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Abstract. First-order temporal logics and rule-based formalisms are two popular
families of specification languages for monitoring. Each family has its advan-
tages and only few monitoring tools support their combination. We extend metric
first-order temporal logic (MFOTL) with a recursive let construct, which enables
interleaving rules with temporal logic formulas. We also extend VeriMon, an
MFOTL monitor whose correctness has been formally verified using the Isabelle
proof assistant, to support the new construct. The extended correctness proof
covers the interaction of the new construct with the existing verified algorithm,
which is subtle due to the presence of the bounded future temporal operators. We
demonstrate the recursive let’s usefulness on several example specifications and
evaluate our verified algorithm’s performance against the DejaVu monitoring tool.
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1 Introduction

In runtime verification, a monitor observes events generated by a running system and
analyzes the event streams for compliance with a given specification. Temporal spec-
ification languages for monitoring are often classified as operational or declarative [10].
Operational languages explicitly describe how the monitor’s input should be transformed
to obtain an output. Two important subclasses of operational languages are rule-based for-
malisms [2,13] and stream runtime verification (SRV) languages [6,8,11,20]. Both formu-
late the transformations as recursive equations. In contrast, declarative languages, such as
first-order temporal logics [4,15], describe the output by composing high-level operators.

Operational and declarative languages have complementary advantages: declarative
languages let specification authors focus on the “what” and not the “how”, whereas
operational languages offer the authors more control over the evaluation. Most runtime
verification tools do not support mixing the paradigms, especially when it comes to
parametric, i.e., first-order, specification languages. A notable exception is the recent
addition of recursive rules to past-time first-order temporal logic (PFLTL), implemented
in the DejaVu monitoring tool [14]. As another important benefit, recursive rules can
express operations like transitive closure that are not expressible in first-order logics.

In this paper, we introduce recursion in metric first-order temporal logic (MFOTL) [4]
in the form of a recursive let construct. We develop and implement an evaluation al-
gorithm for MFOTL with recursion in VeriMon [3, 21], an MFOTL monitor whose
correctness has been formally verified in the Isabelle proof assistant. To this end, we
extend the formal correctness proof to cover the recursive let construct.
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Unlike PFLTL, MFOTL supports bounded future temporal operators and aggrega-
tions (Section 2). The interaction of recursion with bounded future operators is subtle.
To avoid non-termination, DejaVu requires all recursive occurrences to be guarded by
a previous operator. We similarly require the recursive occurrences to be guarded in our
monitor, but we relax the requirement on the guard to other past-time operators which
ensure that their subformulas are evaluated strictly in the past. Moreover, we allow future
operators in the recursive let construct, as long as no recursion takes place in the future op-
erator’s arguments. These restrictions ensure that the fixpoint given by the recursive let op-
erator is well-defined. At the same time, they are permissive and allow us to formulate in-
teresting examples, several of which are beyond what PFLTL with recursion can express.

Consider a specification that aims to secure hosts in a network that communicate with
each other and with the outside world. A host is tainted by an address range iff there is a
chain of communication from the address to the host and all hosts on the chain trigger an
intrusion detection alert within one hour after communicating with the previous host. This
specification can be expressed directly using our recursive let construct (to model chains
of communication) and future temporal operators (to specify “within one hour after”).

We start by extending MFOTL with a non-recursive let operator (Section 3). This spe-
cial case is mainly of pedagogical value: aspects common to both let operators are easier
to explain on the simpler non-recursive variant. Yet, this construct is useful in practice
to structure complex formulas and improve monitoring performance by sharing common
subformulas. Thus we extend VeriMon’s algorithms and proofs with the non-recursive let.

We then introduce the recursive let operator (Section 4.1), exemplify its semantics
with several specifications (Section 4.2), and develop the monitoring algorithm and sketch
its correctness (Section 4.3). VeriMon’s repository [24] contains complete formal proofs.

This work is part of the long-term effort to develop a trustworthy monitor that
surpasses in expressiveness and efficiency other non-verified tools. In this work, our focus
is on expressiveness (and trustworthiness). Nonetheless, we evaluate our algorithmic
additions to VeriMon on a micro-benchmark and observe that even without further
optimizations it exhibits an incomparable performance to DejaVu (Section 5). Moreover,
we detected a problem in DejaVu’s handling of variable names in recursive subformulas.

In summary, our main contribution is the extension of MFOTL with a recursive let
operator and the design of an evaluation algorithm for it. Along the way, we introduce a
non-recursive let operator, which proved essential when writing complex specifications.
Our contributions are implemented as part of VeriMon and proved correct using Isabelle.

Related Work. Our work adds rule-based specification features [13] to a first-order spec-
ification language [16]. Above we describe our contribution’s relationship to DejaVu and
VeriMon, two monitors for first-order temporal specifications. VeriMon’s algorithm [21],
which we extend, is based on the algorithm used in the MonPoly monitor [5], although Ve-
riMon has optimizations that are not present in MonPoly and vice versa [3]. VeriMon sup-
ports a more expressive specification language than MonPoly, and our introduction of the
recursive let has increased the gap between the two. VeriMon’s and MonPoly’s algorithms
work with finite relations. These tools are thus restricted to MFOTL’s monitorable frag-
ment [4], which ensures that all subformulas evaluate to finite results. In contrast, DejaVu
finitely represents infinite relations using BDDs and thus supports the full PFLTL (but
only closed formulas). Both DejaVu and our work restrict the recursive let syntactically.
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datatype data = Int int | Flt double | Str string
type_synonym db = string⇒ data list set
datatype trm = V nat | C data | trm+ trm | . . .

type_synonym ts = nat
typedef trace = {s :: (db× ts) stream. trace s}
typedef I = {(a :: nat,b :: enat). a≤ b}

datatype frm = string(trm list) | trm ◦ trm | ¬ frm | ∃ frm | frm∨ frm | frm∧ frm
| I frm |#I frm | frm SI frm | frm UI frm | nat← agg_op(trm;nat) frm

fun etrm :: data list⇒ trm⇒ data where
etrm v (V x) = v ! x | etrm v (C x) = x | etrm v (t1 + t2) = etrm v t1 + etrm v t2 | . . .

fun sat :: trace⇒ data list⇒ nat⇒ frm⇒ bool where
sat σ v i (p(as)) = (map (etrm v) as ∈ Γ σ i p) | sat σ v i (t1 ◦ t2) = (etrm v t1 ◦ etrm v t2)
| sat σ v i (¬ϕ) = (¬sat σ v i ϕ) | sat σ v i (∃ϕ) = (∃z. sat σ (z # v) i ϕ)
| sat σ v i (α∨β) = (sat σ v i α∨sat σ v i β) | sat σ v i (α∧β) = (sat σ v i α∧sat σ v i β)
| sat σ v i ( I ϕ) = (case i of 0⇒ False | j+1⇒ T σ i−T σ j ∈I I∧ sat σ v j ϕ)
| sat σ v i (#I ϕ) = (T σ (i+1)−T σ i ∈I I∧ sat σ v (i+1) ϕ)
| sat σ v i (αSI β) = (∃ j≤ i. T σ i−T σ j ∈I I∧ sat σ v j β∧ (∀k ∈ { j <.. i}. sat σ v k α))
| sat σ v i (αUI β) = (∃ j≥ i. T σ j−T σ i ∈I I∧ sat σ v j β∧ (∀k ∈ {i ..< j}. sat σ v k α))
| sat σ v i (y← Ω(t;b) ϕ) =

(
let M = {(x,card∞ Z) | x Z.

Z = {z. length z = b∧ sat σ (z @ v) i ϕ∧ etrm (z @ v) t = x}∧Z 6= {}}
in (M = {} −→ fv ϕ⊆ {0 ..< b})∧ v ! y = eval_agg_op Ω M)

Fig. 1. Formal syntax and semantics of MFOTL with aggregations, where ◦ ∈ {=,<,≤}

Other rule-based [2,13] and SRV-based monitors [6,8,11,20] can express the temporal
operators present in LTL, but struggle with extensions that introduce parameters. Even
for the operators they can express, specialized algorithms that are carefully tuned for the
operators tend to exhibit a better performance. Instead of encoding temporal operators,
we take the opposite approach and enrich a monitor that uses specialized algorithms for
temporal operators with general-purpose recursion.

Datalog [1] adds recursion to first-order logic, similarly to our addition of recursion to
temporal logic. However, Datalog has no built-in notion of time and hence other measures
must be taken to ensure that the fixpoints are well-defined, e.g., by restricting negation.
Restricting the recursive occurrences to be strictly in the past is a natural and expressive
alternative for monitoring, as we do not restrict negation beyond of what the monitorable
fragment requires. Works on Datalog extensions with metric temporal operators [7,19,22]
mostly study the decidability and complexity of computational problems related to these
extensions, whereas we design, implement, and formally verify an executable algorithm.

2 Metric First-Order Temporal Logic

MFOTL extends linear temporal logic with first-order quantification, past-time operators,
and interval bounds on the temporal operators [4]. The VeriMon monitor [3] supports
a fragment of this logic. It also adds new features, specifically regular matching oper-
ators as in linear dynamic logic [9], which results in metric first-order dynamic logic
(MFODL), as well as aggregations. Our extension of VeriMon with recursive rules retains
the additional features of MFODL. However, the additional features are orthogonal to our
extension and hence we base our presentation in this paper on MFOTL with aggregations.

We summarize MFOTL’s syntax and semantics, as well as the monitorable fragment.
The presentation generally follows the Isabelle formalization; however, we sometimes
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deviate from Isabelle’s concrete syntax for simplicity. We begin by defining some
auxiliary types (top of Fig. 1). The logic’s universe (type data) is fixed and infinite: it is
a disjoint sum of integers, 64-bit IEEE floats, and strings of 8-bit characters. Databases
(type db) encode first-order structures as functions from predicate names to relations
over data. Relations are represented as sets of lists. A trace is a stream (an infinite
sequence) of time-stamped databases. Time-stamps (type ts) are modeled as natural
numbers (type nat). We write Γ σ i for the ith database in σ, and T σ i for its time-stamp.
The predicate trace enforces monotone and eventually increasing time-stamps, i.e.,
∀i≤ j. T σ i≤T σ j and ∀x. ∃i. x <T σ i. Non-empty intervals (type I) are represented
by their end-points. We write [a,b] for the unique interval satisfying n ∈I [a,b] iff
a ≤ n ≤ b, where n ∈I I denotes that I contains the natural number n. The interval is
unbounded from above if b = ∞, which the type enat adds to the natural numbers.

Terms (type trm) are constructed recursively from variables (represented by De Bruijn
indices), constants, and arithmetic operators. We use named variables in examples and
omit the V and C constructors. There are two kinds of atomic formulas (type frm):
flexible predicates of the form p(as), where as is a list of terms, and rigid predicates
t1 ◦ t2 for ◦ ∈ {=,<,≤}, which have a fixed interpretation. Formally, the existential
quantifier ∃ does not carry a variable name because of the De Bruijn encoding. We use
fv α to denote the set of De Bruijn indices of α’s free variables.

The semantics is given by the functions etrm and sat (Fig. 1). Both depend on a valu-
ation, which is a data list assigning a value to each variable. The satisfaction function sat
for formulas additionally depends on a trace σ and a time-point i, which is an index into
the trace. Indexing into lists is denoted by v ! x, the operation z # v prepends the value z to
the list v, and @ concatenates two lists. The notation {x ..< y} and {x <.. y} is shorthand
for the sets {x, x+1, . . . ,y−1} and {x+1, x+2, . . . ,y} of natural numbers, respectively.

An aggregation formula y← Ω(t;b) ϕ binds b variables in the subformula ϕ; the
remaining free variables of ϕ are used for grouping. Each group is assigned an aggregate
value y, which is computed by first evaluating the term t on each valuation that matches
the group and that satisfies ϕ, then aggregating the results using the operator Ω (e.g.,
MIN for minimum). To this end, eval_agg_op Ω M (not shown) applies Ω to a set M of
value–multiplicity pairs [3]; card∞ Z is the cardinality of Z, or ∞ if Z is infinite. The con-
junct M = {} −→ fv ϕ⊆ {0 ..< b} ensures that the formula is satisfied by the aggregate
value of an empty M only if there are no grouping variables. Otherwise, infinitely many
groups would be labeled with that value, rendering such aggregations non-monitorable.

The decidable predicate mon :: frm⇒ bool specifies the monitorable fragment. We
omit its formal definition and refer to the earlier descriptions of VeriMon [3,21] for details.
Intuitively, mon places restrictions on the formula’s structure to ensure that all subfor-
mulas have finitely many satisfying valuations. Also, the interval I of every UI operator
must be bounded. A monitor for a monitorable formula can thus compute a finite set of
satisfying valuations for every time-point after observing a sufficiently long trace prefix.

3 Non-Recursive Let Operator

We first introduce a non-recursive let operator Let string := frm in frm to the frm datatype.
The formula Let p := α in β associates the formula α with the predicate named p, which
may be used in the formula β. We call such a predicate let-bound. The operator is
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non-recursive: p has the same meaning within α as in the surrounding context (unless it
is bound by a nested let in α). Although the non-recursive let operator does not enhance
MFOTL’s expressiveness, it improves readability (by using descriptive let-bound pred-
icate names), as well as modularity and evaluation efficiency (by sharing subformulas).

Intuitively, the meaning of Let p := α in β is the same as that of β after replacing
all its predicates of the form p(as) with the formula α, whose free variables have been
replaced with the terms as in a capture-avoiding way. The formal syntax does not spec-
ify explicitly how α’s free variables map to p’s arguments. The mapping is induced
by the De Bruijn indices: the variable with index 0 becomes the first argument, and
so forth. We list the arguments explicitly in examples that use named variables. For
instance, the formula Let p(x) := p(x)∧∃y. q(x,y) in  [0,2] p(y) should be equivalent to
 [0,2](p(y)∧∃z. q(y,z)). We achieve this by defining Let’s semantics as follows.

sat σ v i (Let p := α in β) = sat (σ[pV λ j. satrel σ j α]) v i β

We write satrel σ j α as an abbreviation for {v. sat σ v j α∧ length v = nfv α}, i.e.,
the relation containing the valuations that satisfy α. The function nfv α returns the
minimum length of v needed to cover all of α’s free variables, i.e., 0 if α is closed and
Max (fv α)+1 otherwise. The trace σ[pV R] is the same as the trace σ except that for
every time-point i, the database at i maps the predicate name p to R i, where R has type
nat⇒ data list set and is called a temporal relation. Note that the subformula α is not
necessarily evaluated at time-point i. Instead, the choice of the time-point is deferred
until the predicate p is used within β, which we achieve by updating the entire trace.
This supports the intuition behind unfolding the let operator Let p := α in β described
above, especially as subformulas p(as) may occur under temporal operators in β.

Implementation. To evaluate an MFOTL formula on a trace, VeriMon computes a
finite set of satisfying valuations (represented by the type table) recursively for each
subformula. It applies standard table operations such as the natural join (./) and union.
Tables are sets of tuples, which are lists of optional data values (with missing values
denoted by ⊥) and thus refine valuations. This representation allows us to use lists of
the same length for subformulas with different free variables. As with valuations, the
variables’ De Bruijn indices are used to look up their value in a tuple.

VeriMon processes an unbounded trace incrementally. Its interface consists of two
functions init :: frm⇒ state and step :: dbs× ts list⇒ state⇒ (nat× table) list× state.
The function init initializes the monitor’s state (type state), and step updates it with
a batch of new time-stamped databases to produce a list of new satisfactions. Instead
of db list, step uses the type dbs = (string ⇀ table list) (a partial mapping from string
to table list) to efficiently retrieve all relations (encoded as tables) associated with a
predicate name at once. Besides some auxiliary data, state stores an inductive state of
type sfrm that mirrors the inductive representation of formulas, augmented with data
structures for evaluating temporal operators and buffering intermediate results. Inter-
nally step (dbs, tss) st calls eval j n tss dbs sϕ, where j is the combined length of the
trace prefix including the new batch, n = nfv ϕ for the monitored formula ϕ, and sϕ is
the inductive state, all stored in st. The function eval returns a list of tables with new
satisfactions, as well as the updated inductive state. Satisfactions are reported for every
time-point in order. They may be delayed if the formula contains future operators.
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To evaluate Let p := α in β, we use the tables with α’s satisfactions to evaluate
p within β, which requires that the tuples in these tables do not have missing values.
Therefore, we require that let operators satisfy mon (Let p := α in β) = ({0 ..< nfv α} ⊆
fv α∧mon α∧mon β). Specifically, the (indices of) α’s free variables must not have
gaps. We add the constructor SLet p m sαsβ to the inductive state, which stores p, the
number m = nfv α of free variables in α, and the states for subformulas α and β. It is
initialized by initializing sα and sβ recursively. The function eval evaluates it as follows.

eval j n tss dbs (SLet p m sα sβ) =(
let (xs, s′α) = eval j m tss dbs sα; (ys, s′β) = eval j n tss (dbs[p 7→ xs]) sβ
in (ys, SLet p m s′α s′β)

)
We write dbs[p 7→ xs] for the partial mapping dbs updated at p with xs. The recursive call
of eval on sα may return multiple tables in the list xs. Note that step generalizes the orig-
inal VeriMon interface [3] as it consumes multiple time-stamped databases at once. The
generalized interface of eval allows us to pass all tables at once to the recursive call for sβ.

Correctness. We relate the outputs of step and sat to prove our monitor correct. As men-
tioned earlier, the monitor may delay its output. We precisely characterize its progress
for a given formula and trace prefix. Intuitively, the progress is the number of time-points
that the monitor is able to evaluate given a trace prefix. Progress is a useful tool in the cor-
rectness proof as it helps us describe the output at every time-point. Moreover, we show
below that progress can be made arbitrarily large, which is important for completeness.

Formally, prog σ P ϕ j is ϕ’s progress iϕ after reading the first j databases of trace σ.
We added the partial mapping P that assigns to every let-bound predicate its own progress,
i.e., the progress of the formula defining the predicate. For example, the progress of
a predicate p that is not let-bound is j. Otherwise, it is equal to the progress of the
formula it is bound to (stored in P p). The progress of αU[a,b] β is the smallest i such that
τ σ i≥ τ σ (Min {iα, iβ, j−1})−b. The progress of both α∧β and α∨β is Min {iα, iβ}.

The invariant invar σ j P n sϕ ϕ relates an inductive state sϕ to the formula ϕ. The
inductive state must reflect the monitor’s state after processing the first j databases in
the trace σ, assuming that P specifies the let-bound predicates’ progress. The parameter
n is the length of the tuples stored within sϕ. The invariant is defined inductively over
sϕ; we reuse VeriMon’s definition for the MFOTL operators and add a case for Let:

invar σ j P m sα α invar (σ[pV λi. satrel σ i α]) j (P[p 7→ prog σ P α j]) n sβ β

m = nfv α {0 ..< m} ⊆ fv α

invar σ j P n (SLet p m sα sβ) (Let p := α in β)

The first two premises restrict the subformula states sα and sβ, where sβ reflects the eval-
uation of β on the modified trace, and p’s progress is that of α. The premise m = nfv α
enforces that m is equal to p’s arity, and {0 ..< m} ⊆ fv α is the constraint from mon.

Our extensions preserve the monitor’s correctness: we formally proved the theorem
below, which characterizes the monitor’s eval function. The theorem is stated here for
the empty progress mapping ∅, which must be generalized in the proof (as P changes in
the above rule). Let δ be a natural number and ϕ be a monitorable formula with n = nfv ϕ.
The function the maps the optional value 〈x〉 to x and ⊥ to some unspecified value.
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Theorem 1. (a) invar σ 0 ∅ n s0
ϕ ϕ for the initial state s0

ϕ. (b) Suppose that sϕ satisfies
invar σ j ∅ n sϕ ϕ and that dbs contains all relations from σ for the indices in the list
js= [ j ..< j+δ]. Then (xs, s′ϕ) = eval ( j+δ) n (map (τ σ) js) dbs sϕ satisfies invar σ ( j+
δ) ∅ n s′ϕ ϕ, and the i-th table in the list xs, for prog σ ∅ ϕ j≤ i < prog σ ∅ ϕ ( j+δ),
contains (only) all tuples v of length n satisfying sat σ (map the v) σ i ϕ.

Soundness follows immediately from Thm. 1, whereas completeness additionally re-
quires the aforementioned property that any progress can be reached by making the trace
prefix long enough, which we also proved for our modified progress function:

Theorem 2. If mon ϕ, then for all i there exists a j such that prog σ ∅ ϕ j≥ i.

4 Past-Recursive Let Operator

It is well-known that first-order logic (FOL) cannot express certain queries, notably the
transitive closure of a binary relation. This remains true when restricted to finite struc-
tures [18]. Although MFOTL is rather different from ordinary FOL, we conjecture that
it cannot express transitive closure either. This hampers its ability to model hierarchies
of unbounded depth. Moreover, recursive patterns are sometimes the most natural way
to express certain specifications. We describe an extension of MFOTL that can encode a
“temporally directed” form of transitive closure and other recursive patterns.

Specifically, we introduce another let operator in which the predicate may refer to
itself recursively. The intended semantics is that of a fixpoint, i.e., the predicate p defined
by a formula α should be interpreted by a temporal relation that is equal to the evaluation
of α under that interpretation of p. The fixpoint might not always exist or it might not
be unique. Therefore, different fixpoint operators have been studied in the context of
nontemporal logics and query languages [1]. For instance, it is common to require that all
recursive occurrences of p in its defining formula are positive, i.e., under an even number
of negations. This ensures monotonicity and hence the existence of a least fixpoint.

MFOTL’s future operators are interpreted over infinite traces. This poses a new chal-
lenge for monitoring recursively defined predicates, even if we restrict our attention to
positive formulas. Consider the recursive definition of p by q∨#[0,∞] p, where q is a pred-
icate from the trace. Although q∨#[0,∞] p is monitorable (at most one additional time-
point must be known to evaluate it), the recursive definition of p is equivalent to ♦[0,∞] q
under the least fixpoint semantics. However,♦[0,∞] q is not monitorable, as one might need
the entire, infinite trace to evaluate it. Therefore, we focus on a fragment where every re-
cursive occurence of p must be strictly in the past. This guarantees a unique fixpoint even
if the defining formula is not monotone, so the predicate may occur negatively as well.

The syntax of our past-recursive let operator is similar to the one of Let: we add the
constructor LetPast string := frm in frm to the frm datatype. However, the semantics is
different (Section 4.1). The restriction to strictly past recursion is enforced by a syntactic
monitorability condition that is checked by mon. Consider the formula LetPast p :=
α in β. Intuitively, every recursive occurrence of p in α must be guarded by at least
one strictly past operator, and there must be no future operator on the path from the
occurrence to α’s root. We do allow future operators in the other parts of α, though.

We give examples of LetPast in Section 4.2. The evaluation of LetPast requires an
extension of VeriMon’s algorithm (Section 4.3), which we also formally prove correct.
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datatype recSafety =
U | P | NF | A

fun (∗) :: recSafety⇒
recSafety⇒
recSafety

where
U∗_ = U
| _∗U = U
| A∗_ = A
| _∗A = A
| P∗_ = P
| _∗P = P
| NF∗NF = NF

fun slp :: string⇒ frm⇒ recSafety where
slp p (q(as)) = (if p = q then NF else U)
| slp p (Let q := α in β) =

(slp q β∗ slp p α)t (if p = q then U else slp p β)
| slp p (LetPast q := α in β) =

(if p = q then U else (slp q β∗ slp p α)t slp p β)
| slp p (t1 ◦ t2) = U | slp p (y← Ω(t;b) ϕ) = slp p ϕ
| slp p (¬ϕ) = slp p ϕ | slp p (∃ϕ) = slp p ϕ
| slp p (α∨β) = slp p αt slp p β
| slp p (α∧β) = slp p αt slp p β
| slp p ( I ϕ) = P∗ slp p ϕ | slp p (#I ϕ) = A∗ slp p ϕ
| slp p (αSI β) = slp p αt ((if 0 ∈I I then NF else P)∗ slp p β)
| slp p (αUI β) = A∗ (slp p αt slp p β)

Fig. 2. Auxiliary definitions for the syntactic restriction on LetPast

4.1 Semantics

The semantics of the past-recursive let operator is defined by the equation

satσ v i (LetPast p :=α in β)= sat (σ[pV recp (λR j. satrel (σ[pVR]) j α)]) v i β

We evaluate β at the same time-point i as the recursive let operator using an appropriately
updated trace. The temporal relation assigned to p is computed by the combinator recp:

fun recp :: ((nat⇒ data list set)⇒ nat⇒ data list set)⇒ nat⇒ data list set where
recp f v i = f (λ j. if j < i then recp f j else {}) i

The argument f is a function that transforms temporal relations, and recp f returns again
a temporal relation. Intuitively, recp f evaluates to the fixpoint f (recp f ), except that
f R i can only access time-points of R before i. For all other time-points j≥ i, the relation
R j is empty. The combinator recp is well-defined because i is a natural number; the
recursive call recp f j affects the result only if j < i and hence we can prove termination
using i as a variant. For the semantics of LetPast, we choose f R i= satrel (σ[pVR]) i α,
i.e., the satisfactions of α with p mapped to f ’s argument R, to which recp supplies the
result of the recursive evaluation (up to but excluding i).

Our definition of sat is total: it gives meaning to every formula. This includes for-
mulas LetPast p := α in β where p occurs in α without a past guard or under a future
operator. However, the semantics behaves unexpectedly in such cases. For example,
LetPast p := (q∨#[0,∞] p) in p is equivalent to q. Our monitor therefore requires properly
guarded formulas. Not only does this avoid confusion about the semantics, it also simpli-
fies the implementation because the monitor need not eliminate unguarded occurrences.

Next, we describe the formalization of the syntactic restriction. The idea is to deter-
mine for every predicate whether it is used strictly in the past by analyzing the formula
recursively. The datatype recSafety (Fig. 2) represents the possible outcomes. U(nused)
means that a predicate does not occur in the formula. P(ast) means that it is evaluated
at strictly earlier time-points, whereas NF (Non-Future) additionally allows the current
time-point. A(ny) covers all remaining cases. The linear order < on recSafety is induced
by U < P < NF < A. Its reflexive closure ≤ corresponds to implication. For example, if
the predicate p is unused (U), it is clearly evaluated at earlier time-points only (P). The
least upper bound xt y with respect to ≤ corresponds to logical disjunction.
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The function slp p ϕ (Fig. 2) analyzes the past-guardedness of a predicate p in a for-
mula ϕ. It uses a composition operator y∗ x on recSafety. The patterns in the definition of
∗ should be matched sequentially from top to bottom; e.g., A∗U is equal to U. Intuitively,
y∗ x describes the guardedness of a predicate that is x-used in some subformula, which
is then y-used. For example, slp p ( I ϕ) = P∗ slp p ϕ because ϕ and all occurences of p
therein are evaluated at time-points that are strictly in the past relative to  I ϕ. Note that
we make a case distinction for αSI β: if the interval I excludes zero, β is always evaluated
strictly in the past. Future operators always result in A if p is used in an operand.

Finally, we define the mon predicate for the recursive let operator:

mon (LetPast p := α in β) = (slp p α≤ P∧{0 ..< nfv α} ⊆ fv α∧mon α∧mon β)

The only difference to Let is the restriction of p’s occurrences in α via slp, which is
generally an over-approximation. For example, slp p ( I I#I p) = A even though p is
evaluated at strictly earlier time-points. Therefore, some instances of LetPast that our
algorithm could evaluate correctly are not considered to satisfy mon. We plan to replace
recSafety with a more precise lattice in future work.

4.2 Examples

Temporal Operators. We first show that the non-metric S operator can be reduced to
LetPast and . (We omit the interval subscripts if the interval is [0,∞].) Using the special
ts(t) predicate, which is true iff t is the current time-stamp, we can also express the metric
version. This example serves to gently illustrate the semantics of LetPast. In general, for-
mulas are more readable if they are directly expressed in terms of S, and monitoring can
be more efficient. Below we give further examples in which LetPast adds expressiveness.

Let α and β be two monitorable MFOTL formulas with free variables fv α and fv β,
respectively. The formula αSβ is monitorable only if fv α⊆ fv β, so let us assume that,
too. The following unfolding of S’s semantics is well-known:

sat σ v i (αSβ) ⇐⇒ sat σ v i β∨
(
sat σ v i α∧ i > 0∧ sat σ v (i−1) (αSβ)

)
(1)

As the unfolding recursively evaluates the formula at the previous time-point, we can
directly translate it into a recursive let operator: ϕS ≡ LetPast s(x) := ψ in s(x), where
ψ≡ β∨ (α∧ s(x)). The predicate name s must be fresh, i.e., it must not occur in α nor
β. The variable list x enumerates fv β. The formula ϕS is monitorable because  s(x) is
clearly past-guarded, and hence slp s ψ= P. (We also need fv β= {0 ..< nfv β}, which
can be achieved by renaming variables in α and β.) Let us analyze the semantics of ϕS:

sat σ v i ϕS ⇐⇒ sat (σ[sV recp (λR j. satrel (σ[sV R]) j ψ)︸ ︷︷ ︸
= fψ

]) v i (s(x))

⇐⇒ v ∈ recp fψ i

⇐⇒ sat (σ[sV λ j. if j < i then recp fψ j else {}]) v i ψ
(∗)⇐⇒ sat σ v i β∨

(
sat σ v i α∧ i > 0

∧ v ∈ (if i−1 < i then recp fψ (i−1) else {})
)

⇐⇒ sat σ v i β∨
(
sat σ v i α∧ i > 0∧ sat σ v (i−1) ϕS

)
These equations hold for all valuations v of length nfv β and if the variables x are ordered
by their De Bruijn indices. Step (∗) exploits the freshness of s with respect to α and β,
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which allows us to replace σ[sV . . . ] by σ. The equations result in the same unfolding
as (1). Hence, we can prove the semantic equivalence of ϕS and αSβ by induction on i.

The following SinceLet formula encodes αS[a,b] β. Other encodings exist, however.

LetPast s(x, t) := (β∧ ts(t))∨(α∧ s(x, t)) in ∃t,u. s(x, t)∧ ts(u)∧a≤ u− t∧u− t≤ b

Here, t and u are fresh variables, where t records the time-stamp of the past satisfaction of
β, whereas u is the time-stamp at which we evaluate SinceLet. The subformula a≤ u− t∧
u− t≤ b corresponds to T σ j−T σ i∈I [a,b], which is part of S[a,b]’s semantics (Fig. 1).

Temporally-Directed Transitive Closure. We proceed by showing that LetPast can
compute a temporally-directed transitive closure over events observed at a sequence of
distinct time-points. Hence, we assume that the trace contains a single event at every
time-point. The closure is directed in the sense that the transitive chains can only be
extended by newer events. We consider the following two types of events from [14]:
r(y, x,d) denotes that process y reports some data d to another process x, and s(x,y)
denotes that process x spawns process y. The Spawn formula

LetPast p(u,v) := s(u,v)∨ ( p(u,v))∨ (∃t. ( p(u, t))∧ s(t,v)) in r(y, x,d)∧¬p(x,y)

encodes violations of the property that whenever process y sends some data d to a process
x, denoted as r(y, x,d), then there was a chain of process spawns: s(x, x1),s(x1, x2), . . . ,
s(xk,y), occurring in this order in the trace. In other words, a process may only send data
to its “ancestors”. To check this property, a monitor needs to compute the (temporally-
directed) transitive closure p(u,v) of the relation s. The definition of the closure has two
recursive predicate instances with different arguments. The Spawn formula is inspired
by a similar one used to evaluate the DejaVu monitor [14]. Unlike DejaVu, we do not
require the formula to be closed and thus leave the variables x, y, and d free.

The Trans formula

LetPast p(u,v) := s(u,v)∨ ( p(u,v))∨
(∃t. ( p(u, t))∧ s(t,v))∨ (∃t. s(u, t)∧ ( p(t,v)))∨
(∃t, t′. ( p(u, t))∧ s(t, t′)∧ ( p(t′,v))) in r(y, x,d)∧¬p(x,y)

encodes violations of the same property as Spawn even if s(x, x1),s(x1, x2), . . . ,s(xk,y)
are received by the monitor out-of-order, i.e., they do not occur in this order in the trace.

We can interpret the events s(x,y) as edges in a directed graph and the predicate
p(x,y) in Trans as computing the reachability of vertices in the directed graph. We also
extend the directed edges s(x,y) with a weight w to s+(x,y,w). Then the Trans+ formula

LetPast p(u,v,w) := s+(u,v,w)∨ ( p(u,v,w))∨
(∃t,w1,w2. ( p(u, t,w1))∧ s+(t,v,w2)∧w = w1 +w2)∨
(∃t,w1,w2. s+(u, t,w1)∧ ( p(t,v,w2))∧w = w1 +w2)∨
(∃t, t′,w1,w2,w3. ( p(u, t,w1))∧ s+(t, t′,w2)∧ ( p(t′,v,w3))∧

w = w1 +w2 +w3) in
Let m(u,v,w) := w←MIN(w;u,v). p(u,v,w) in m(x,y,w)∧¬( m(x,y,w))

yields all pairs of vertices x, y and the length w of the shortest path from x to y whenever
y becomes reachable from x or the length of the shortest path changes. The relation
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s+(x,y,w) can itself be obtained by evaluating a more complex temporal formula, e.g.,
s+(x,y,w)≡ e(x,y,w)∧¬♦[0,10] d(x,y) with the following two types of events: e(x,y,w)
denotes an edge from x to y with weight w; d(x,y) denotes deletion of the edge from x
to y. The eventually operator ♦I ϕ abbreviates (∃x. x = x)UI ϕ. Such a relation s+(x,y,w)
contains all edges that are not revoked within 10 time units after receiving e(x,y,w). We
could use the non-recursive let operator Let s+(x,y,w) := e(x,y,w)∧¬♦[0,10] d(x,y) to
precompute the relation and use it when evaluating the recursive let operator in Trans+.

As another application of future operators under LetPast, recall our introductory
example. Suppose that hosts in a network communicate with each other and with the out-
side world: comm(src,dest) indicates that host src sends a message to host dest; in(r,h)
and out(h,r) indicate that the host h receives or sends traffic from or to an IP address in
the range r, respectively. The hosts are equipped with an intrusion detection system (IDS),
whose alerts are denoted by ids(h). We say that a host h is tainted by an address range r iff
there is a chain of communication from r to h and all hosts on the chain (including h) trig-
ger an IDS alert within one hour after communicating with the previous host. The formula

LetPast taint(r,h) :=
((

in(r,h)∨∃h′. ( taint(r,h′))∧ comm(h′,h)
)
∧♦[0,1h] ids(h)

)
∨

( taint(r,h)) in taint(r,h)∧out(h,r)

is true whenever a host communicates back to the IP range by which it was tainted.

Periodic Behavior. Suppose that we monitor a boolean signal b(x), parametrized by an
integer parameter x, between the user’s start(x) and stop(x) commands. An arbitrary
amount of time may pass between these two commands. Our task is to detect periodic
activations of b(x), with a fixed period t > 0 and error tolerance 0 ≤ ε < t. We shall
ignore positive noise in b(x), i.e., additional activations besides the periodic ones.

Let us make the task more precise. An alarm must be raised at time-point in iff
there exist time-points i0 < i1 < · · · < in such that start(x) holds at i0, stop(x) holds at in,
and b(x) holds at all ik for 1≤ k ≤ n−1. Moreover, the difference of time-stamps for
adjacent time-points ik and ik+1, where 1≤ k≤ n−2, must be in the interval [t−ε, t+ε];
the differences for the pairs i0, i1 and in−1, in must each be at most t+ε.

Our first attempt PB to formalize the alarm condition without recursion is

stop(x)∧
(
�I(start(x)∨b(x))

)
∧
(
(b(x)−→ (�I start(x))∨ (�J b(x)))S start(x)

)
where I = [0, t+ε], J = [t−ε, t+ε], and �K ϕ abbreviates (∃x. x = x)SK ϕ. This formula
follows an inductive approach: every b(x) between start(x) and stop(x) must be preceded
by b(x) or start(x), with the appropriate time difference. However, PB does not ignore
noise, as adding b(x) events to the trace may silence an alarm. For example, let t= 10, ε=
0, and σ be a trace starting with ({start(1)},0), ({b(1)},10), ({stop(1)},20). We write
{p(1), p(2)} for the database where the predicate p holds for 1 and 2. On σ, PB is true
at the third time-point. Inserting a database {b(1)} with time-stamp 15 falsifies PB at the
now fourth time-point, although the trace still satisfies the natural language description.

The following PBLet formula expresses the intended condition using LetPast:

LetPast periodic(x) := start(x)∨
(
b(x)∧

(
(�I start(x))∨ (�J periodic(x))

))
in

stop(x)∧�I periodic(x)

This example depends crucially on the flexible past guards we support: here, the recursion
goes through � with an interval constraint. Note that 0 6∈ J because we assumed ε < t.
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As another example of periodic behavior, we analyze an integer-valued signal(y)
between the (now non-parametric) commands start and stop. We aim to discover whether
signal(y) is piecewise constant, with the constant segments being exactly t time units
long. Moreover, the signal’s values for subsequent segments must differ by at most δ. The
next formula uses the general S operator as the recursion guard to capture this property.

LetPast segment(y) := ∃z. signal(y)∧
((
( signal(z))S[0,t] (signal(z)∧ start)

)
∨(

( signal(z))S[t,t] segment(z)
))
∧−δ≤ y− z∧ y− z≤ δ in

stop∧∃y. (( signal(y))S[0,t] segment(y))

Turing Machines. Every MFOTL formula can be viewed as a function on traces, where
the function’s output is the set of satisfying valuations, either at a fixed or at all time-
points. VeriMon’s monitorable fragment guarantees that one can compute the valuation
at every time-point. Thus, monitorable formulas correspond to computable functions. If
we give up on the requirement that the function’s output must be available at a fixed time-
point, the past-recursive let operator is expressive enough to simulate arbitrary Turing ma-
chines (TM). This is not a contradiction: we simulate a single TM step at every time-point,
and there is an infinite supply of time-points. Running the monitor on a configuration that
does not halt will never produce an output, i.e., a nonempty set of satisfying valuations.

Let M = 〈Σ,b,Q,q0,q f , δ〉 be a deterministic TM with tape alphabet Σ, blank symbol
b ∈ Σ, control states Q, initial state q0 ∈ Q, final state q f ∈ Q, and transition function
δ ∈ (Q×Σ→ Q×Σ×{−1,0,1}). Whenever the machine is in state q1 and reads the
symbol s1, it enters state q2, writes the symbol s2, and moves the head by m tape cells to
the right, where δ(q1, s1) = 〈q2, s2,m〉. Without loss of generality, we assume that Σ and
Q are finite subsets of the integers. We simulate M using the formula ϕM shown below.

LetPast cfg(q, i, s) :=
Let cfg(q, i, s) := cfg(q, i, s) in

Let head(q, s) := cfg(q,0, s)∨
(
¬(∃x,z. cfg(x,0,z))∧ (∃y,z. cfg(q,y,z))∧ s = b

)
in(

input(i, s)∧q = q0
)
∨∨

q1,s1
δ(q1,s2)=〈q2,s2,m〉

(
head(q1, s1)∧q = q2∧

(
(i =−m∧ s = s2)∨

(∃ j. cfg(q1, j, s)∧ j 6= 0∧ i = j−m)
))

in cfg(q f , i, s)

The idea is that cfg represents the current configuration of the TM. Specifically,
cfg(q, i, s) holds if the machine is in control state q and the tape contains the sym-
bol s in the ith cell to the right of the head (i may be negative). Note that we use
nested, non-recursive let operators to abbreviate repeated subformulas. In the body of
Let cfg(q, i, s) := cfg(q, i, s) in . . . , the predicate cfg refers to the previous configuration.
The predicate head provides the current state and the symbol under the head. Its definition
extends the tape by a blank symbol if necessary. The simulation is started at time-point 0
by providing the tape’s initial content in the predicate input, which must include the cell
input(0, s0) with the symbol s0 under the head’s initial position. If and only if M halts
on this input, there exists a time-point i at which ϕM is satisfied by at least one valuation
(i, s). Moreover, the satisfying valuations at i represent the final state of the tape.
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4.3 Algorithm

The restriction to past-guarded recursion allows for an efficient evaluation algorithm for
LetPast formulas. It is efficient because no fixpoint iteration is required at individual
time-points. To evaluate LetPast p := α in β, we first try to evaluate α for as many time-
points as possible and then use the results to interpret p in β. This part is the same as for
the non-recursive Let, but the evaluation of α itself differs. The syntactic monitorability
condition guarantees that α at time-point i depends on the predicate p only for time-
points strictly less than i. Specifically, we have defined mon (LetPast p := α in β) such
that the progress of α’s evaluation does not depend on p’s progress beyond time-point
i−1. Therefore, we can evaluate α at time-point 0 without providing any table for p,
then use the result to evaluate α at time-point 1, and so forth.

There are two cases that require care. First, if α contains future operators, multiple
time-points may be evaluated at once. The above process must then be repeated within a
single monitor step. Second, if α contains no future operators, α is evaluated at all time-
points i< j, where j is the current trace prefix length. We could then attempt to evaluate α
once more at time-point j using the table computed at j−1 for p. However, this would not
yield any further tables because all occurrences of p are below at least one past operator
that tries to access the time-stamp at time-point j, which is not yet known. Therefore,
this last evaluation attempt would needlessly traverse the formula state. We optimize this
case and buffer α’s result at time-point j−1 until the next input database arrives.

It is crucial that the evaluation of a recursive let does not get stuck waiting for tables
that it needs to produce itself. Therefore, all operators that are strictly past-guarding as
defined by slp (Fig. 2) must be well-behaved: the evaluation algorithm must compute a
result at time-point i < j even if the operands’ results are available only for time-points
i′ < i. In particular, SI without 0 in the interval is considered strictly past-guarding. We
have modified VeriMon’s evaluation algorithm for αSI β to achieve this behavior.

The inductive state SLetPast p m sα sβ i buf for a recursive let operator extends
SLet with a counter i :: nat, which tracks the progress of p as observed by sα, and an
optional buffer buf :: table option. The meaning of the other arguments is the same as
for SLet. In the initial state, i is zero and buf is ⊥. Let the function list_opt map ⊥ to
[] and 〈x〉 to [x], where 〈x〉 is the embedding of x into the option type. A single monitor
step updates the state as follows (see Section 3 for a description of eval’s interface):

eval j n tss dbs (SLetPast p m sα sβ i buf ) =(
let (xs, s′α, i

′,buf ′) = evalLP j m tss dbs p [] sα i (list_opt buf );
(ys, s′β) = eval j n tss (dbs[p 7→ xs]) sβ

in (ys,SLetPast p m s′α s′β i′ buf ′)
)

The heavy lifting is performed by evalLP, which is mutually recursive with eval. We
forward relevant variables from eval. The accumulator xs :: table list collects sα’s results.

evalLP j m tss dbs p xs sα i buf =(
let (xs′, s′α) = eval j m tss (dbs[p 7→ buf ]) sα; i′ = i+ length buf
in
(
case xs′ of []⇒ (xs, s′α, i

′,⊥)
| x # _⇒ (if i′+1≥ j then (xs @ xs′, s′α, i

′,〈x〉)
else evalLP m j [] (clear_dbs dbs) p (xs@xs′) s′α i′ xs′)

))
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First, evalLP evaluates sα with dbs updated at p using the current buffer, which may
be empty. Since i tracks p’s progress, we then increase its new value i′ by the length
of buf . The evaluation results in a list xs′ of tables and a new state s′α. We continue to
iterate evalLP only if two conditions are met: xs′ must be nonempty, as otherwise there is
no new data to evaluate s′α on, and i′+1 must be less than the current input prefix length.
The latter condition serves as an obvious termination criterion, although it is stricter than
necessary. We could perform an additional iteration in the case that i′+1 = j. However,
such an iteration would never produce new results because the past operators guarding p
can only be evaluated further if there are new time-stamps. Therefore, we optimize this
case by choosing the stricter condition. If we continue the iteration, we append xs′ to the
accumulator xs. Moreover, we clear tss and dbs because all tables from the new input
database have already been processed by the first call to eval. Specifically, the function
clear_dbs dbs updates dbs at all points at which it is defined to an empty list.

We illustrate our algorithm with an example, tracing the computations of eval and
evalLP. We evaluate LetPast p(x) := q(x)∨ p(x) in p(x), which has the same semantics
as �[0,∞] q(x), on a prefix with two time-points at time-stamps 0 and 3. We omit details
about the subformulas’ states, as well as brackets around singleton lists, i.e., [1] is
displayed as 1. Let dbs0 = {q 7→ [{1},{2}]} be the content of the trace prefix.

eval j:2 n:1 tss:[0,3] dbs:dbs0 sϕ:(SLetPast p 1 α0 β0 0 ⊥)
| evalLP j:2 m:1 tss:[0,3] dbs:dbs0 p:p xs:[] sα:α0 i:0 buf :[]
| | eval j:2 n:1 tss:[0,3] dbs:(dbs0[p 7→ []]) sϕ:α0 = ([{1}],α1)
| | evalLP j:2 m:1 tss:[] dbs:{q 7→ []} p:p xs:[{1}] sα:α1 i:0 buf :[{1}]
| | | eval j:2 n:1 tss:[] dbs:{p 7→ [{1}],q 7→ []} sϕ:α1 = ([{1,2}],α2)
| | | iteration stops because i′ = 1 and hence i′+1 = 2≥ j = 2
| | = ([{1},{1,2}],α2,1,〈{1,2}〉)
| = ([{1},{1,2}],α2,1,〈{1,2}〉)
| eval j:2 n:1 tss:[0,3] dbs:(dbs0[p 7→ [{1},{1,2}]]) sϕ:β0 = ([{1},{1,2}],β2)
= ([{1},{1,2}],SLetPast p 1 α2 β2 1 〈{1,2}〉)

Correctness. We extended the correctness proof of eval (Thm. 1) to cover the new state
constructor SLetPast. The added case differs from the one for the non-recursive let in
that evalLP is used to evaluate the first subformula. The proof also required additional
invariants for the i and buf arguments of SLetPast, as well as a characterization of
LetPast’s progress. Recall that progress describes the number of time-points that the
monitor is able to evaluate given a trace prefix of length j. We express the progress of
the let-bound predicate p, which is defined in terms of α, as a least fixpoint:

progLP σ P p α j =
l
{i. i = prog σ (P[p 7→ i]) α j}

prog σ P (LetPast p := α in β) j = prog σ (P[p 7→ progLP σ P p α j]) β j

(We do not update σ in these definitions as progress depends only on the time-stamp
sequence but not on the databases in σ.) The above characterization follows the iteration
in evalLP: Since prog is pointwise monotone in P and at most j (both facts we prove in the
formalization), the fixpoint can be reached by iteratively computing prog σ (P[p 7→ i]) α j
starting with i = 0. Similarly, evalLP starts by evaluating α with no data for p and it feeds
the results back into the evaluation until no further results can be obtained. Theorem 2
remains true after adding the above equation to prog.
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The state invariant for SLetPast is given by the rule

invar
(
σ[pV recp (λR k. satrel (σ[pV R]) k α)]

)
j (P[p 7→ i]) m sα α

invar
(
σ[pV recp (λR k. satrel (σ[pV R]) k α)]

)
j (P[p 7→ progLP σ P p α j]) n sβ β

buf =⊥−→ i = progLP σ P p α j(
∀Z. buf = 〈Z〉 −→ i+1 = progLP σ P p α j

∧ table m (fv α) (recp (λR k. satrel (σ[pV R]) k α)) Z
)

m = nfv α slp p α≤ P {0 ..< m} ⊆ fv α

invar σ j P n (SLetPast p m sα sβ i buf ) (LetPast p := α in β)

The first two premises use the same updated trace as in the semantics of LetPast
(Section 4.1). The updated progress for p differs slightly between the premise for sα and
that for sβ. For the latter it is given by progLP, as expected. The predicate p’s progress
within sα is equal to the state variable i, which is one less than progLP σ P p α j if the
buffer buf is nonempty. This reflects to the optimization discussed in Section 4.3. The
predicate table A n R Z is true iff the table Z contains tuples of length n that assign values
to variables A and they are exactly the tuples of this kind satisfying map the v ∈ R.

5 Evaluation

We have used Isabelle/HOL’s code generator [12] to export a certified implementation of
VeriMon’s core init and step functions and every function those depend on (e.g., opera-
tions on red-black trees), which amounts to about 10000 lines of OCaml code. VeriMon
augments this generated code with unverified parsers and pretty-printers. We evaluate
this implementation to answer the following research questions: (1) How does VeriMon
perform when monitoring formulas with the recursive let operator?; and (2) How does it
compare to existing monitors for temporal first-order specifications with recursive rules?

To answer these questions, we run VeriMon and DejaVu and benchmark some of
the example formulas introduced in Section 4.2. Instead of SinceLet, we opt for the
simpler OnceLet = LetPast o(u,v) := s(u,v)∨ o(u,v) in filter(x,y)∧o(x,y) encoding
the non-metric � operator. We also include Once = filter(x,y)∧�s(x,y) for comparison.
The predicate filter(x,y) keeps the output size small. The OnceLet formula uses only
one recursive predicate instance, whose variable order matches the one in the predicate’s
definition. Other formulas have more than one instance with different variable orders.

For the PBLet formula, we use an existing random trace generator [17] configured
to pick parameters from a small integer domain, which increases the probability of
producing satisfactions. For the other formulas, we generate traces using a similar strategy
to the one used in DejaVu’s benchmarks on the Spawn formula [14]. Namely, edges of a
tree of spawned processes with a configurable branching factor are linearized into a trace,
level by level. In the final level all edges converge to a single node for the formulas Trans
and Trans+. We define the edges by Let s+(x,y,w) := e(x,y,w)∧¬♦[0,10] d(x,y) in the
Trans+ formula and revoke one half of the edges on the second level of the branching.

We have executed our experiments on an Intel Core i5-4200U CPU using 8 GB
RAM. Initially, DejaVu crashed on the OnceLet and Spawn formulas. We investigated
the issue and found that its formula’s abstract syntax tree was disconnected in these cases.
We assume that this is caused by naming variables in the recursive rules’ definitions
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Trace Once OnceLet Spawn Trans Trans+ PBLet
length VeriMon DejaVu VeriMon DejaVu VeriMon DejaVu VeriMon DejaVu VeriMon VeriMon

100 0.0 1.1 0.0 1.1 0.6 1.5 1.3 3.7 5.6 0.0
200 0.0 1.2 0.0 1.2 3.1 2.1 6.1 8.1 25.9 0.0
400 0.0 1.3 0.0 1.3 14.0 3.4 28.3 23.6 117.4 0.0
800 0.0 1.5 0.0 1.4 64.8 8.2 TO 83.4 TO 0.0

4000 0.2 41.3 0.1 40.5 TO TO TO TO TO 0.1
8000 0.4 TO 0.2 TO TO TO TO TO TO 0.1

10000 0.5 TO 0.3 TO TO TO TO TO TO 0.2

Fig. 3. Execution times of the monitors in seconds (TO = timeout of 120 seconds)

differently from those in the rules’ usages. After renaming the variables in the let-bound
predicates of these two formulas, the issue was fixed and we restarted the experiments.

The evaluation results (Figure 3) show that DejaVu’s performance is incomparable to
VeriMon’s. VeriMon outperforms DejaVu on the formulas Once and OnceLet and scales
well on PBLet, which, together with the Trans+ formula, we could not express in PFLTL
with recursion. DejaVu outperforms VeriMon on the Spawn and Trans formulas for which
VeriMon’s time complexity of processing one event is linear in the trace length because
the number N of valuations satisfying the recursive predicates grows linearly in the trace
length and the time complexity of updating the recursive predicate is linear in N. We
conjecture based on some preliminary experiments that VeriMon’s performance can be
significantly improved by optimizing the representation of sets of tuples in two ways: (a)
using tuples of a fixed length with a fixed assignment of variables to positions in a tuple
(i.e., no De Bruijn indices); (b) using a collection of indices to optimize the computation
of joins on various sets of shared columns. Nevertheless, processing one event can
unlikely be made trace-length independent: Trans encodes the incremental dynamic
transitive closure graph problem, with the best known algorithm processing every new
edge in the input in amortized linear time (in the graph’s maximum out-degree) [23].

6 Conclusion

We have presented the extension of a monitor for MFOTL with non-recursive and past-
recursive let operators. The presence of bounded future temporal operators complicates
both the semantics and the evaluation algorithms for the new constructs, compared to
earlier unverified extensions of past-only monitors [14]. Yet, the formal correctness
proofs that we have carried out ensure the trustworthiness of our development.

As future work we plan to improve the performance of evaluating expensive joins
by introducing indices, as used in database management systems. Expressiveness-wise
we will consider further relaxing the requirements on the recursive let. We can omit the
past guard if we define a Datalog-style fragment for which the fixpoint is well-defined.
Beyond relaxing guards, we may want to allow recursion through future operators
in certain situations. The main challenge is that this would make the progress notion
data-dependent (unlike currently, where it only depends on the time-stamps).
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