds.) RV 2017, LNCS, vol. 10548, pp. 85-102. Springer (2017)
Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitor-
ing compliance policies over incomplete and disagreeing logs. In:
S. Qadeer, S. Tasiran (eds.) Runtime Verification, Third Interna-
tional Conference, RV 2012, Istanbul, Turkey, September 25-28,
2012, Revised Selected Papers, LNCS, vol. 7687, pp. 151-167.
Springer (2012)

Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: On real-
time monitoring with imprecise timestamps. In: B. Bonakdarpour,
S.A. Smolka (eds.) Runtime Verification - 5th International Con-
ference, RV 2014, Toronto, ON, Canada, September 22-25, 2014.
Proceedings, LNCS, vol. 8734, pp. 193—198. Springer (2014)
Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal
Methods in System Design 48(1-2), 46-93 (2016)

Bersani, M.M., Bianculli, D., Ghezzi, C., Krstié¢, S., San Pietro,
P.: SMT-based checking of SOLOIST over sparse traces. In:
S. Gnesi, A. Rensink (eds.) Fundamental Approaches to Software
Engineering - 17th International Conference, FASE 2014, Held as
Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, LNCS, vol. 8411, pp. 276-290. Springer (2014)
Bersani, M.M., Bianculli, D., Ghezzi, C., Krstié, S., San Pietro,
P.: Efficient large-scale trace checking using mapreduce. In: L.K.
Dillon, W. Visser, L. Williams (eds.) Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, pp. 888-898. ACM (2016)
Bianculli, D., Ghezzi, C., Krsti¢, S.: Trace checking of metric
temporal logic with aggregating modalities using mapreduce. In:
D. Giannakopoulou, G. Salaiin (eds.) Software Engineering and
Formal Methods - 12th International Conference, SEFM 2014,
Grenoble, France, September 1-5, 2014. Proceedings, LNCS, vol.
8702, pp. 144-158. Springer (2014)

Bianculli, D., Ghezzi, C., Krstié¢, S., San Pietro, P.: Offline trace
checking of quantitative properties of service-based applications.
In: 7th IEEE International Conference on Service-Oriented Com-
puting and Applications, SOCA 2014, Matsue, Japan, November
17-19, 2014, pp. 9-16. IEEE Computer Society (2014)

Bianculli, D., Ghezzi, C., San Pietro, P.: The tale of SOLOIST: A
specification language for service compositions interactions. In:
C.S. Pasareanu, G. Salaiin (eds.) Formal Aspects of Component
Software, 9th International Symposium, FACS 2012, Mountain
View, CA, USA, September 12-14,2012. Revised Selected Papers,
LNCS, vol. 7684, pp. 55-72. Springer (2012)

Blein, Y., Ledru, Y., du Bousquet, L., Groz, R.: Extending specifi-
cation patterns for verification of parametric traces. In: S. Gnesi,
N. Plat, P. Spoletini, P. Pelliccione (eds.) Proceedings of the 6th
Conference on Formal Methods in Software Engineering, For-
maliSE 2018, collocated with ICSE 2018, Gothenburg, Sweden,
June 2, 2018, pp. 10-19. ACM (2018)

Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Time-triggered
runtime verification. Formal Methods in System Design 43(1),
29-60 (2013)

Carle, P., Choppy, C., Kervarc, R.: Behaviour recognition using
chronicles. In: Z. Duan, C.L. Ong (eds.) 5th IEEE International
Symposium on Theoretical Aspects of Software Engineering,
TASE 2011, Xi’an, China, 29-31 August 2011, pp. 100-107. IEEE
Computer Society (2011)

Carle, P., Choppy, C., Kervarc, R., Piel, A.: Handling breakdowns
in unmanned aircraft systems. In: FM 2012: Formal Methods
- 18th International Symposium - Doctoral Symposium, Paris,
France, August 27-31, 2012. Proceedings (2012)

http://arxiv.org/abs/1903.12468
http://arxiv.org/abs/1903.12468

A Taxonomy for Classifying Runtime Verification Tools

25

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

Carle, P., Choppy, C., Kervarc, R., Piel, A.: Safety of unmanned
aircraft systems facing multiple breakdowns. In: C. Choppy, J. Sun
(eds.) 1st French Singaporean Workshop on Formal Methods
and Applications, FSFMA 2013, July 15-16, 2013, Singapore,
OASICS, vol. 31, pp. 86-91. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2013)

Cassar, 1., Francalanza, A.: Runtime adaptation for actor systems.
In: E. Bartocci, R. Majumdar (eds.) Runtime Verification - 6th
International Conference, RV 2015 Vienna, Austria, September
22-25, 2015. Proceedings, LNCS, vol. 9333, pp. 38-54. Springer
(2015)

Cassar, I., Francalanza, A.: On implementing a monitor-oriented
programming framework for actor systems. In: E. Abrahdm,
M. Huisman (eds.) Integrated Formal Methods - 12th Interna-
tional Conference, IFM 2016, Reykjavik, Iceland, June 1-5, 2016,
Proceedings, LNCS, vol. 9681, pp. 176-192. Springer (2016)
Cassar, 1., Francalanza, A., Attard, D.P., Aceto, L., Ingdlfsd6t-
tir, A.: A generic instrumentation tool for Erlang. In: G. Reger,
K. Havelund (eds.) RV-CuBES 2017. An International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Stan-
dardisation for Runtime Verification Tools, September 15, 2017,
Seattle, WA, USA, Kalpa Publications in Computing, vol. 3, pp.
48-54. EasyChair (2017)

Cassar, L., Francalanza, A., Attard, D.P., Aceto, L., Ing6lfsdéttir, A.:
A suite of monitoring tools for Erlang. In: G. Reger, K. Havelund
(eds.) RV-CuBES 2017, Kalpa Publications in Computing, vol. 3,
pp- 41-47. EasyChair (2017)

Cheikh, A.B., Blein, Y., Chehida, S., Vega, G., Ledru, Y., du Bous-
quet, L.: An environment for the partrap trace property language
(tool demonstration). In: C. Colombo, M. Leucker (eds.) Runtime
Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings, LNCS, vol. 11237,
pp- 437-446. Springer (2018)

Cohen, S.: JTrek (2000). Developed by Compaq

Cok, D.R.: OpenJML: Software verification for Java 7 using
JML, OpenJDK, and Eclipse. In: C. Dubois, D. Giannakopoulou,
D. Méry (eds.) Proceedings 1st Workshop on Formal Integrated
Development Environment, F-IDE 2014, Grenoble, France, April
6,2014., EPTCS, vol. 149, pp. 79-92 (2014)

Colombo, C., Falcone, Y.: First international summer school on
runtime verification - as part of the ARVI COST action 1402.
In: Y. Falcone, C. Sanchez (eds.) Runtime Verification - 16th
International Conference, RV 2016, Madrid, Spain, September
23-30, 2016, Proceedings, LNCS, vol. 10012, pp. 17-20. Springer
(2016)

Colombo, C., Falcone, Y.: Organising LTL monitors over dis-
tributed systems with a global clock. Formal Methods in System
Design 49(1-2), 109-158 (2016)

Colombo, C., Pace, G.J.: Runtime verification using LARVA. In:
G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa Publications
in Computing, vol. 3, pp. 55-63. EasyChair (2017)

Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based
runtime monitoring of real-time and contextual properties. In:
D.D. Cofer, A. Fantechi (eds.) FMICS 2008, LNCS, vol. 5596, pp.
135-149. Springer (2008)

Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer mon-
itoring of real-time java programs (tool paper). In: D.V. Hung,
P. Krishnan (eds.) SEFM 2009, pp. 33-37. IEEE Computer Society
(2009)

DeAntoni, J., Mallet, F.: Timesquare: Treat your models with
logical time. In: C.A. Furia, S. Nanz (eds.) TOOLS 2012, LNCS,
vol. 7304, pp. 34-41. Springer (2012)

Decker, N., Harder, J., Scheffel, T., Schmitz, M., Thoma, D.:
Runtime monitoring with union-find structures. In: M. Chechik,
J. Raskin (eds.) TACAS 2016, LNCS, vol. 9636, pp. 868—884.
Springer (2016)

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Decker, N., Leucker, M., Thoma, D.: jUnit'V-adding runtime
verification to jUnit. In: G. Brat, N. Rungta, A. Venet (eds.) NFM
2013, LNCS, vol. 7871, pp. 459-464. Springer (2013)

Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories.
STTT 18(2), 205-225 (2016)

Delahaye, M., Kosmatov, N., Signoles, J.: Common specification
language for static and dynamic analysis of C programs. In: S.Y.
Shin, J.C. Maldonado (eds.) SAC 2013, pp. 1230-1235. ACM
(2013)

Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of
runtime software-fault monitoring tools. IEEE Trans. Software
Eng. 30(12), 859-872 (2004)

Diaz, A., Merino, P., Salmerén, A.: Obtaining models for realistic
mobile network simulations using real traces. IEEE Communica-
tions Letters 15(7), 782-784 (2011)

Donzé, A.: Breach, A toolbox for verification and parameter syn-
thesis of hybrid systems. In: T. Touili, B. Cook, P.B. Jackson
(eds.) Computer Aided Verification, 22nd International Confer-
ence, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,
LNCS, vol. 6174, pp. 167-170. Springer (2010)

Donzé, A., Ferrere, T., Maler, O.: Efficient robust monitoring
for STL. In: N. Sharygina, H. Veith (eds.) Computer Aided
Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, LNCS, vol.
8044, pp. 264-279. Springer (2013)

Dou, W., Bianculli, D., Briand, L.: TemPsy-Check: a tool for model-
driven trace checking of pattern-based temporal properties. In:
G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa Publications
in Computing, vol. 3, pp. 64—70. EasyChair (2017)

Dou, W., Bianculli, D., Briand, L.C.: A model-driven approach
to trace checking of pattern-based temporal properties. In: 20th
ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS 2017, Austin, TX, USA,
September 17-22, 2017, pp. 323-333. IEEE Computer Society
(2017)

Drabek, C., Weiss, G.: DANA — description and analysis of
networked applications. In: G. Reger, K. Havelund (eds.) RV-
CuBES 2017, Kalpa Publications in Computing, vol. 3, pp. 71-80.
EasyChair (2017)

Drusinsky, D.: Modeling and Verification Using UML Statecharts:
A Working Guide to Reactive System Design, Runtime Monitoring
and Execution-based Model Checking. Newnes, Newton, MA,
USA (2006)

El-Hokayem, A., Falcone, Y.: Monitoring decentralized speci-
fications. In: T. Bultan, K. Sen (eds.) Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing
and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pp.
125-135. ACM (2017)

El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized
monitoring algorithms. In: T. Bultan, K. Sen (eds.) Proceedings of
the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,2017,
pp- 372-375. ACM (2017)

El-Hokayem, A., Falcone, Y.: On the monitoring of decentralized
specifications: Semantics, properties, analysis, and simulation.
ACM Trans. Softw. Eng. Methodol. 29(1), 1:1-1:57 (2020). DOI

10.1145/3355181

Ellul, J., Pace, G.J.: Runtime verification of ethereum smart
contracts. In: 14th European Dependable Computing Conference,
EDCC 2018, Iasi, Romania, September 10-14, 2018, pp. 158-163.
IEEE Computer Society (2018)

Falcone, Y.: You should better enforce than verify. In: H. Barringer,
Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G.J. Pace, G. Rosu,
0. Sokolsky, N. Tillmann (eds.) Runtime Verification - First
International Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, LNCS, vol. 6418, pp. 89-105. Springer
(2010)

26

Y. Falcone et al.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Falcone, Y.: Second school on runtime verification, as part of the
arvi COST action 1402 - overview and reflections. In: Runtime
Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings, pp. 27-32 (2018).
DOI 10.1007/978-3-030-03769-7_3

Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime
verification. In: M. Broy, D.A. Peled, G. Kalus (eds.) Engineering
Dependable Software Systems, NATO SPS D: Information and
Communication Security, vol. 34, pp. 141-175. 10S Press (2013)
Falcone, Y., Krsti¢, S., Reger, G., Traytel, D.: A taxonomy for
classifying runtime verification tools. In: International Conference
on Runtime Verification, pp. 241-262. Springer (2018)

Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure
prevention and reaction. In: Bartocci and Falcone [22], pp. 103—
134. DOI 10.1007/978-3-319-75632-5_4

Falcone, Y., Nickovic, D., Reger, G., Thoma, D.: Second in-
ternational competition on runtime verification CRV 2015. In:
E. Bartocci, R. Majumdar (eds.) RV 2015, LNCS, vol. 9333, pp.
405-422. Springer (2015)

Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M.,
Stenger, M., Tentrup, L., Torfah, H.: Streamlab: Stream-based
monitoring of cyber-physical systems. In: I. Dillig, S. Tasiran (eds.)
Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, LNCS, vol. 11561, pp. 421-431. Springer (2019)
Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper : A
runtime verification tool for temporal hyperproperties. In: Tools
and Algorithms for the Construction and Analysis of Systems
- 24th International Conference, TACAS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, Part II, pp. 194-200 (2018)

Francalanza, A., Aceto, L., Ing6lfsdéttir, A.: Monitorability for
the hennessy-milner logic with recursion. Formal Methods in
System Design 51(1), 87-116 (2017)

Francalanza, A., Pérez, J.A., Sianchez, C.: Runtime verification
for decentralised and distributed systems. In: E. Bartocci, Y. Fal-
cone (eds.) Lectures on Runtime Verification - Introductory and
Advanced Topics, LNCS, vol. 10457, pp. 176-210. Springer (2018)
Goldberg, A., Havelund, K.: Automated runtime verification
with eagle. In: U. Ultes-Nitsche, J.C. Augusto, J. Barjis (eds.)
Modelling, Simulation, Verification and Validation of Enterprise
Information Systems, Proceedings of the 3rd International Work-
shop on Modelling, Simulation, Verification and Validation of
Enterprise Information Systems, MSVVEIS 2005, In conjunction
with ICEIS 2005, Miami, FL, USA, May 2005. INSTICC Press
(2005)

Gorostiaga, F., Sanchez, C.: Striver: Stream runtime verification
for real-time event-streams. In: C. Colombo, M. Leucker (eds.)
Runtime Verification - 18th International Conference, RV 2018,
Limassol, Cyprus, November 10-13, 2018, Proceedings, LNCS,
vol. 11237, pp. 282-298. Springer (2018)

Goubault-Larrecq, J., Lachance, J.: On the complexity of monitor-
ing orchids signatures, and recurrence equations. Formal Methods
in System Design 53(1), 6-32 (2018)

Goubault-Larrecq, J., Olivain, J.: A smell of orchids. In:
M. Leucker (ed.) Runtime Verification, 8th International Work-
shop, RV 2008, Budapest, Hungary, March 30, 2008. Selected
Papers, LNCS, vol. 5289, pp. 1-20. Springer (2008)

Groce, A., Havelund, K., Smith, M.H.: From scripts to specifica-
tions: the evolution of a flight software testing effort. In: J. Kramer,
J. Bishop, P.T. Devanbu, S. Uchitel (eds.) Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -
Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010,
pp- 129-138. ACM (2010)

Hallé, S.: When RV meets CEP. In: Y. Falcone, C. Sanchez (eds.)
RV 2016, LNCS, vol. 10012, pp. 68-91. Springer (2016)

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Hallé, S., Khoury, R.: Event stream processing with BeepBeep
3. In: G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa
Publications in Computing, vol. 3, pp. 81-88. EasyChair (2017)
Havelund, K.: Runtime verification of C programs. In: K. Suzuki,
T. Higashino, A. Ulrich, T. Hasegawa (eds.) Testing of Software and
Communicating Systems, 20th IFIP TC 6/WG 6.1 International
Conference, TestCom 2008, 8th International Workshop, FATES
2008, Tokyo, Japan, June 10-13, 2008, Proceedings, LNCS, vol.
5047, pp. 7-22. Springer (2008)

Havelund, K.: Rule-based runtime verification revisited. STTT
17(2), 143-170 (2015)

Havelund, K., Leucker, M., Reger, G., Stolz, V.: A shared challenge
in behavioural specification (Dagstuhl seminar 17462). Dagstuhl
Reports 7(11), 59-85 (2017)

Havelund, K., Peled, D.: Bdds on the run. In: T. Margaria, B. Steffen
(eds.) Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings,
Part IV, LNCS, vol. 11247, pp. 58-69. Springer (2018)
Havelund, K., Peled, D.: Efficient runtime verification of first-order
temporal properties. In: M. Gallardo, P. Merino (eds.) Model
Checking Software - 25th International Symposium, SPIN 2018,
Malaga, Spain, June 20-22, 2018, Proceedings, LNCS, vol. 10869,
pp. 26-47. Springer (2018)

Havelund, K., Peled, D.: Runtime verification: From propositional
to first-order temporal logic. In: C. Colombo, M. Leucker (eds.)
Runtime Verification - 18th International Conference, RV 2018,
Limassol, Cyprus, November 10-13, 2018, Proceedings, LNCS,
vol. 11237, pp. 90-112. Springer (2018)

Havelund, K., Peled, D., Ulus, D.: First order temporal logic
monitoring with bdds. In: 2017 Formal Methods in Computer
Aided Design (FMCAD), pp. 116-123 (2017)

Havelund, K., Peled, D., Ulus, D.: Dejavu: A monitoring tool for
first-order temporal logic. In: 3rd Workshop on Monitoring and
Testing of Cyber-Physical Systems, MT@CPSWeek 2018, Porto,
Portugal, April 10, 2018, pp. 12-13. IEEE (2018)

Havelund, K., Reger, G.: Runtime verification logics A language
design perspective. In: Models, Algorithms, Logics and Tools -
Essays Dedicated to Kim Guldstrand Larsen on the Occasion of
His 60th Birthday, pp. 310-338 (2017)

Havelund, K., Rosu, G.: Monitoring java programs with java
pathexplorer. Electr. Notes Theor. Comput. Sci. 55(2), 200-217
(2001)

Havelund, K., Rosu, G.: Synthesizing monitors for safety prop-
erties. In: J. Katoen, P. Stevens (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, 8th International
Conference, TACAS 2002, Held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2002,
Grenoble, France, April 8-12, 2002, Proceedings, LNCS, vol. 2280,
pp. 342-356. Springer (2002)

Havelund, K., Rosu, G.: Efficient monitoring of safety properties.
STTT 6(2), 158-173 (2004)

Havelund, K., Rosu, G.: An overview of the runtime verification
tool java pathexplorer. Formal Methods in System Design 24(2),
189-215 (2004)

Jakse, R., Falcone, Y., Méhaut, J., Pouget, K.: Interactive run-
time verification - when interactive debugging meets runtime
verification. In: 28th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2017, Toulouse, France, October
23-26, 2017, pp. 182-193. IEEE Computer Society (2017). DOI
10.1109/ISSRE.2017.19. URL https://doi.org/10.1109/
ISSRE.2017.19

Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: Efficient
parametric runtime monitoring framework. In: M. Glinz, G.C.
Murphy, M. Pezze (eds.) ICSE 2012, pp. 1427-1430. IEEE Com-
puter Society (2012)

https://doi.org/10.1109/ISSRE.2017.19
https://doi.org/10.1109/ISSRE.2017.19

A Taxonomy for Classifying Runtime Verification Tools

27

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

Kane, A.: Runtime monitoring for safety-critical embedded sys-
tems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, USA
(2015). URL https://dx.doi.org/10.1184/R1/6721376.
vl

Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study
on runtime monitoring of an autonomous research vehicle (ARV)
system. In: E. Bartocci, R. Majumdar (eds.) Runtime Verification -
6th International Conference, RV 2015 Vienna, Austria, September
22-25,2015. Proceedings, LNCS, vol. 9333, pp. 102-117. Springer
(2015)

Kauffman, S., Fischmeister, S.: Event stream abstraction using nfer:
demo abstract. In: X. Liu, P. Tabuada, M. Pajic, L. Bushnell (eds.)
Proceedings of the 10th ACM/IEEE International Conference on
Cyber-Physical Systems, ICCPS 2019, Montreal, QC, Canada,
April 16-18, 2019, pp. 332-333. ACM (2019)

Kauffman, S., Havelund, K., Joshi, R.: nfer - A notation and system
for inferring event stream abstractions. In: Y. Falcone, C. Sdnchez
(eds.) Runtime Verification - 16th International Conference, RV
2016, Madrid, Spain, September 23-30, 2016, Proceedings, LNCS,
vol. 10012, pp. 235-250. Springer (2016)

Kauffman, S., Havelund, K., Joshi, R., Fischmeister, S.: Inferring
event stream abstractions. Formal Methods in System Design
53(1), 54-82 (2018)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W.G.: An overview of aspectj. In: J.L. Knudsen (ed.)
ECOOP 2001 - Object-Oriented Programming, 15th European
Conference, Budapest, Hungary, June 18-22, 2001, Proceedings,
LNCS, vol. 2072, pp. 327-353. Springer (2001)

Leucker, M., Sdnchez, C., Scheffel, T., Schmitz, M., Schramm, A.:
Tessla: runtime verification of non-synchronized real-time streams.
In: H.M. Haddad, R.L. Wainwright, R. Chbeir (eds.) Proceedings
of the 33rd Annual ACM Symposium on Applied Computing,
SAC 2018, Pau, France, April 09-13, 2018, pp. 1925-1933. ACM
(2018)

Leucker, M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebr. Program. 78(5), 293-303 (2009)

Lourenco, J.M., Fiedor, J., Krena, B., Vojnar, T.: Discovering
concurrency errors. In: E. Bartocci, Y. Falcone (eds.) Lectures on
Runtime Verification - Introductory and Advanced Topics, LNCS,
vol. 10457, pp. 34—60. Springer (2018)

Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O., Serbanuta, T.,
Rosu, G.: RV-Monitor: efficient parametric runtime verification
with simultaneous properties. In: B. Bonakdarpour, S.A. Smolka
(eds.) RV 2014, LNCS, vol. 8734, pp. 285-300. Springer (2014)
Mariani, L., Pastore, F., Pezz¢, M.: Dynamic analysis for diagnos-
ing integration faults. IEEE Trans. Software Eng. 37(4), 486-508
(2011)

Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An
overview of the MOP runtime verification framework. STTT
14(3), 249-289 (2012)

Milewicz, R., Vanka, R., Tuck, J., Quinlan, D., Pirkelbauer, P.:
Lightweight runtime checking of C programs with RTC. Comput.
Lang. Syst. Str. 45, 191-203 (2016)

Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring
and diagnosis of security threats for unmanned aerial systems.
Form. Methods Sys. Des. 51(1), 31-61 (2017)

Navabpour, S., Joshi, Y., Wu, C.W.W., Berkovich, S., Medhat, R.,
Bonakdarpour, B., Fischmeister, S.: RITHM: a tool for enabling
time-triggered runtime verification for C programs. In: B. Meyer,
L. Baresi, M. Mezini (eds.) ESEC/FSE 2013, pp. 603-606. ACM
(2013)

Olivain, J., Goubault-Larrecq, J.: The orchids intrusion detection
tool. In: K. Etessami, S.K. Rajamani (eds.) Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings, LNCS, vol. 3576, pp.
286-290. Springer (2005)

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Pastore, F., Mariani, L.: AVA: supporting debugging with fail-
ure interpretations. In: Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Lux-
embourg, Luxembourg, March 18-22, 2013, pp. 416-421. IEEE
Computer Society (2013)

Pastore, F., Mariani, L., Goffi, A., Oriol, M., Wahler, M.: Dynamic
analysis of upgrades in C/C++ software. In: 23rd IEEE Interna-
tional Symposium on Software Reliability Engineering, ISSRE
2012, Dallas, TX, USA, November 27-30, 2012, pp. 91-100. IEEE
Computer Society (2012)

Pastore, F., Mariani, L., Goffi, A., Oriol, M., Wahler, M.: RADAR:
dynamic analysis of upgrades in C/C++ software. In: H. Chock-
ler, D. Kroening, L. Mariani, N. Sharygina (eds.) Validation of
Evolving Software, pp. 85-105. Springer (2015)

Piel, A.: Reconnaissance de comportements complexes par traite-
ment en ligne de flux d’événements. (Online event flow processing
for complex behaviour recognition). Ph.D. thesis, Paris 13 Uni-
versity, Villetaneuse, Saint-Denis, Bobigny, France (2014). URL
https://tel.archives-ouvertes.fr/tel-01262245
Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Tipex: A tool
chain for timed property enforcement during execution. In: E. Bar-
tocci, R. Majumdar (eds.) Runtime Verification - 6th International
Conference, RV 2015 Vienna, Austria, September 22-25, 2015.
Proceedings, LNCS, vol. 9333, pp. 306-320. Springer (2015)
Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A.,
Nguena-Timo, O.: Runtime enforcement of timed properties revis-
ited. Formal Methods in System Design 45(3), 381-422 (2014)
Pnueli, A., Zaks, A.: PSL model checking and run-time verification
via testers. In: J. Misra, T. Nipkow, E. Sekerinski (eds.) FM
2006: Formal Methods, 14th International Symposium on Formal
Methods, Hamilton, Canada, August 21-27, 2006, Proceedings,
LNCS, vol. 4085, pp. 573-586. Springer (2006). DOI 10.1007/
11813040_38

Pnueli, A., Zaks, A.: On the merits of temporal testers. In:
O. Grumberg, H. Veith (eds.) 25 Years of Model Checking -
History, Achievements, Perspectives, LNCS, vol. 5000, pp. 172—
195. Springer (2008)

Rapin, N.: Reactive property monitoring of hybrid systems with ag-
gregation. In: Y. Falcone, C. Sdnchez (eds.) Runtime Verification
- 16th International Conference, RV 2016, Madrid, Spain, Septem-
ber 23-30, 2016, Proceedings, LNCS, vol. 10012, pp. 447-453.
Springer (2016)

Rapin, N.: ARTiMon monitoring tool, the time domains. In:
G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa Publications
in Computing, vol. 3, pp. 106—122. EasyChair (2017)

Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of
metric dynamic logic. In: D.V. Hung, O. Sokolsky (eds.) ATVA
2020, LNCS, vol. 12302. Springer (2020). To appear.

Raszyk, M., Basin, D.A., Krstic, S., Traytel, D.: Multi-head
monitoring of metric temporal logic. In: Y. Chen, C. Cheng,
J. Esparza (eds.) ATVA 2019, LNCS, vol. 11781, pp. 151-170.
Springer (2019)

Reger, G.: An overview of MarQ. In: Y. Falcone, C. Sénchez (eds.)
RV 2016, LNCS, vol. 10012, pp. 498-503. Springer (2016)
Reger, G.: A report of RV-CuBES 2017. In: G. Reger, K. Havelund
(eds.) RV-CuBES 2017, Kalpa Publications in Computing, vol. 3,
pp. 1-9. EasyChair (2017)

Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: monitoring at
runtime with QEA. In: C. Baier, C. Tinelli (eds.) TACAS 2015,
LNCS, vol. 9035, pp. 596-610. Springer (2015)

Reger, G., Hallé, S., Falcone, Y.: Third international competition
on runtime verification - CRV 2016. In: Y. Falcone, C. Sianchez
(eds.) RV 2016, LNCS, vol. 10012, pp. 21-37. Springer (2016)
Reger, G., Havelund, K. (eds.): RV-CuBES 2017. An International
Workshop on Competitions, Usability, Benchmarks, Evaluation,
and Standardisation for Runtime Verification Tools, Kalpa Publi-
cations in Computing, vol. 3. EasyChair (2017)

https://dx.doi.org/10.1184/R1/6721376.v1
https://dx.doi.org/10.1184/R1/6721376.v1
https://tel.archives-ouvertes.fr/tel-01262245

28

Y. Falcone et al.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based
runtime observer pairs for system health management of real-time
systems. In: E. Abrahdm, K. Havelund (eds.) TACAS 2014, LNCS,
vol. 8413, pp. 357-372. Springer (2014)

Renard, M., Rollet, A., Falcone, Y.: GREP: games for the runtime
enforcement of properties. In: N. Yevtushenko, A.R. Cavalli,
H. Yenigiin (eds.) Testing Software and Systems - 29th IFIP WG
6.1 International Conference, ICTSS 2017, St. Petersburg, Russia,
October 9-11, 2017, Proceedings, LNCS, vol. 10533, pp. 259-275.
Springer (2017). DOI 10.1007/978-3-319-67549-7_16
Riganelli, O., Micucci, D., Mariani, L.: Policy enforcement with
proactive libraries. In: 12th IEEE/ACM International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS @ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017,
pp- 182-192. IEEE Computer Society (2017)

Riganelli, O., Micucci, D., Mariani, L.: Increasing the reusability
of enforcers with lifecycle events. In: T. Margaria, B. Steffen
(eds.) Leveraging Applications of Formal Methods, Verification
and Validation. Industrial Practice - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings,
Part IV, LNCS, vol. 11247, pp. 51-57. Springer (2018)
Salmerdn, A.: Model checking techniques for runtime testing and
qos analysis. Ph.D. thesis

Séanchez, C.: Online and offline stream runtime verification of
synchronous systems. In: C. Colombo, M. Leucker (eds.) Runtime
Verification - 18th International Conference, RV 2018, Limassol,
Cyprus, November 10-13, 2018, Proceedings, LNCS, vol. 11237,
pp. 138-163. Springer (2018)

Sanchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bian-
culli, D., Colombo, C., Falcone, Y., Francalanza, A., Krstic, S.,
Lourengo, J.M., Nickovic, D., Pace, G.J., Rufino, J., Signoles,
J., Traytel, D., Weiss, A.: A survey of challenges for runtime
verification from advanced application domains (beyond soft-
ware). Formal Methods Syst. Des. 54(3), 279-335 (2019). DOI
10.1007/s10703-019-00337-w

Santos, J.F., Jensen, T., Rezk, T., Schmitt, A.: Hybrid typing
of secure information flow in a javascript-like language. In:
P. Ganty, M. Loreti (eds.) Trustworthy Global Computing - 10th
International Symposium, TGC 2015, Madrid, Spain, August 31 -
September 1, 2015 Revised Selected Papers, LNCS, vol. 9533, pp.
63-78. Springer (2015)

Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime analysis
with R2U2: A tool exhibition report. In: Y. Falcone, C. Sdnchez
(eds.) RV 2016, LNCS, vol. 10012, pp. 504-509. Springer (2016)
Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Ad-
dresssanitizer: A fast address sanity checker. In: G. Heiser, W.C.
Hsieh (eds.) 2012 USENIX Annual Technical Conference, Boston,
MA, USA, June 13-15, 2012, pp. 309-318. USENIX Association
(2012)

Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka,
S.A., Stoller, S.D., Zadok, E.: Interaspect: aspect-oriented instru-
mentation with GCC. Formal Methods in System Design 41(3),
295-320 (2012)

Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime
verification tool for safety and security of C programs (tool
paper). In: G. Reger, K. Havelund (eds.) RV-CuBES 2017, Kalpa
Publications in Computing, vol. 3, pp. 164—173. EasyChair (2017)

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen,
P., Franz, M.: Sok: Sanitizing for security. CoRR abs/1806.04355
(2018)

Soueidi, C., Kassem, A., Falcone, Y.: BISM: bytecode-level in-
strumentation for software monitoring. In: Runtime Verification -
20th International Conference, RV 2020, Los Angeles, CA, USA,
October 6-9, 2020, Proceedings, pp. 323-335 (2020). DOI
10.1007/978-3-030-60508-7_18

Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K.,
Smolka, S.A., Zadok, E.: Runtime verification with state estimation.
In: S. Khurshid, K. Sen (eds.) Runtime Verification - Second Inter-
national Conference, RV 2011, San Francisco, CA, USA, Septem-
ber 27-30, 2011, Revised Selected Papers, LNCS, vol. 7186, pp.
193-207. Springer (2011). DOI 10.1007/978-3-642-29860-8_15.
URL https://doi.org/10.1007/978-3-642-29860-8_15
Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: Eternal war in
memory. In: 2013 IEEE Symposium on Security and Privacy, SP
2013, Berkeley, CA, USA, May 19-22, 2013, pp. 48-62. IEEE
Computer Society (2013)

Ulus, D.: Montre: A tool for monitoring timed regular expressions.
In: R. Majumdar, V. Kuncak (eds.) Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part I, LNCS, vol. 10426, pp.
329-335. Springer (2017)

Ulus, D.: Sequential circuits from regular expressions revisited.
CoRR abs/1801.08979 (2018)

Ulus, D.: Online monitoring of metric temporal logic using se-
quential networks. CoRR abs/1901.00175 (2019)

Ulus, D., Ferrere, T., Asarin, E., Maler, O.: Timed pattern matching.
In: A. Legay, M. Bozga (eds.) Formal Modeling and Analysis of
Timed Systems - 12th International Conference, FORMATS 2014,
Florence, Italy, September 8-10, 2014. Proceedings, LNCS, vol.
8711, pp. 222-236. Springer (2014)

Ulus, D, Ferrere, T., Asarin, E., Maler, O.: Online timed pattern
matching using derivatives. In: M. Chechik, J. Raskin (eds.) Tools
and Algorithms for the Construction and Analysis of Systems
- 22nd International Conference, TACAS 2016, Held as Part
of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, LNCS, vol. 9636, pp. 736-751. Springer (2016)
van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory
errors: The past, the present, and the future. In: D. Balzarotti, S.J.
Stolfo, M. Cova (eds.) Research in Attacks, Intrusions, and De-
fenses - 15th International Symposium, RAID 2012, Amsterdam,
The Netherlands, September 12-14, 2012. Proceedings, LNCS, vol.
7462, pp. 86—106. Springer (2012)

Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended fi-
nite state machine models from software executions. Empirical
Software Engineering 21(3), 811-853 (2016)

Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of
atomicity errors in concurrent programs. In: J. Torrellas, S. Chat-
terjee (eds.) Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2006,
New York, New York, USA, March 29-31, 2006, pp. 137-146.
ACM (2006)

Wang, L., Stoller, S.D.: Runtime analysis of atomicity for mul-
tithreaded programs. IEEE Trans. Software Eng. 32(2), 93-110
(2006)

https://doi.org/10.1007/978-3-642-29860-8_15

	Introduction
	A Brief Introduction to Runtime Verification
	A Taxonomy of Runtime Verification
	Classification of Runtime Verification Tools
	Discussion
	Conclusion and Future Work

