
Explainable Online Monitoring of Metric Temporal Logic

Leonardo Lima1† , Andrei Herasimau2, Martin Raszyk3† ,
Dmitriy Traytel1† , and Simon Yuan2

1 Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
2 Department of Computer Science, ETH Zürich, Zurich, Switzerland

3 DFINITY Foundation, Zurich, Switzerland

Abstract. Runtime monitors analyze system execution traces for policy compli-
ance. Monitors for propositional specification languages, such as metric temporal
logic (MTL), produce Boolean verdicts denoting whether the policy is satisfied or
violated at a given point in the trace. Given a sufficiently complex policy, it can be
difficult for the monitor’s user to understand how the monitor arrived at its verdict.
We develop an MTL monitor that outputs verdicts capturing why the policy was
satisfied or violated. Our verdicts are proof trees in a sound and complete proof sys-
tem that we design. We demonstrate that such verdicts can serve as explanations for
end users by augmenting our monitor with a graphical interface for the interactive
exploration of proof trees. As a second application, our verdicts serve as certificates
in a formally verified checker we develop using the Isabelle proof assistant.

Keywords: metric temporal logic · runtime monitoring · explanations · proof
system · formal verification · certification

1 Introduction

In runtime verification, monitoring is the task of analyzing an event stream produced by a
running system for violations of specified policies. An online monitor for a propositional
policy specification language, such as metric temporal logic (MTL), consumes the stream
event-wise and gradually produces a stream of Boolean verdicts denoting the policy’s sat-
isfaction or violation at every point in the event stream. MTL monitors [3, 19, 24, 27, 33]
use complex algorithms, whose correctness is not obvious, to efficiently arrive at the
verdicts. Yet, users must rely on the algorithms being correct and correctly implemented,
as the computed verdicts carry no information as to why the policy is satisfied or violated.

The two main approaches to increase the reliability of complex algorithm implemen-
tations are verification and certification. Formal verification using proof assistants or
software verifiers is laborious and while it provides an ultimate level of trust, the user
of a verified tool still gains no insight into why a specific, surely correct verdict was
produced. In contrast, certification can yield both trust (especially when the certificate
checker is itself formally verified) and insight, provided that the certificate is not only
machine-checkable but also human-understandable.

† Lima and Traytel are supported by a Novo Nordisk Fonden start package grant
(NNF20OC0063462). Raszyk’s work was carried out during his past employment at
ETH Zürich supported by the Swiss National Science Foundation grant Big Data Monitoring
(167162). All authors thank David Basin for supporting this work.

https://orcid.org/0000-0003-1701-0435
https://orcid.org/0000-0003-3018-2557
https://orcid.org/0000-0001-7982-2768

2 L. Lima et al.

In this paper, we develop a certification approach to MTL monitoring: instead of
Boolean verdicts, we require the monitor to produce checkable and understandable certifi-
cates. To this end, we develop a sound and complete local proof system (§2) for the satis-
faction and violation of MTL policies. Following Cini and Francalanza [15], local means
that a proof denotes the policy satisfaction on a given stream of events and not general
MTL satisfiability (for any stream). Our proof system is an adaptation of Basin et al.’s [4]
local proof system for LTL satisfiability on lasso words to MTL with past and bounded
future temporal operators. A core design choice for our proof system was to remain
close to the MTL semantics and thus to be understandable for users who reason about
policies in terms of the semantics. Therefore, proof trees in our proof system, or rather
their compact representation as proof objects (§3), serve as understandable certificates.

With the certificate format in place, we devise an algorithm that computes minimal (in
terms of size) proof objects (§4). We implement the algorithm in OCaml and augment it
with an interactive web application1 to visualize and explore the computed proof objects
(§5). Independently, we prove the soundness and completeness of our proof system and
formally verify a proof checker using the Isabelle/HOL proof assistant. We extract OCaml
code from this formalization and use it to check the correctness of the verdicts produced
by our unverified algorithm. To ensure that our correct verdicts are also minimal, we de-
velop a second formally verified but less efficient monitoring algorithm in Isabelle, which
we use to compute the minimal proof object size when testing our unverified algorithm.

Finally, we demonstrate how our work provides explainable monitoring output
through several examples (§6) and empirically evaluate our algorithm’s performance in
comparison to other monitors (§7). In summary, we make the following contributions:

– We develop a sound and complete local proof system for past and bounded future
MTL that follows closely the semantics of the MTL operators.

– We develop and empirically evaluate an efficient algorithm to compute size-minimal
proof objects representing proof trees in our proof system.

– We implement our algorithm in a new, publicly available monitoring tool EXPLANA-
TOR2 [22] that includes a web front end and a formally verified proof object checker.

Related Work. We take the work by Basin et al. [4] on optimal proofs for LTL on
lasso words as our starting point but change the setting from lasso words to streams of
time-stamped events and the logic from LTL to MTL. Moreover, Basin et al. considered
the offline path checking problem, whereas we tackle online monitoring here.

Parts of the work presented here are also described in two B.Sc. theses by Yuan [39]
and Herasimau [16]. Yuan developed the MTL proof system we present here as well as
a monitoring algorithm for computing optimal proofs based on dynamic programming
(similarly to Basin et al.’s algorithm [4]). Herasimau formalized Yuan’s development
in Isabelle/HOL. We use his work as the basis for our formally verified checker. Here,
we present a different algorithm that resembles the algorithms used by state-of-the-art
monitors for metric first-order temporal logic [5, 29], which perform much better than
dynamic programming algorithms for non-trivial metric interval bounds.

Basin et al.’s approach [4] is parameterized by a comparison relation on proof objects
that specifies what the algorithm should optimize for. Yuan [39] discovers a flaw in the
correctness claim for Basin et al.’s algorithm and corrects it by further restricting the

1 https://runtime-monitoring.github.io/explanator2

https://runtime-monitoring.github.io/explanator2

Explainable Online Monitoring of Metric Temporal Logic 3

i ⊨ p iff p ∈ πi i ⊨ α∨β iff i ⊨ α or i ⊨ β i ⊨ Iα iff i > 0 and τi−τi−1 ∈ I and i−1 ⊨ α
i ⊨ ¬α iff i ⊭ α i ⊨ α∧β iff i ⊨ α and i ⊨ β i ⊨#Iα iff τi+1−τi ∈ I and i+1 ⊨ α
i ⊨ α SI β iff j ⊨ β for some j≤ i with τi−τ j ∈ I and k ⊨ α for all j < k ≤ i
i ⊨ α UI β iff j ⊨ β for some j≥ i with τ j−τi ∈ I and k ⊨ α for all i≤ k < j

Fig. 1: Semantics of MTL for a fixed trace ρ= ⟨(πi, τi)⟩i∈N
supported comparisons. Herasimau [16] relaxes Yuan’s requirements while formally ver-
ifying the correctness statement. Our algorithm minimizes the computed proof objects’
size as this both simplifies the presentation and caters for a more efficient algorithm.

Formal verification of monitors is a timely topic. Some verified monitors were de-
veloped recently using proof assistants, e.g., VeriMon [29] and Vydra [28] in Isabelle
and lattice-mtl [8] in Coq. Others leveraged SMT technology to increase their trustwor-
thiness [12, 14]. To the best of our knowledge, we present the first verified checker for
an online monitor’s output, even though verified certifiers are standard practice in other
areas such as distributed systems [35], model checking [37,38], and SAT solving [11,21].

Several monitors visualize their output [1,2,7,18,25,30]; some of these even present
visually separate verdicts for different parts of the policy. Our work takes inspiration
from these approaches, but goes deeper: our minimal proof trees characterize precisely
how the verdicts for the different parts compose to a verdict for the overall policy.

Our work follows the “proof trees as explanations” paradigm and thereby joins a
series of works on LTL [4,15,32], CFTL [13], and CTL [9]. Of these only Basin et al. [4]
supports past operators and none support metric intervals. Two of the above works [9,15]
use proof systems based on the unrolling equations for temporal operators instead of the
operator’s semantics, which we believe is suboptimal for understandability: users think
about the operators in terms of their semantics and not in terms of unrolling equations.

Outside of the realm of temporal logics one can find the “proof trees as explanations”
paradigm in regular expression matching [31] and in the database community [10].
Metric Temporal Logic. We briefly recall MTL’s syntax and point-based semantics [6].
MTL formulas are built from atomic propositions (a, b, c, . . .) via Boolean (∧, ∨, ¬)
and metric temporal operators (previous I , next #I , since SI , until UI), where I = [l,r]
is a non-empty interval of natural numbers with l ∈ N and r ∈ N∪{∞}. We omit the
interval when l = 0 and r = ∞. For the until operator U[l,r], we require the interval to
be bounded, i.e., r ̸= ∞. Formulas are interpreted over streams of time-stamped events
ρ= ⟨(πi, τi)⟩i∈N, also called traces. An event πi is a set of atomic propositions that hold
at the respective time-point i. Time-stamps τi are natural numbers that are required to be
monotone (i.e., i≤ j implies τi ≤ τ j) and progressing (i.e., for all τ there exists a time-
point i with τi > τ). Note that consecutive time-points can have the same time-stamp. Fig-
ure 1 shows MTL’s standard semantics for a formula φ at time-point i for a fixed trace ρ.

Fix a trace ρ = ⟨(πi, τi)⟩i∈N. The earliest time-point of a time-stamp τ on ρ is the
smallest time-point i such that τi≥ τ and is denoted as ETPρ(τ). Similarly, the latest time-
point of a time-stamp τ≥ τ0 on ρ is the greatest time-point i such that τi ≤ τ and is de-
noted as LTPρ(τ). Whenever the trace ρ is fixed, we will only write ETP(τ) and LTP(τ).

2 Local Proof System
We introduce a local proof system for monitoring MTL formulas as the least relation
satisfying the rules shown in Figure 2. It contains two mutually dependent judgments: ⊢+

4 L. Lima et al.

a ∈ πi

i ⊢+ a
ap+ i ⊢− α

i ⊢+ ¬α ¬
+ i ⊢+ α

i ⊢+ α∨β
∨+L

i ⊢+ β
i ⊢+ α∨β

∨+R
i ⊢+ α i ⊢+ β

i ⊢+ α∧β ∧+

a /∈ πi

i ⊢− a
ap− i ⊢+ α

i ⊢− ¬α ¬
− i ⊢− α

i ⊢− α∧β
∧−L

i ⊢− β
i ⊢− α∧β

∧−R
i ⊢− α i ⊢− β

i ⊢− α∨β ∨−

j≤ i τi−τ j ∈ I j ⊢+ β ∀k ∈ (j, i]. k ⊢+ α
i ⊢+ α SI β

S+
i > 0 τi−τi−1 ∈ I i−1 ⊢+ α

i ⊢+ Iα
 +

E
p
i ([l,r])≤ j j≤ i m = L

p
i ([l,r]) τi−τ0 ≥ l j ⊢− α ∀k ∈ [j, m]. k ⊢− β

i ⊢− α S[l,r] β
S−

j = E
p
i ([l,r]) m = L

p
i ([l,r]) τi−τ0 ≥ l ∀k ∈ [j, m]. k ⊢− β

i ⊢− α S[l,r] β
S−∞

τi−τ0 < l

i ⊢− α S[l,r] β
S−<I

0 ⊢− Iα
 −0

i > 0 i−1 ⊢− α
i ⊢− Iα

 −
i > 0 τi−τi−1 < I

i ⊢− Iα
 −<I

i > 0 τi−τi−1 > I

i ⊢− Iα
 −>I

i≤ j τ j−τi ∈ I j ⊢+ β ∀k ∈ [i, j). k ⊢+ α
i ⊢+ α UI β

U+
τi+1−τi ∈ I i+1 ⊢+ α

i ⊢+ #Iα
#+

m = Ef
i(I) i≤ j j≤ Lf

i(I) j ⊢− α ∀k ∈ [m, j]. k ⊢− β
i ⊢− α UI β

U−
τi+1−τi < I

i ⊢− #Iα
#−<I

m = Ef
i(I) j = Lf

i(I) ∀k ∈ [m, j]. k ⊢− β
i ⊢− α UI β

U−∞
i+1 ⊢− α
i ⊢− #Iα

#−
τi+1−τi > I

i ⊢− #Iα
#−>I

Fig. 2: Local proof system for MTL for a fixed trace ρ= ⟨(πi, τi)⟩i∈N

(for satisfaction proofs) and ⊢− (for violation proofs). A satisfaction (violation) proof
describes the satisfaction (violation) of a formula at a given time-point on a fixed trace
ρ. Each rule is suffixed by + or −, indicating whether an operator has been satisfied
or violated. Moreover, we define Ep

i (I) := ETP(τi− r) and Lp
i (I) := min(i,LTP(τi− l))

for I = [l,r], which correspond to the earliest and latest time-point within the interval
I, respectively, when formulas having SI as their topmost operator are considered. In the
definition of Lp

i (I) we take the minimum to account for consecutive time-stamps with
the same value. For formulas having UI as their topmost operator, both definitions are
mirrored, resulting in Ef

i(I) := max(i,ETP(τi + l)) and Lf
i(I) := LTP(τi + r).

The semantics of the MTL operators directly corresponds to the satisfaction rules ap+,
¬+, ∨+L , ∨+R , ∧+, S+, U+, +, and #+. For instance, consider two time-points j and i
such that j≤ i. The rule S+ is applied whenever the time-stamp difference τi−τ j belongs
to the interval I, and there is a witness for a satisfaction proof of β in the form of j ⊢+ β
together with a finite sequence of satisfaction proofs of α for all k ∈ (j, i]. The violation
rules for the non-temporal operators ap−, ¬−, ∨−, ∧−L , ∧−R are dual to their satisfaction
counterparts. On the other hand, the violation rules for the temporal operators I ,#I , SI ,
and UI are derived by negating and rewriting their semantics. Consider SI with I = [l,r]:

i ⊭ α SI β ↔
(
τi−τ0 ≥ l∧∃ j ∈ (Ep

i (I), i]. j ⊭ α∧∀k ∈ [j, Lp
i (I)]. k ⊭ β

)
∨(

τi−τ0 ≥ l∧∀k ∈ [Ep
i (I), L

p
i (I)]. k ⊭ β

)
∨ τi−τ0 < l

(1)

The rules S−, S−∞ , and S−<I correspond to the three disjuncts in Equation (1). We argue
that these three cases intuitively represent different ways of violating a since operator. In
the first disjunct, α is violated at some time-point after the interval starts and β is violated

Explainable Online Monitoring of Metric Temporal Logic 5

β
α
β

· · · iE
p
i (I) L

p
i (I)

τi− r τi− l

α

· · · iE
p
i (I) L

p
i (I)

τi− r τi− l

Fig. 3(a): S− cases

β β β

· · · iE
p
i (I) L

p
i (I)

τi− r τi− l

Fig. 3(b): S−∞ case

0 · · · i

τi− r τi− l

Fig. 3(c): S−<I case

Fig. 3: Graphical representation of the violation cases for α SI β with I = [l,r]

from that time-point until the interval ends. Indeed, the violation proof j ⊢− α is enough
to dismiss all previous occurrences of a satisfaction of β. Moreover, if l ̸= 0, i.e., if the
interval does not include the current time-point, then αmay be violated between the inter-
val’s end and the current time-point. Figure 3(a) shows both cases, where φ denotes a vio-
lation of φ. In the second disjunct, β is violated at every time-point inside the interval (Fig-
ure 3(b)). The third disjunct captures the special case at the beginning of the trace when
the interval is located before the first time-point (Figure 3(c)). Next, we consider UI :

i ⊭ α UI β ↔
(
∃ j ∈ [i,Lf

i(I)). j ⊭ α∧∀k ∈ [Ef
i(I), j]. k ⊭ β

)
∨(

∀k ∈ [Ef
i(I), L

f
i(I)]. k ⊭ β

) (2)

The rules U− and U−∞ correspond to the two disjuncts in Equation (2). In the first
disjunct, β is violated from the interval start until a time-point j at which also α is violated.
Symmetrically to S−, we can dismiss all satisfactions of β after j because of the violation
proof j ⊢− α. In the second disjunct, β is violated at every time-point inside the interval.

Theorem 1. Fix an arbitrary trace ρ= ⟨(πi, τi)⟩i∈N. For any formula φ and i ∈ N, we
have i ⊢+ φ iff i ⊨ φ and i ⊢− φ iff i ⊭ φ, i.e., the proof system is sound and complete.

In other words, proof trees in our proof system contain all the necessary information
to explain why a formula has been satisfied or violated on a given trace. A mechanically
checked proof of the above statement can be found in our Isabelle formalization [22].

Example 1. Let ρ = ⟨({a,b,c},1),({a,b},3),({a,b},3),({·},3),({a},3),({a},4)⟩ and
φ= a S[1,2] (b∧ c). A proof of 5 ̸|= φ has the following form:

a /∈ {·}
3 ⊢− a

ap−

b /∈ {·}
3 ⊢− b

ap−

3 ⊢− b∧ c
∧−L

b /∈ {a}
4 ⊢− b

ap−

4 ⊢− b∧ c
∧−L

5 ⊢− a S[1,2] (b∧ c)
S−

In ρ, only events with time-stamp 3 satisfy the interval conditions, resulting in Ep
5(I) = 1

and Lp
5(I) = 4, where I = [1,2]. (Time-points are zero-based.) Thus, the portion of the

trace we are interested in is ⟨({a,b},3),({a,b},3),({·},3),({a},3)⟩. Here, a is only
violated at time-point 3, so our proof includes the witness 3 ⊢− a. From there until
time-point Lp

5(I) = 4 the subformula b∧c is violated, witnessed by 3 ⊢− b and 4 ⊢− b. ■

3 Proof Objects
To make proofs from our proof system explicit, we define an inductive syntax for
satisfaction (sp) and violation (vp) proofs and call this representation proof objects.
Proof objects allow us to easily compute with, modify and compare the size of proof
trees. From now on, the term proof will be used for both proof tree and proof object.

6 L. Lima et al.

sp = ap+(N,Σ) | ¬+(vp) | ∨+L (sp) | ∨
+
R (sp) | ∧+(sp,sp) | +(sp) |#+(sp)

| S+(sp,sp∅) | U+(sp,sp∅)
vp= ap−(N,Σ) | ¬−(sp) | ∨−(vp,vp) | ∧−L (vp) | ∧

−
R (vp) | −(vp) |

−
<I(N)

| −>I(N) |
−
0 |#−(vp) |#

−
<I(N) |#

−
>I(N) | S

−
<I(N) | S

−(N,vp,vp∅)
| S−∞(N,vp∅) | U−(N,vp,vp∅) | U−∞(N,vp∅)

Here, sp and vp denote finite non-empty sequences of sp and vp subproofs and sp∅ and
vp∅ denote finite possibly empty sequences of sp and vp subproofs. We define p= sp⊎
vp to be the disjoint union of satisfaction and violation proofs. Given a proof p ∈ p, we
define V(p) to be ⊤ if p ∈ sp and ⊥ if p ∈ vp. Each constructor corresponds to a rule in
our proof system. Each proof p has an associated time-point tp(p) for which it witnesses
the satisfaction or violation. In some cases, tp(p) can be computed recursively from p’s
subproofs. For example, tp(S+(p, [q1, . . . ,qn])) is tp(qn) if n > 0 and tp(p) otherwise.
Similarly, tp(U+(p, [q1, . . . ,qn])) is tp(q1) if n > 0 and tp(p) otherwise. Other cases,
namely ap+, ap−, −<I ,

−
>I , #

−
<I , #

−
>I , S

−
<I , S

−, and S−∞ , explicitly store the associated
time-points as an argument of type N because we cannot compute them from the
respective subproofs. For example, tp(ap+(j,a)) = j and tp(S−(j,q, [p1, . . . , pn])) = j.

Given a trace ρ = ⟨(πi, τi)⟩i∈N and a formula φ, we call a proof p valid at tp(p),
denoted by p ⊢ φ, if p represents a valid proof according to the rules of our local proof
system. Note that once again we leave the dependency on ρ implicit in p ⊢ φ. Formally,
validity p ⊢ φ is defined recursively, checking for each constructor that the corresponding
rule has been correctly applied. For example, atomic proofs are valid if the mentioned
atom is (not) contained in the trace at the specified time-points: ap+(i,a) ⊢ a↔ a ∈ πi
(ap−(i,a) ⊢ a↔ a /∈ πi). Moreover, for r = S+(p, [q1, . . . ,qn]) we have

r ⊢ α SI β ↔ tp(p)≤ tp(r)∧τtp(r)−τtp(p) ∈ I∧
[tp(q1), . . . , tp(qn)] = [tp(p)+1, tp(r)]∧ p ⊢ β∧ (∀k ∈ [1,n]. qk ⊢ α).

Multiple valid proofs may exist for a time-point i and formula φ as we demonstrate next.

Example 2. The proof object representing the proof tree from Example 1 is P1 =
S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))]). However, we could have argued dif-
ferently, using the fact that c is violated at all time-points inside the interval. Then, S−∞
would be used instead to construct the proof P2 = S−∞(5, [∧−R (ap−(1,c)),∧−R (ap−(2,c)),
∧−R (ap−(3,c)),∧−R (ap−(4,c))]), which is also a valid proof at tp(P2) = 5. In addi-
tion, P3 = S−(5,ap−(3,a), [∧−L (ap−(3,c)),∧−L (ap−(4,c))]) is another valid proof at
tp(P3) = 5. It is structurally identical to P1, but instead of using the violations of
b as witnesses for time-points 3 and 4, it uses the violations of c. In fact, both b and c
are violated at time-points 3 and 4, so we can use either to justify the violations of b∧ c.

We now compare P1, P2, and P3. The proof P2 uses S−∞ , so we must store a witness of
the violation of b∧ c for each one of the 4 time-points inside the interval. The proofs P1
and P3 use S−, taking advantage of the violation proof 3 ⊢− a that allows us to dismiss
both 1 ⊢+ a and 2 ⊢+ a. Formally, we define the size |p| of a proof p to be the number
of proof object constructors occurring in p. Then, |P1|= |P3|= 6, and |P2|= 9. ■

We are particularly interested in small proofs as they tend to be easier to understand.
Given a trace ρ and a formula φ, a proof p is minimal at time-point i if and only if it is
valid at i (p ⊢ φ and tp(p) = i), and all other valid proofs q (at i) have greater or equal
size (q ⊢ φ and tp(q) = i implies |p| ≤ |q|). In our example, P1 and P3 are minimal.

Explainable Online Monitoring of Metric Temporal Logic 7

type buf = p list×p list type buft = p list×p list× ((ts× tp) list)

type saux = { tszero : ts option, ts tpin : (ts× tp) list, ts tpout : (ts× tp) list,
s beta alphasin : (ts× sp)slist, s beta alphasout : (ts× sp) list,
v alpha betasin : (ts×vp)slist, v alphasout : (ts×vp)slist,
v betasin : (ts×vp) list, v alphas betasout : (ts×vp option×vp option) list }

type state = PredS string | NegS state | AndS state state buf | OrS state state buf
| PrevS I state bool p (ts list) | NextS I state bool (ts list)
| SinceS I state state buft saux | UntilS I state state buft uaux

function init :: formula⇒ state function eval :: ts× tp⇒ atom set⇒ state⇒ p list× state

Fig. 4: Types of the monitor’s state and evaluation functions

4 Computing Minimal Proofs

Given an MTL formula φ, our (online) monitor incrementally processes a trace and
for each time-point i it outputs a minimal proof of the satisfaction or violation of φ
at i. The algorithm constructs this minimal proof of φ by combining minimal proofs of
φ’s immediate subformulas. To do this efficiently, the monitor maintains just enough
information about the trace in its state so that it can guarantee to output minimal proofs.
In case the monitored formula includes (bounded) future operators, the monitor’s output
may be delayed, such that a single event may trigger the output of multiple proofs at
once. In this section, we describe our algorithm in detail and explain its correctness.

4.1 Monitor’s State

Figure 4 shows the types of our algorithm’s main functions init, which computes the
monitor’s initial state, and eval, which processes a time-stamped event while updating the
monitor’s state and producing a list of minimal proofs (satisfactions or violations) for an
in-order (potentially empty) sequence of time-points. Our monitor’s state (type state in
Figure 4) has the same tree-like structure as the monitored MTL formula. Additionally, it
stores operator-specific information for each Boolean and temporal operator. For example,
in the state of α SI β, we store the interval I, the states of the subformulas α and β, a
buffer buft for proofs (and associated time-stamps) coming from the recursive evaluation
of subformulas and the operator-specific data structures saux. Our monitor’s overall
structure is modeled after VERIMON [29], which has a similar interface (init and eval)
and state type including the used buffers buf and buft. The main novelty is our design of
the saux and uaux data structures, which store sufficient information to compute minimal
proofs for formulas with topmost operator S and U. Here, we only describe saux in detail.

The data structure saux for a formula φ= α SI β is a record consisting of nine fields.
We will describe it next assuming that φ is being evaluated at the current time-point cur.
Furthermore, some fields have the type option, which means they are of the form ⊥ (if
no value is available) or ⌊v⌋ (storing the value v). The function THE retrieves the optional
value from ⌊v⌋, i.e., THE (⌊v⌋) = v. The field tszero stores ⊥ in the initial state, and after
the first event arrives, it stores the first time-stamp ⌊τ0⌋. Fields ts tpin and ts tpout store
lists of time-stamp-time-point pairs inside the interval (between Ep

cur(I) and Lp
cur(I))

and after the interval (between Lp
cur(I)+1 and cur), respectively. The other fields store

8 L. Lima et al.

1: procedure UPDATE SAUX ([l,r], τcur,cur, p1, p2,saux)
2: saux.tszero← if saux.tszero =⊥ then ⌊τcur⌋ else saux.tszero
3: saux← ADD SUBPS (τcur, p1, p2,saux)

▷ update s betas alphasin, s betas alphasout, v alphas betasout, and v alphasout
4: if τcur < THE (saux.tszero)+ l then
5: saux.ts tpout← APPEND (saux.ts tpout, [(τcur,cur)])
6: return (S−<I(cur),saux)
7: else
8: lr← (if r = ∞ then THE (saux.ts zero) else MAX (0, τcur− r), τcur− l)
9: saux← SHIFT SAUX(lr, l, τcur,cur,saux)

10: minimal proof ← EVAL SAUX(cur,saux) ▷ extract proofs; pick one of minimal size
11: return (minimal proof ,saux)
12:
13: procedure SHIFT SAUX (lr, l, τcur,cur,saux)
14: saux← SHIFT TS TPS (lr, l, τcur,cur,saux) ▷ update ts tpout and ts tpin
15: saux← SHIFT SAT (lr,saux) ▷ update s beta alphasout and s beta alphasin
16: saux← SHIFT VIO (lr,saux)▷ update v alphas betasout, v alpha betasin, and v betasin
17: saux← REMOVE SAUX (lr,saux) ▷ remove too old proofs (that fell out of the interval)
18: return saux

Algorithm 1: State update algorithm for Since

satisfaction (prefix s) or violation (v) proofs. Specifically, s beta alphasin stores S+
proofs inside and s beta alphasout stores S+ proofs after the interval. Crucially, while
s beta alphasout is an ordinary list, s beta alphasin has type slist, which is a variant of
the list type that indicates that the stored proofs are sorted in ascending order (with
respect to size). We maintain this invariant to optimize the number of proofs we must
store, i.e., if a proof enters the interval, we can delete all larger proofs that entered the
interval prior to it. In addition, we can quickly access the first proof of this list which
necessarily has minimal size. On the other hand, s beta alphasout must store all proofs
because it is not possible to predict when and which of these proofs will enter the interval.

Furthermore, v alpha betasin is the analogue of s beta alphasin for S− proofs with
a violation of α inside the interval, and a sequence of violations of β until the end of the
interval. Note that S− proofs can also be constructed using a single violation proof of α
that occurs after the interval, and these are instead stored in the also sorted list v alphasout.
Moreover, S−∞ proofs require that β is violated at all time-points inside the interval, so
v betasin stores a suffix of β violations inside the interval. Finally, v alphas betas stores
all α and β violations outside the interval, so all other components that store violation
proofs inside the interval can be efficiently updated when the interval shifts.

4.2 State Update

Algorithm 1 shows the skeleton of our procedure for updating (and simultaneously
evaluating) the state of a since operator. The state update for φ= α SI β is parametrized
by the interval I = [l,r], the current time-point cur and its time-stamp τcur, minimal
proofs p1 and p2 (obtained recursively) for the subformulas α and β, respectively, and
the current state saux. The procedure first checks if cur is the first time-point to arrive

Explainable Online Monitoring of Metric Temporal Logic 9

and initializes tszero accordingly (line 2). Next, we add the new subproofs to their desti-
nations (ADD SUBPS). For example, if p1 ∈ sp then all proofs from s betas alphasin and
s betas alphasout are extended with this additional satisfaction proof for α. In contrast,
if p1 ∈ vp then both s betas alphas lists are emptied and the violation of α is stored in
v alphasout and v alphas betasout instead. A similar case distinction happens for p2. Af-
ter storing the proofs, we handle the case where cur is a time-point at the beginning of the
trace for which the past interval has not started yet (lines 4–6), which corresponds to the
S−<I case depicted in Figure 3(b) on the right. Here, we add a new time-stamp-time-point
pair to ts tpout (line 5), and return the proof S−<I(cur) and the updated saux.

In the general case (when the interval has started), we compute the absolute time-
stamp pair lr that constitute the boundaries of the past interval I relative to τcur (line 8).
We use the absolute boundaries to identify a potential interval shift and move proofs in
saux from the out lists to the in lists accordingly (line 9). Lines 13–18 provide additional
details in which order the various components are shifted. Lastly, we compute a minimal
proof (line 10), performing a case distinction. If s beta alphasin is non-empty, then its
head must be a minimal satisfaction proof. Otherwise, the formula is violated and a mini-
mal violation proof is either the head of v alpha betasin or the head of v alphasout (after
adding a S− constructor) or the application of S−∞ to v betasin (provided that this suffix
spans the entire interval which can be deduced by comparing the lengths of v betasin and
ts tpin). We extract these (at most three) candidates, compute their sizes, and pick one
of minimal size. This minimal proof and the updated saux are then returned (line 11).

Example 3. To illustrate how the state is updated, we once again consider the formula
and trace introduced in Example 1. Figure 5 shows the saux states of our algorithm and
the produced minimal proof after processing every event. In every state, we only show
the non-empty components. Initially, all components of the state are empty except for
tszero, which is ⊥. When the first event ({a,b,c},1) arrives, the list ts tpout is updated
accordingly and a pair with time-stamp 1 and a S+ proof using the satisfactions of b and
c is added to s beta alphasout. This proof is clearly not valid for the current time-point
0, considering that the interval [1,2] has not yet started, so the monitor outputs the trivial
proof S−<I(0). The time-stamp of the first event moves inside the interval when the second
event ({a,b},3) arrives, and both ts tpout and ts tpin are updated accordingly. Further-
more, the algorithm extends the S+ proof previously stored in s beta alphasout by adding
ap+(1,a) to the sequence of a satisfactions, after which the resulting proof is moved
to s beta alphasin. The algorithm also appends the proof ap−(1,c) to v alphas betasout.
Because s beta alphasin is not empty, the monitor outputs the first proof of this list.

In the next step, event ({a,b},3) arrives and the monitor proceeds similarly, adding
the proof ap+(2,a) to the S+ proof in s beta alphasin. Aside from outputting the ex-
tended satisfaction proof, the algorithm also adds the proof ap−(2,c) to v alphas betasout.
When event ({·},3) arrives, the sequence of a satisfactions comes to an end, which in-
dicates that the proofs in s beta alphasin and s beta alphasout are no longer valid nor
useful. Hence, we clear both lists. In addition, the proof ap−(3,a) is stored in v alphasout,
since the a violation happens after the interval. This subproof is also appended to
v alphas betasout along with the violation of the conjunction ∧−L . The algorithm then
proceeds to construct a violation proof S−(3,ap−(3,a), [·]) using the subproof stored in
v alphasout and outputs it. When ({a},3) arrives, the algorithm appends the proof ∧−L to

10 L. Lima et al.

tszero =⊥
tszero = ⌊1⌋ ts tpout = [(1,0)]
s beta alphasout = [(1,S+(∧+(ap+(0,b),ap+(0,c)), [·]))]

output: S−<I(0)

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1)]
s beta alphasin =

[
(1,S+(∧+(ap+(0,b),ap+(0,c)),

[
ap+(1,a)

]
))
]

v alphas betasout =
[
(3,⊥,⌊∧−R (ap−(1,c))⌋)

]
output: S+(∧+(ap+(0,b),ap+(0,c)), [ap+(1,a)])

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1),(3,2)]
s beta alphasin =

[
(1,S+(∧+(ap+(0,b),ap+(0,c)), [ap+(1,a),ap+(2,a)]))

]
v alphas betasout = [(3,⊥,⌊∧−R (ap−(1,c))⌋),(3,⊥,⌊∧−R (ap−(2,c))⌋)]

output: S+(∧+(ap+(0,b),ap+(0,c)), [ap+(1,a),ap+(2,a)])

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1),(3,2),(3,3)]
v alphasout =

[
(3,ap−(3,a))

]
v alphas betasout = [(3,⊥,⌊∧−R (ap−(1,c))⌋),(3,⊥,⌊∧−R (ap−(2,c))⌋),

(3,⌊ap−(3,a)⌋,⌊∧−L (ap−(3,b))⌋)]
output: S−(3,ap−(3,a), [·])

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1),(3,2),(3,3),(3,4)]
v alphasout =

[
(3,ap−(3,a))

]
v alphas betasout = [(3,⊥,⌊∧−R (ap−(1,c))⌋),(3,⊥,⌊∧−R (ap−(2,c))⌋),

(3,⌊ap−(3,a)⌋,⌊∧−L (ap−(3,b))⌋),(3,⊥,⌊∧−L (ap−(4,b))⌋)]
output: S−(4,ap−(3,a), [·])

tszero = ⌊1⌋ ts tpin = [(3,1),(3,2),(3,3),(3,4)] ts tpout = [(4,5)]
v alpha betasin = S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))])
v betasin = [∧−R (ap−(1,c)),∧−R (ap−(2,c)),∧−L (ap−(3,b)),∧−L (ap−(4,b))]
v alphas betasout = [(4,⊥,⌊∧−L (ap−(5,b))⌋)]

output: S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))])

({a,b,c},1)

({a,b},3)

({a,b},3)

({·},3)

({a},3)

({a},4)

Fig. 5: The monitor’s saux states when executing Example 1

v alphas betasout and again uses the same subproof stored in v alphasout to construct
S−(4,ap−(3,a), [·]). Note that this proof has an associated time-point of 4, which is the
only distinction from the last proof that the monitor output.

Finally, when the last event ({a},4) arrives, the interval shifts and ts tpin and ts tpout
change accordingly. At this stage, the algorithm populates v alpha betasin and v betasin
with the subproofs stored in v alphas betasout. In particular, it constructs and stores the
proof S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))]) in v alpha betasin. Moreover, a
sequence of violations of the conjunction inside the interval is stored in v betasin.
This sequence of violations fills the entire interval, so it is then used to construct
the proof S−∞(5, [∧−R (ap−(1,c)),∧−R (ap−(2,c)),∧−R (ap−(3,c)),∧−R (ap−(4,c))]). The S−
proof corresponds precisely to the proof tree presented in Example 1, and the proof
object P1 in Example 2, whereas the S−∞ proof corresponds to the proof object P2. Lastly,
the size of these two proofs is computed, and the algorithm selects the S− proof, since it
is smaller (i.e., it includes fewer constructors). ■

Explainable Online Monitoring of Metric Temporal Logic 11

sorted(s beta alphasin)∧ sorted(v alpha betasin)∧ sorted(v alphasout)∧
(1) ∀(τ,u) ∈ s beta alphasin. ∃p q̄. u = S+(p,q)∧u ⊢ α SI β∧ tp(u) = cur∧τ= ts(p)

(2) ∀(τ,u) ∈ s beta alphasout. ∃p q̄. u = S+(p,q)∧u ⊢ α S β∧ tp(u) = cur∧τ= ts(p)

(3) ∀(τ,u) ∈ v alpha betasin. ∃p q̄. u = S−(cur, p,q)∧u ⊢ α SI β∧τ= ts(p)

(4) ∀(τ, p) ∈ v alphasout. S−(cur, p, []) ⊢ α SI β∧τ= ts(p)

(5) ∀(τ, p) ∈ v betas suffixin. E
p
cur(I)≤ tp(p)≤ L

p
cur(I)∧ p ⊢ β∧¬V(p)∧τ= ts(p)

(6) ∀(τ, p∗,q∗) ∈ v alphas betasout. ∃i ∈
]
L

p
cur(I),cur

]
. τ= τi∧

(p∗ =⊥∨ (∃p. ¬V(p)∧ p∗ = ⌊p⌋∧ p ⊢ α))∧ (q∗ =⊥∨ (∃q. ¬V(q)∧q∗ = ⌊q⌋∧q ⊢ β))

Fig. 6: The algorithm’s invariant (soundness)

4.3 Correctness

We now formally describe the invariant we maintain for saux. We write ts(p) for the time-
stamp associated with a proof, i.e., the time-stamp τtp(p) of the associated time-point
tp(p). We also use functional programming notations like λ-abstractions and the list
map function. We define the predicate sorted(seq) :=

(
∀(τi, pi) ,(τ j, p j)∈ seq. (i < j)∧

(j < length(seq))→ τi ≤ τ j∧|pi| ≤ |p j|
)

over a sequence of pairs of time-stamps and
proofs and assume that every sequence below is monotone with respect to time-stamps
(i < j implies τi ≤ τ j). The fields tszero, ts tpin and ts tpout are characterized as follows:

tszero =

{
⊥ iff cur =−1
⌊τ0⌋ iff cur ≥ 0

ts tpin =map (λi. (τi, i))
[
Ep

cur(I),L
p
cur(I)

]
ts tpout =map (λi. (τi, i))

]
Lp

cur(I),cur
]

The desired properties of the objects stored in other fields are given in Figure 6.
We describe each of the invariant’s statements. In (1) a proof in s beta alphasin

(which must be sorted) must have form S+(p,q) and be a valid proof of α SI β at the cur-
rent time-point, with time-stamp ts(p). Next, (2) requires proofs to have the same form
but instead be valid for a modified formula without the interval I. In this case, we can relax
the timing constraint because these proofs will only be valid at a later time-point, namely
once ts(p) moves inside the interval. The statement (3) is precisely the same as (1), but
for S− proofs. In (4), each proof p in v alphasout (which must too be sorted) must be a
valid subproof of a S− proof at the current time-point with time-stamp ts(p). In (5), each
subproof corresponding to the violation of β must be inside the interval with time-stamp
ts(p). The statement (6) specifies that outside the interval there is either a subproof of a
violation of α or β or there are no such proofs. These statements formalize what must hold
for the things stored in saux, which yields soundness. We briefly consider completeness,
by answering the question of what must be stored, on the example of s beta alphasin:

∀p q̄ τ. S+(p,q) ⊢ αS Iβ∧ tp
(
S + (p, q̄)

)
= cur∧τ= ts(p)→(

∃p′ q̄′ τ′. |S+(p′,q′)| ≤ |S+(p,q)|∧S+(p′,q′) ⊢ α SI β∧τ′ = ts
(

p′
)
∧

τ′ ≥ τ∧ tp
(
S+(p′,q′)

)
= tp

(
S+(p,q)

)
∧
(
τ′,S+(p′,q′)

)
∈ s beta alphasin

)
In words: for any valid S+ proof for φ = α SI β at time-point cur, we must store in
s beta alphasin another proof at most as large and old, that is also valid for φ at cur. Other
fields of saux have similar completeness statements and so have other state components.

Together, soundness and completeness ensure that given a formula, a trace, and a time-
point i, our online monitoring algorithm will eventually output a valid minimal proof at i.

12 L. Lima et al.

Fig. 7: Visualization of Example 1

5 Implementation
We implement our algorithm in a new tool called EXPLANATOR2 [22]. The implementa-
tion amounts to around 4 000 lines of OCaml. In addition, a 6 900 lines long OCaml pro-
gram is extracted from our Isabelle formalization consisting of 19 000 lines of definitions
and proofs. The extracted program contains the proof object validity checker in the form
of a function is valid : trace→ formula→ proof→ bool, which effectively implements
what we denote by p ⊢ φ. Moreover, it also contains the minimality checker is minimal :
trace→ formula→ proof→ bool that given a trace ρ, a formula φ, and a proof p com-
putes a proof q for φ on ρ at time-point tp(p) with a minimal size using a verified dynamic
programming algorithm and then checks that |p| ≤ |q|. Note that q may differ from p
because minimal proof objects are not unique. Herasimau [16] provides more details on
the formalization and the dynamic programming algorithm. We used the verified validity
and minimality checkers to thoroughly test our unverified algorithm. Our tool includes a
command line option to enable the verified certification of its output, which slows down
computation as the verified algorithm is rather inefficient but increases trustworthiness.

EXPLANATOR2 also includes a JavaScript web front end. To this end, we transpile
the compiled OCaml bytecode to JavaScript using Js of ocaml [36]. The resulting
JavaScript library runs in any web browser. We augment the library with an interactive
visualization using React [17]. Figure 7 shows the visualization of our Example 1. On the
left, the visualization shows the trace (from top to bottom) consisting of the atomic propo-
sitions (columns a, b, and c), the time-stamps (column TS) and associated time-points
(column TP). The following columns show either the topmost operator of the different
subformulas or the atomic propositions of our monitored MTL formula φ= aS[1,2] (b∧c).
In particular, the column labeled with φ’s topmost operator, namely S[1,2], shows the
Boolean verdicts that a traditional monitor would output. Users of EXPLANATOR2 can
further inspect the Boolean verdicts by clicking on them. Figure 7 shows the visualiza-
tion’s state after clicking on φ’s violation at time-point 5. The visualization highlights the
time interval and the Boolean verdicts for subformulas that justify the verdict associated
with the inspected formula and time-point. Furthermore, it shows the relevant violations
of φ’s subformulas a and b∧ c: the subformula a is violated at time-point 3 and b∧ c is
violated at time-points 3 and 4, which corresponds to a valid S− proof. The user could
continue the exploration by further clicking on the two b∧c violations to find out that the
tool used b violations to justify both. The visualization uses black circles to denote combi-
nations of subformula and time-point that are relevant for at least one of φ’s verdicts. The
Boolean value for these relevant subformula verdicts is only revealed upon exploration.

Explainable Online Monitoring of Metric Temporal Logic 13

...
61 ⊢+ r∧¬q

∧+

q ∈ {q}
56 ⊢+ q

ap+

61 ⊢+ ♦q
♦+

61 ⊢+ (r∧¬q)∧♦q
∧+

...
58, . . . ,61 ⊢− p∨q

∨−

61 ⊢− ♦[0,3] (p∨q)
♦−

q /∈ {r}
61 ⊢− q

ap−

61 ⊢−
(
♦[0,3] (p∨q)

)
S q

S−

61 ⊢−
(
(r∧¬q)∧♦q

)
→

((
♦[0,3] (p∨q)

)
S q

) →−

Fig. 8: Proof of φ1’s violation at time-point 61

Fig. 9: Visualization of φ1’s violation at time-point 61

6 Examples

We demonstrate how the minimal proofs produced by our monitor can be useful when try-
ing to comprehend a satisfaction or violation of an MTL formula. To this end, we consider
Timescales [34], a benchmark generator for MTL monitors. Timescales uses predefined
MTL formulas that represent temporal patterns that commonly occur in real system de-
signs [20]. It generates traces, in which the time-stamps are equal to their corresponding
time-points. We selected the two most complex properties and generated their correspond-
ing traces. At the end of both traces there is a violation of the pattern, and we use our
approach to explain these violations. In addition to the operators presented in Figure 2, we
extended our proof system and algorithm with the following operators: ⊤ (truth), ⊥ (fal-
sity),→ (implies),↔ (iff), ■I (historically), □I (always), ♦I (once), and ♢I (eventually).

Bounded Recurrence Between q and r. The bounded recurrence property specifies the
following pattern: between events q and r there is at least one occurrence of event p
every u time units. In MTL, this pattern is captured by the formula φ1 = (r∧¬q∧♦q)→(
(♦[0,u] (p∨q)) S q

)
. We set the bound u = 3, and we consider the trace ⟨. . . ,({q},56),

({·},57),({·},58),({·},59),({·},60),({r},61)⟩, which is the portion pertinent to the
proof. The formula φ1 is violated at time-point 61 and the proof is shown in Figure 8.

To prove the violation of the implication (the formula’s topmost operator) the subfor-
mula on the left (assumption) must be satisfied and the subformula on the right (conclu-
sion) must be violated. For this reason, two subproofs are constructed. In the left subproof,
we can see that the subformula on the left is violated because both conjuncts r∧¬q and
♦q are satisfied at time-point 61. This part of the formula enforces that: (i) r is satisfied
(and q is not satisfied) at the current time-point; and (ii) q is satisfied at some point in the
past. Note that (ii) corresponds exactly to ♦q. In the left subproof, we have 61 ⊢+ r∧¬q
because r is satisfied and q is violated at time-point 61. Moreover, the proof 61 ⊢+ ♦q

14 L. Lima et al.

uses the fact that q is satisfied at time-point 56, which is when the last q had arrived. Mov-
ing to the subproof 61⊢− (♦[0,3] (p∨q))S q, the violation occurs because both subformu-
las are violated at time-point 61. The subproof 61⊢− ♦[0,3] (p∨q) uses the violations of p
and q in the last 3 time units (58, . . . ,61), whereas the proof 61 ⊢− q indicates that q is not
satisfied at the current time-point. This is sufficient to show that since the last q has arrived
(at time-point 56), it is neither the case that a new sequence started (with a new occurrence
of q) or that a sequence finished (with an occurrence of p) within 3 time units in the past.

Figure 9 shows our visualization of the above proof. Starting from→, the columns
show the topmost operators of φ1’s subformulas (including atomic propositions). For
example, φ1 is violated because the left subformula is satisfied (the first ∧ column) and
the right subformula is violated (column S[0,∞)). All subformulas have a corresponding
column and the order of the columns is such that immediate subformulas of a subformula
appear further to the right. The same atomic proposition may occur in different subfor-
mulas, in which case there will be multiple columns showing the same proposition (but
potentially different time-points of interest). Continuing our example, the right subproof
from Figure 8 starts in column S[0,∞) in Figure 9. The formula (♦[0,3] (p∨q)) S q is
violated at time-point 61 because both subformulas are violated. In the visualization, we
focus (by clicking) on the subformula ♦[0,3] (p∨q) (displayed when hovering over the
corresponding cell) and observe that it is violated because p∨q is violated at time-points
58, . . . ,61 (highlighted cells in the ∨ column). Also, the context of this subproof, i.e.,
all parent nodes in the proof tree, is highlighted. In this case, these are→ and S[0,∞) at
time-point 61. Even though it presents the exact same information as the proof tree, our
interactive visualization makes the proofs easier to navigate, explore, and digest.

Bounded Response Between q and r. Closely related to the bounded recurrence, the
bounded response property specifies the following pattern: between events q and r, event
s must respond to event p within the interval [l,u]. In MTL, this pattern is specified by the
formula φ2 = ((r∧¬q)∧♦q)→

(((
s→ ♦[l,u]p

)
∧¬

(
¬s S[u,∞) p

))
S q

)
. We consider

the trace ⟨. . . ,({q},58),({p},59),({·},60),({·},61),({·},62),({·},63),({r},64)⟩ and
set l = 0 and u = 3. Figure 10 shows a violation proof for φ2 at time-point 64.

The implication’s assumption in φ2 is the same as the assumption in φ1 (the bounded
recurrence formula). We omit the corresponding subproof P from Figure 11 as it has
the same structure as the subproof of the bounded recurrence example. (Yet, there are
differences in the time-points.) The conclusion of φ2 has the form α S q. It is violated at
time-point 64 because α is violated at time-point 62, and from this point onward until the
current time-point 64, q is always violated. According to our proof system, we only need
to consider violations of q starting at time-point 62, because α is violated at that point.
The formula α=

(
s→ ♦[0,3]p

)
∧¬

(
¬s S[3,∞) p

)
captures two properties: (i) if there is a

response s then there must be a recent challenge p (i.e., p must be satisfied within the last
3 time units); (ii) there are no challenges p more than 3 time units in the past without a
response s. In our proof, the violation of α is constructed using the violation of (ii). After
applying the negation rule, the proof 62 ⊢+ ¬s S[3,∞) p uses the fact that p is satisfied at
time-point 59 and that s is violated at time-points 60, 61 and 62. In other words, there was
no response s to the challenge p within the required time constraint. Figure 11 shows the
visualization of this subproof. While the static image already helps with the intuition, we
invite the reader to explore this and the previous example in our interactive visualization.

Explainable Online Monitoring of Metric Temporal Logic 15

...
P

p ∈ {p}
59 ⊢+ p

ap+

...
60, . . . ,62 ⊢− s

60, . . . ,62 ⊢+ ¬s
¬+

62 ⊢+ ¬s S[3,∞) p
S+

62 ⊢− ¬
(
¬s S[3,∞) p

) ¬−
62 ⊢−

(
s→ ♦[0,3]p

)
∧¬

(
¬s S[3,∞) p

) ∧−R ...
62, . . . ,64 ⊢− q

64 ⊢−
((

s→ ♦[0,3]p
)
∧¬

(
¬s S[3,∞) p

))
S q

S−

64 ⊢−
(
(r∧¬q)∧♦q

)
→

(((
s→ ♦[0,3]p

)
∧¬

(
¬s S[3,∞) p

))
S q

) →−
Fig. 10: Proof of φ2’s violation at time-point 64

· · ·

Fig. 11: Visualization of φ2’s violation at time-point 64

7 Performance

We empirically evaluate our tool by answering the following research question: How does
EXPLANATOR2 scale with respect to the formula size when compared to other state-of-
the-art monitoring tools? To this end, we reuse the evaluation setup of the MTL monitor
HYDRA [26]. We consider two different settings: (i) past-only MTL formulas; and (ii)
MTL formulas (mixing past and future operators). For each setting we pseudo-randomly
generate a trace with 100000 events and collections of five different formulas for each
size s ∈ {6,17, . . . ,50} . We measure the time and space usage of the EXPLANATOR2,
HYDRA and VYDRA [27], AERIAL [3] MONPOLY [5], and VERIMON [29]. Our verified
dynamic programming algorithm is not included because it times out (with a time-out of
200 seconds) even for the smallest formulas of size 6. The experiments were conducted
on a computer with an AMD Ryzen 5 5600X CPU and 16GB of RAM. The results
are presented in Figure 12. Each filled shape is an average of the measurements for the
corresponding formula size. (Unfilled shapes show the individual runs, but are sometimes
invisible.) The axes showing time and space usage measurements are of logarithmic scale.

Time-wise, EXPLANATOR2 outperforms MONPOLY and VERIMON (first-order
monitors), and is on par with most of its competitors in the past-only setting. When we
include future operators, EXPLANATOR2 performs worse than its competitors, although
only by a narrow margin. However, we must consider that in contrast to the others our
tool has a clear disadvantage: it produces checkable and understandable output instead of
Boolean verdicts. Thus, these results reassure us that we do not compromise too much by

16 L. Lima et al.

Past-only MTL

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

T
im

e
[s

]

Formula Size

Average-Case Time Complexity

 0.1

 1

 10

 100

 0 10 20 30 40 50

S
p

ac
e

[M
B

]

Formula Size

Average-Case Space Complexity

MTL

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50

T
im

e
[s

]

Formula Size

Average-Case Time Complexity

 0.1

 1

 10

 100

 0 10 20 30 40 50
S

p
ac

e
[M

B
]

Formula Size

Average-Case Space Complexity

EXPLANATOR2
AERIAL

MONPOLY

VERIMON

HYDRA

VYDRA

Fig. 12: Evaluation results

providing this feature, and that our algorithm is indeed efficient. In terms of space usage,
EXPLANATOR2 performs worse than other monitoring tools in both settings. This is
hardly surprising, given that proofs can be huge (e.g., they may contain the entire trace).

8 Conclusion

We have developed an online MTL monitor that outputs detailed verdicts in the form of
proof trees, which serve as both understandable explanations and checkable certificates.
Our monitor incorporates a formally verified checker and an interactive visualization.
Our empirical evaluation demonstrates the reasonable performance of our monitor, even
though it provides a strictly more informative output than its competitors. Overall, we
believe that our approach significantly improves the user experience when using an MTL
monitor. In particular, the generated explanations provide insight into root causes of
violations and can help with specification debugging. Another plausible application of
explanations is teaching temporal logics to students and engineers.

As future work, we will lift our approach to the more expressive metric first-order tem-
poral logic. The main challenge here is to incorporate parametric events and quantifica-
tion. Moreover, we are interested in optimizing other aspects of the proofs than their size.

Data Availability Statement EXPLANATOR2 is available under the GNU Lesser General
Public License v3.0 [22] and its interactive visualization is hosted on GitHub. Our
artifact [23] contains the snapshot of the tool’s source code at paper submission time
along with instructions on how to run our test suite and to reproduce our evaluation.

https://runtime-monitoring.github.io/explanator2/

Explainable Online Monitoring of Metric Temporal Logic 17

References

1. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program ex-
ecutions. In: COMPSAC 2007. pp. 541–546. IEEE Computer Society (2007).
https://doi.org/10.1109/COMPSAC.2007.236

2. Bartocci, E., Ferrère, T., Manjunath, N., Nickovic, D.: Localizing faults in Simulink/Stateflow
models with STL. In: Prandini, M., Deshmukh, J.V. (eds.) HSCC 2018. pp. 197–206. ACM
(2018). https://doi.org/10.1145/3178126.3178131

3. Basin, D., Bhatt, B.N., Krstic, S., Traytel, D.: Almost event-rate independent monitoring.
Formal Methods Syst. Des. 54(3), 449–478 (2019). https://doi.org/10.1007/s10703-018-00328-
3

4. Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on lasso words.
In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 37–55. Springer (2018).
https://doi.org/10.1007/978-3-030-01090-4 3

5. Basin, D., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/2699444

6. Basin, D., Klaedtke, F., Zalinescu, E.: Algorithms for monitoring real-time properties. Acta
Informatica 55(4), 309–338 (2018). https://doi.org/10.1007/s00236-017-0295-4

7. Baumeister, J., Finkbeiner, B., Gumhold, S., Schledjewski, M.: Real-time visualization of
stream-based monitoring data. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp.
325–335. Springer (2022). https://doi.org/10.1007/978-3-031-17196-3 21

8. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal logic with
quantitative semantics. In: Deshmukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399, pp.
383–403. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7 21

9. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and exploration. Int.
J. Softw. Tools Technol. Transf. 9(5-6), 429–445 (2007). https://doi.org/10.1007/s10009-007-
0047-9

10. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Found.
Trends Databases 1(4), 379–474 (2009). https://doi.org/10.1561/1900000006

11. Cruz-Filipe, L., Heule, M.J.H., Jr., W.A.H., Kaufmann, M., Schneider-Kamp, P.: Efficient
certified RAT verification. In: de Moura, L. (ed.) CADE 26. vol. 10395, pp. 220–236. Springer
(2017). https://doi.org/10.1007/978-3-319-63046-5 14

12. Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In:
Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer (2021).
https://doi.org/10.1007/978-3-030-88494-9 4

13. Dawes, J.H., Reger, G.: Explaining violations of properties in control-flow temporal logic. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 202–220. Springer (2019).
https://doi.org/10.1007/978-3-030-32079-9 12

14. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified Rust monitors for Lola
specifications. In: Deshmukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 431–
450. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7 24

15. Francalanza, A., Cini, C.: Computer says no: Verdict explainability for runtime moni-
tors using a local proof system. J. Log. Algebraic Methods Program. 119, 100636 (2021).
https://doi.org/10.1016/j.jlamp.2020.100636

16. Herasimau, A.: Formalizing Explanations for Metric Temporal Logic. B.Sc. thesis, ETH
Zürich (2020)

17. Hunt, P., O’Shannessy, P., Smith, D., Coatta, T.: React: Facebook’s functional turn on writing
JavaScript. ACM Queue 14(4), 40 (2016). https://doi.org/10.1145/2984629.2994373

18. Kallwies, H., Leucker, M., Schmitz, M., Schulz, A., Thoma, D., Weiss, A.: TeSSLa – an
ecosystem for runtime verification. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498,
pp. 314–324. Springer (2022). https://doi.org/10.1007/978-3-031-17196-3 20

https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1145/2699444
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.1007/978-3-031-17196-3_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/s10009-007-0047-9
https://doi.org/10.1007/s10009-007-0047-9
https://doi.org/10.1561/1900000006
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-030-88494-9_4
https://doi.org/10.1007/978-3-030-32079-9_12
https://doi.org/10.1007/978-3-030-60508-7_24
https://doi.org/10.1016/j.jlamp.2020.100636
https://doi.org/10.1145/2984629.2994373
https://doi.org/10.1007/978-3-031-17196-3_20

18 L. Lima et al.

19. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime monitoring of an
autonomous research vehicle (ARV) system. In: Bartocci, E., Majumdar, R. (eds.) RV 2015.
LNCS, vol. 9333, pp. 102–117. Springer (2015). https://doi.org/10.1007/978-3-319-23820-3 7

20. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Roman, G.,
Griswold, W.G., Nuseibeh, B. (eds.) ICSE 2005. pp. 372–381. ACM (2005).
https://doi.org/10.1145/1062455.1062526

21. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason. 64(3),
513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

22. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: The development repository of
EXPLANATOR2. https://github.com/runtime-monitoring/explanator2 (2022)

23. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Artifact for “Explainable online
monitoring of metric temporal logic” (2023). https://doi.org/10.5281/zenodo.7509199

24. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of secu-
rity threats for unmanned aerial systems. Formal Methods Syst. Des. 51(1), 31–61 (2017).
https://doi.org/10.1007/s10703-017-0275-x

25. Nickovic, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative and quantita-
tive trace analysis with extended signal temporal logic. Int. J. Softw. Tools Technol. Transf.
22(6), 741–758 (2020). https://doi.org/10.1007/s10009-020-00582-z

26. Raszyk, M.: Efficient, Expressive, and Verified Temporal Query Evaluation. Ph.D. thesis,
ETH Zürich (2022). https://doi.org/10.3929/ethz-b-000553221

27. Raszyk, M., Basin, D., Krstic, S., Traytel, D.: Multi-head monitoring of metric temporal
logic. In: Chen, Y., Cheng, C., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 151–170.
Springer (2019). https://doi.org/10.1007/978-3-030-31784-3 9

28. Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric dynamic logic. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 233–250. Springer (2020).
https://doi.org/10.1007/978-3-030-59152-6 13

29. Schneider, J., Basin, D., Krstic, S., Traytel, D.: A formally verified monitor for metric first-
order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
310–328. Springer (2019). https://doi.org/10.1007/978-3-030-32079-9 18

30. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime analysis with R2U2: A tool exhibition
report. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 504–509. Springer
(2016). https://doi.org/10.1007/978-3-319-46982-9 35

31. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In: Codish,
M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer (2014).
https://doi.org/10.1007/978-3-319-07151-0 13

32. Sulzmann, M., Zechner, A.: Constructive finite trace analysis with linear temporal logic. In:
Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 132–148. Springer (2012).
https://doi.org/10.1007/978-3-642-30473-6 11

33. Ulus, D.: Online monitoring of metric temporal logic using sequential networks. CoRR
abs/1901.00175 (2019). https://doi.org/10.48550/arxiv.1901.00175

34. Ulus, D.: Timescales: A benchmark generator for MTL monitoring tools. In: Finkbeiner,
B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 402–412. Springer (2019).
https://doi.org/10.1007/978-3-030-32079-9 25

35. Völlinger, K.: Verifying the output of a distributed algorithm using certification. In:
Lahiri, S.K., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 424–430. Springer (2017).
https://doi.org/10.1007/978-3-319-67531-2 29

36. Vouillon, J., Balat, V.: From bytecode to JavaScript: the Js of ocaml compiler. Softw. Pract.
Exp. 44(8), 951–972 (2014). https://doi.org/10.1002/spe.2187

37. Wimmer, S., Herbreteau, F., van de Pol, J.: Certifying emptiness of timed Büchi automata.
In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 58–75. Springer
(2020). https://doi.org/10.1007/978-3-030-57628-8 4

https://doi.org/10.1007/978-3-319-23820-3_7
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1007/s10817-019-09525-z
https://github.com/runtime-monitoring/explanator2
https://doi.org/10.5281/zenodo.7509199
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.1007/978-3-030-31784-3_9
https://doi.org/10.1007/978-3-030-59152-6_13
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-319-46982-9_35
https://doi.org/10.1007/978-3-319-07151-0_13
https://doi.org/10.1007/978-3-642-30473-6_11
https://doi.org/10.48550/arxiv.1901.00175
https://doi.org/10.1007/978-3-030-32079-9_25
https://doi.org/10.1007/978-3-319-67531-2_29
https://doi.org/10.1002/spe.2187
https://doi.org/10.1007/978-3-030-57628-8_4

Explainable Online Monitoring of Metric Temporal Logic 19

38. Wimmer, S., von Mutius, J.: Verified certification of reachability checking for timed automata.
In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol. 12078, pp. 425–443. Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5 24

39. Yuan, S.: Explaining Monitoring Verdicts for Metric Dynamic Logic. B.Sc. thesis, ETH
Zürich (2019)

https://doi.org/10.1007/978-3-030-45190-5_24

	Explainable Online Monitoring of Metric Temporal Logic

