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Abstract. Metric first-order temporal logic (MFOTL) is an expressive formal-
ism for specifying temporal and data-dependent constraints on streams of time-
stamped, data-carrying events. It serves as the specification language of several
runtime monitors. These monitors input an MFOTL formula and an event stream
prefix and output satisfying assignments to the formula’s free variables. For com-
plex formulas, it may be unclear why a certain assignment is output. We propose
an approach that accompanies assignments with detailed explanations, in the form
of proof trees. We develop a new monitor that outputs such explanations. Our
tool incorporates a formally verified checker that certifies the explanations and a
visualization that allows users to interactively explore and understand the outputs.

1 Introduction

Runtime monitoring is concerned with the analysis of events produced by a system during
its execution. An online monitor searches for given complex patterns in event streams,
processing the stream incrementally, i.e., one event at a time. If it finds a pattern match,
the monitor outputs a verdict to its user. The nature of a verdict depends on both the
monitor and its pattern specification language. For propositional specification languages,
such as metric temporal logic (MTL) [6, 21], typical verdicts are streams of Booleans [8,
28,31], where each Boolean signifies the presence or the absence of a pattern match, i.e.,
the satisfaction or violation of the MTL formula at every position in the input stream.

Users might find Boolean outputs difficult to interpret, especially when complex pat-
terns like nesting temporal operators are involved. In particular, Boolean verdicts give no
insight into how monitors produce them—we have to trust their correctness. Even when
assuming infallible monitors, verdict justifications can help us to ensure that we expressed
correctly our intentions in the specification and, e.g., that it is not vacuously true [23].

Lima et al. [25] propose the use of richer verdicts in an MTL monitor. Specifically,
they use proof trees in a dedicated proof system resembling MTL’s semantics to explain
why a formula is satisfied or violated. They develop the EXPLANATOR2 monitor, which
outputs a stream of size-minimal proof trees, and design an interactive graphical user
interface for exploring and understanding these informative verdicts. In addition, they
formally verify, in the Isabelle/HOL proof assistant, a proof tree checker certifying that
their proof system rules were correctly applied. Thus proof tree verdicts serve a two-fold
purpose: as machine-checkable certificates and human-readable explanations.

In this work, we significantly widen the scope of the “proof tree verdicts” approach.
We provide certifiable and explainable monitoring verdicts for metric first-order temporal
logic (MFOTL) [14] with bounded future operators and without equality between vari-
ables. MFOTL extends MTL with data parameters and first-order quantification and is an
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expressive formalism with many practical applications [7,10–13]. We extend Lima et al.’s
MTL proof system to MFOTL with the expected rules for quantifiers (Section 2): e.g., the
universally quantified formula ∀x. α is satisfied if α with x replaced by d is satisfied for
all domain values d. The key challenge here is that the domain is typically infinite, which
results in the above proof rule for ∀ to be infinitely branching. This is problematic because
it is unclear how to validate a correct application of the ∀ rule in a proof tree checker.

A crucial observation is that without equality between variables, proof trees cannot
distinguish values outside of the active domain, i.e., the finite set of data values from
the monitored event stream prefix and from the formula’s constants. Thus, the active
domain’s size plus one bounds the number of choices for d requiring different proof
trees, and we can reuse them–with the extra “plus one” representing values outside the
active domain. Thus, to represent the ∀ rule it suffices to store a finite partition of the
domain and one subproof for each part. We obtain finite proof objects, develop a checker
for them, and formally verify the checker’s correctness in Isabelle/HOL (Section 3).

The proof system explains how to deal with closed MFOTL formulas. A Boolean ver-
dict for a formula with free variables only makes sense relative to a variable assignment.
Hence, traditional MFOTL monitors compute sets of satisfying variable assignments [15,
30] instead of Boolean verdicts. In our setting, an explanation for a formula with free vari-
ables must provide a proof tree for any variable assignment (satisfying or violating). For
infinite domains, there are infinitely many assignments, but the same idea that worked for
quantifiers comes to our rescue: it suffices to consider a finite partition of the domain for
each variable. Inspired by binary decision diagrams (BDDs) [16], we organize the parti-
tions for different variables hierarchically in partitioned decision trees (PDTs). PDTs are
trees where each leaf stores a generic data item and each node (representing a variable)
branches on a finite partition of the domain (Section 4). The partitions may change from
one node to the other. PDTs can be compacted (or reduced in BDD terminology).

We thus have arrived at our notion of explainable verdicts for MFOTL formulas:
PDTs whose leaves are proof objects. We extend our verified checker from proof objects
to such verdicts and Lima et al.’s algorithm for MTL [25] to MFOTL (Section 5). Our
algorithm extension is modular in the sense that it merely adds a layer of PDTs, but keeps
Lima et al.’s algorithms for temporal operators unchanged. We implement the extended
algorithm in a new monitor and also extend Lima et al.’s interactive visualization of
proof objects. We demonstrate the effectiveness of our new tool on MFOTL policies
from the literature (Section 6). In summary, we make the following contributions:

– We develop a proof system for MFOTL satisfaction and violation at a time-point for
a given event stream and verify its soundness and completeness in Isabelle/HOL.

– We finitely represent our proof system’s proof trees and formally verify a checker
for them. The key idea is that finite partitions of infinite domains are sufficient.

– We design partitioned decision trees (PDTs) to represent functions from variable
assignments to generic data items in a way that enables sharing and compression.

– We develop an algorithm computing explanations: PDTs with proof objects as leaves.
We implement the algorithm in a new monitor, along with an interactive visualization
of explanations and integrated with the verified proof tree checker for certification.

Our tool, called WHYMON, is publicly available [2].
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v, i ⊨ tt v, i ⊨ ∃x.α iff v[x 7→ d], i ⊨ α for some d ∈ D
v, i ⊭ ff v, i ⊨ ∀x.α iff v[x 7→ d], i ⊨ α for all d ∈ D
v, i ⊨ p(t) iff p(JtKv) ∈ Γi v, i ⊨ Iα iff i > 0, τi−τi−1 ∈ I, and v, i−1 ⊨ α
v, i ⊨ x≈ c iff v(x) = c v, i ⊨#Iα iff τi+1−τi ∈ I and v, i+1 ⊨ α
v, i ⊨ ¬α iff v, i ⊭ α v, i ⊨ ♦Iα iff v, j ⊨ β for some j≤ i with τi−τ j ∈ I
v, i ⊨ α∧β iff v, i ⊨ α and v, i ⊨ β v, i ⊨ ♢Iα iff v, j ⊨ β for some j≥ i with τ j−τi ∈ I
v, i ⊨ α∨β iff v, i ⊨ α or v, i ⊨ β v, i ⊨ ■Iα iff v, j ⊨ β for all j≤ i with τi−τ j ∈ I
v, i ⊨ α→ β iff v, i ⊭ α or v, i ⊨ β v, i ⊨ □Iα iff v, j ⊨ β for all j≥ i with τ j−τi ∈ I
v, i ⊨ α SI β iff v, j ⊨ β for some j≤ i with τi−τ j ∈ I and v,k ⊨ α for all j < k ≤ i
v, i ⊨ α UI β iff v, j ⊨ β for some j≥ i with τ j−τi ∈ I and v,k ⊨ α for all i≤ k < j

Fig. 1: Semantics of MFOTL for a fixed stream σ= ⟨τi,Γi⟩i∈N.

Further Related Work Lima et al.’s work [25], which we extend, is based on the work by
Basin et al. [9] that employed proof trees as explanations in the context of understanding
counterexamples of LTL model checkers. We refer to these works for a discussion of
related proof systems for propositional temporal logics and regular expressions.

In the first-order monitoring setting, we are on unexplored territory with verdicts that
go beyond satisfying assignments. Nonetheless our work incorporates ideas from exist-
ing first-order monitors. Most closely related is Havelund et al’s DEJAVU monitor [18],
which uses BDDs to represent sets of satisfying assignments. Our work generalizes BDDs
to branching over partitions of the domain and storing generic data (e.g., proof objects)
instead of Booleans in the leaves. In addition, the DEJAVU authors make use of the fact
that without equality between variables the formula’s satisfaction cannot be influenced by
different values outside the active domain. We generalize this observation so that not only
the satisfaction but rather entire proof trees can be reused when exchanging values outside
the active domain. Finally, DEJAVU only supports past temporal operators and closed for-
mulas, whereas our algorithm supports both past and future operators and free variables.

Havelund et al.’s key observation fails for equalities between variables. For example,
the formula x≈ y→ p(x,y) is satisfied for any pair of distinct values c ̸= d outside of the
predicate p’s interpretation, but it is violated if we pick the same value c for both x and y.
A classic result by Ailamazyan et al. [5,19] shows that for the relational calculus (MFOTL
without temporal operators) it suffices to distinguish a finite number of equivalence
classes of values outside of the active domain. While it is conceivable that this result
generalizes to MFOTL with equality, we leave this generalization as future work.

The MFOTL monitor MonPoly [14, 15] and its formally verified counterpart Veri-
Mon [30] output streams of satisfying assignments for formulas in the so-called mon-
itorable fragment. The fragment ensures that all subformulas always evaluate to finite
sets of satisfying assignments. Our monitor does not suffer from this limitation; even
more it returns all satisfying and violating assignments (labeled and explained as such).

Outside of first-order monitoring, our visualization takes some inspiration from the
stream runtime verification tool TeSSLa [24], which can provide output for all interme-
diate streams. Similarly, we provide output for all subformulas, but our proof trees allow
us to focus on the relevant dependencies between a formula and its subformulas.

Metric first-order temporal logic (MFOTL) We recall MFOTL’s syntax and semantics.
We fix an infinite domain D (e.g., containing integers and strings). Terms t ∈ T are either
variables x,y,z ∈ V or constants c,d ∈ D. Overlines indicate lists (finite sequences), e.g.,
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if t is a term, then t is a list of terms. The grammar below specifies MFOTL’s syntax,
where p ∈ E is a predicate name (e.g., a string) and I ∈ I⊆ 2N is a non-empty interval.

α ::= tt | ff | p(t) | x≈ c | ¬α | α∧α | α∨α | α→ α | ∃x. α | ∀x. α |
 Iα |#Iα | ♦Iα | ♢Iα |■Iα |□Iα | α SI α | α UI α

Besides the first-order logic operators, the syntax includes the past (previous), ♦ (once),
■ (historically), S (since) and future # (next), ♢ (eventually), □ (always), U (until)
temporal operators. We use

∧
for universal and

∨
for existential quantification at the met-

alanguage level to avoid confusion with MFOTL formulas. We also use common interval
notation [a,b) = {n | a≤ n < b} or [a,c] = {n | a≤ n≤ c}, for a,c ∈N and b ∈N∪{∞},
and omit intervals when I = [0,∞) =N. Whenever we write [a,c], we exclusively denote
the range [a, . . . ,c] (rather than the two element sequence [a,c]). Furthermore, we assume
that the future operators (♢, □, and U) intervals are finite (also called bounded). We
write a+ I for {a+ x | x ∈ I} and aR I for

∧
x ∈ I. aR x (whereR∈ {<,≤,>,≥}). We

interpret formulas over streams σ: infinite sequences of time-stamped sets of events σ=
⟨τi,Γi⟩i∈N. We call the indices i ∈N time-points, so that Γi is the set of events and τi ∈N
is the time-stamp at time-point i. The time-stamps τi must be monotone (

∧
i j. i≤ j−→

τi ≤ τ j) and eventually increasing (
∧
τ.

∨
i. τi > τ). Each event has the form p(d1, . . . ,dn)

where p is the event name and di ∈D. Given a total assignment v mapping variables to val-
ues in D, we define J xKv = v(x) and JcKv = c. The notation J t Kv = c lifts this operation to
lists of terms. We define the satisfaction relation v, i ⊨σ α in the usual way (Figure 1). Fi-
nally, the earliest time-point ETPσ(τ) of τ∈N on σ is the smallest time-point i such that
τi≥ τ. Analogously, the latest time-point LTPσ(τ) of τ≥ τ0 onσ is the largest i such that
τi ≤ τ. We omit the stream σ

(
e.g., ⊨, ETP(τ) and LTP(τ)

)
if it is clear from the context.

2 Proof System

We introduce a local proof system for MFOTL (Figure 2). “Local" means here that the
proof system does not talk about satisfiability in general, but rather about the formula’s
satisfaction or violation for a fixed stream, assignment, and time-point.

Our proof system consists of two mutually dependent judgments, ⊢+σ and ⊢−σ (again
σ is omitted when clear), that characterize a formula’s satisfaction v, i ⊢+σ α and violation
v, i ⊢−σ α relations for assignment v, stream σ, and time-point i. The rules of our proof
system closely follow the MFOTL semantics (Figure 1) and extend the proof system used
by Lima et al. [25] with assignments (that are mostly passed around without modification)
and the rules for quantifiers (which modify the assignments). The rules for atomic
predicates and Boolean constants and operators are self-explanatory: e.g., predicates
are satisfied if a matching event is present in the trace; a conjunction is satisfied if both
conjuncts are satisfied; a conjunction is violated if either of the conjuncts is violated.

The rule ∃+ states that for v to satisfy ∃x. α at i, it suffices to provide a domain value
d such that the updated assignment v[x 7→ d] setting x to d satisfies α at i. Conversely,
∃− asserts that the violation of ∃x. α under v at i requires showing that all domain values
make v[x 7→ d] violate α at i. Since the universal quantifier is dual to the existential one,
the rules ∀− and ∀+ exchange the relations ⊢+σ and ⊢−σ compared to ∃+ and ∃−.
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v, i ⊢+ tt
tt+

v, i ⊢− ff
ff−

p(JtKv) ∈ Γi

v, i ⊢+ p(t)
p+

p(JtKv) /∈ Γi

v, i ⊢− p(t)
p−

v, i ⊢+ α v, i ⊢− β
v, i ⊢− α→ β →−

v, i ⊢− α
v, i ⊢+ ¬α ¬

+
v, i ⊢− α

v, i ⊢− α∧β
∧−L

v, i ⊢− β
v, i ⊢− α∧β

∧−R
v, i ⊢+ α v, i ⊢+ β

v, i ⊢+ α∧β ∧+
v, i ⊢− α

v, i ⊢+ α→ β
→+

L

v, i ⊢+ α
v, i ⊢− ¬α ¬

− v, i ⊢+ α
v, i ⊢+ α∨β

∨+L
v, i ⊢+ β

v, i ⊢+ α∨β
∨+R

v, i ⊢− α v, i ⊢− β
v, i ⊢− α∨β ∨−

v, i ⊢+ β
v, i ⊢+ α→ β

→+
R

v[x 7→ d], i ⊢+ α
v, i ⊢+ ∃x. α

∃+
∧

d. v[x 7→ d], i ⊢+ α
v, i ⊢+ ∀x. α

∀+
∧

d. v[x 7→ d], i ⊢− α
v, i ⊢− ∃x. α

∃−
v[x 7→ d], i ⊢− α

v, i ⊢− ∀x. α
∀−

v,0 ⊢−  Iα
 −0

i > 0 τi−τi−1 < I

v, i ⊢−  Iα
 −<I

i > 0 τi−τi−1 > I

v, i ⊢−  Iα
 −>I

i > 0 v, i−1 ⊢− α
v, i ⊢−  Iα

 −

τi+1−τi ∈ I v, i+1 ⊢+ α
v, i ⊢+ #Iα

#+
τi+1−τi < I

v, i ⊢− #Iα
#−<I

τi+1−τi > I

v, i ⊢− #Iα
#−>I

v, i+1 ⊢− α
v, i ⊢− #Iα

#−

j≤ i τi−τ j ∈ I v, j ⊢+ α
v, i ⊢+ ♦Iα

♦+ τi < τ0 + I

v, i ⊢− ♦Iα
♦−<l

j≥ i τ j−τi ∈ I v, j ⊢+ α
v, i ⊢+ ♢Iα

♢+

τi ≥ τ0 + I
∧

j ∈ [E
p
i (I),L

p
i (I)]. v, j ⊢

− α

v, i ⊢− ♦Iα
♦−

∧
j ∈ [Ef

i(I),L
f
i(I)]. v, j ⊢− β

v, i ⊢− ♢Iα
♢−

j≤ i τi−τ j ∈ I v, j ⊢− α
v, i ⊢− ■Iα

■−
τi < τ0 + I
v, i ⊢+ ■Iα

■+
<l

j≥ i τ j−τi ∈ I v, j ⊢− α
v, i ⊢+ □Iα

□−

τi ≥ τ0 + I
∧

j ∈ [E
p
i (I),L

p
i (I)]. v, j ⊢

+ α

v, i ⊢+ ■Iα
■+

∧
j ∈ [Ef

i(I),L
f
i(I)]. v, j ⊢+ β

v, i ⊢+ □Iα
□+

j≤ i τi−τ j ∈ I v, j ⊢+ β
∧

k ∈ ( j, i]. v,k ⊢+ α
v, i ⊢+ α SI β

S+
i > 0 τi−τi−1 ∈ I v, i−1 ⊢+ α

v, i ⊢+  Iα
 +

i≤ j τ j−τi ∈ I v, j ⊢+ β ∀k ∈ [i, j). v,k ⊢+ α
v, i ⊢+ α UI β

U+
τi < τ0 + I

v, i ⊢− α SI β
S−<I

v(x) = c

v, i ⊢+ x≈ c
≈+

τi ≥ τ0 + I
∧

k ∈ [E
p
i (I),L

p
i (I)]. v,k ⊢

− β

v, i ⊢− α SI β
S−∞

∧
k ∈ [Ef

i(I),L
f
i(I)]. v,k ⊢− β

v, i ⊢− α UI β
U−∞

E
p
i (I)≤ j j≤ i τi ≥ τ0 + I v, j ⊢− α

∧
k ∈ [ j,Lp

i (I)]. v,k ⊢
− β

v, i ⊢− α SI β
S−

i≤ j j < Lf
i(I) v, j ⊢− α ∀k ∈ [Ef

i(I), j]. v,k ⊢− β
v, i ⊢− α UI β

U−
v(x) ̸= c

v, i ⊢− x≈ c
≈−

Fig. 2: Local proof system for MFOTL on a fixed stream σ= ⟨τi,Γi⟩i∈N.

The rules ♦+ and ♢+ are mere restatements of the MFOTL semantics. Since the oper-
ators ■I and □I are respectively dual to ♦I and ♢I , their violation rules ■− and □− once
again exchange ⊢+σ and ⊢−σ compared to ♦+ and ♢+. The rule ■+

<l accounts for the vacu-
ous truth of the operator ■I near the start of the stream (when no time-points fall within
the interval I). Dually, the rule ♦−<l asserts the violation of ♦I near the start of the stream.
The remaining rules ♦−, ♢−, ■+, and □+ use notation Ep

i (I), L
p
i (I), E

f
i(I), and Lf

i(I) to
refer to time-points of particular interest relative to the current time-point i. Specifically,
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for a future formula φ=FI αwithF ∈ {#,♢,□} and interval I = [a,b] or I = [a,b) such
that b ̸= ∞, the formula’s semantics at time-point i may need to refer to any time-point
with time-stamp in [τi +a, . . . , τi +b]. The latest such time-point is Lf

i(I) = LTP(τi +b)
while the earliest one is Ef

i(I) = max(i,ETP(τi +a)). For past operators P ∈ { ,♦,■},
the relevant time-stamp interval is [τi−b, . . . , τi−a] and the interval’s earliest time-point
is Ep

i (I) = ETP(τi−b) and its latest time-point is Lp
i (I) = min(i,LTP(τi−a)).

Proof trees emerging from repeated application of the rules in our proof system
contain all the necessary information to explain why a formula is satisfied or violated. In
other words, our proof system is sound and complete, i.e., the following result holds.

Theorem 1. Let α be a formula, v a variable assignment, i ∈ N a time-point, and
σ= ⟨τi,Γi⟩i∈N a trace. Then v, i ⊢+σ α←→ v, i ⊨σ α and v, i ⊢−σ α←→ v, i ⊭σ α.

We have formalized and verified this result in Isabelle/HOL.

Example 1. Consider the standard publish–approve example [14] requiring that any file
f published by an author a, must first be approved by a manager m of a within the
previous seven days. The formalization of this policy as a closed MFOTL formula is:

φ= ∀a. ∀ f . publish(a, f )→
(
♦[0,7]∃m. (¬mgrF(m,a) S mgrS(m,a))∧approve(m, f )

)
.

Here, the events mgrS(m,a) and mgrF(m,a) mark m starting and finishing being a’s
manager. Formally, m is currently a manager of a if m started being a’s manager in the
past and has not finished being a’s manager since. Thus, the manager relation changes
over time. Consider the stream ⟨τi,Γi⟩i∈N, where τ0 = τ1 = 0, τ2 = 4, τ3 = 10, and

Γ0 = {mgrS(Mallory,Alice),mgrS(Merlin,Bob),mgrS(Merlin,Charlie)}, and
Γ1 = {approve(Mallory,152)}, and
Γ2 = {approve(Merlin,163),publish(Alice,160),mgrF(Merlin,Charlie)}, and
Γ3 = {approve(Merlin,187),publish(Bob,163),publish(Alice,163),

publish(Charlie,163),publish(Charlie,152)}.

In the following we abbreviate the subformulas of φ as follows: φL = publish(a, f ), φ1 =
¬mgrF(m,a) S mgrS(m,a), φ2 = approve(m, f ), φ∃ = ∃m. φ1∧φ2, φR = ♦[0,7]φ∃, and
φ′ = φL→ φR. The following proof tree shows that φ is violated at time-point 3 for any v:

publish(Charlie,152) ∈ Γ3

v[a 7→ Charlie, f 7→ 152],3 ⊢+ φL
p+

approve(d,152) /∈ Γi

v[a 7→ Charlie, f 7→ 152,m 7→ d], i ⊢− φ2
p−

v[a 7→ Charlie, f 7→ 152,m 7→ d], i ⊢− φ1∧φ2
∧−R

v[a 7→ Charlie, f 7→ 152], i ⊢− φ∃
∃−

v[a 7→ Charlie, f 7→ 152],3 ⊢− φR
♦−

v[a 7→ Charlie, f 7→ 152],3 ⊢− φL→ φR
→−

v[a 7→ Charlie],3 ⊢− ∀ f . φ′
∀−

v,3 ⊢− ∀a. ∀ f . φ′
∀−

Given φR’s temporal constraint, we note that τ3 ≥ 0 and need to check v, i ⊢− φ∃ for the
time-points i ∈ {2,3} (as [Ep

3([0,7]),L
p
3([0,7])] = {2,3}). Both subproofs are identical,

so we parameterize them over i. In addition, the ∃− subproofs are valid for an arbitrary
manager d ∈ D (abbreviating infinite branching over all possible domain values).
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sp = tt+(N) | p+(N,E, t) | ¬+(vp) | ∧+(sp,sp) | ∨+L (sp) | ∨
+
R (sp) | →

+
L (vp) | →

+
R (sp)

| ∀+(V,
⊎
D(sp)) | ∃+(V,D,sp) | +(sp) |#+(sp) | ♦+(N,sp) | ♢+(N,sp)

| ■+
<I(N) |■

+(N,sp) |□+(N,sp) | S+(sp,sp) | U+(sp,sp) ,
vp= ff−(N) | p−(N,E, t) | ¬−(sp) | ∧−R (vp) | ∧

−
L (vp) | ∨

−(vp,vp) | →−(sp,vp)
| ∀−(V,D,vp) | ∃−(V,

⊎
D(vp)) | −(vp) | −<I(N) | 

−
>I(N) | 

−
0 |#

−(vp) |#−<I(N)
| #−>I(N) | ♦

−(N,vp) | ♦−<I(N) | ♢
−(N,vp) |■−(N,vp) |□−(N,vp)

| S−<I(N) | S
−(N,vp,vp) | S−∞(N,vp) | U−(N,vp,vp) | U−∞(N,vp)

Fig. 3: Grammar for our proof objects.

3 Proof Object Checker

This section introduces our proof objects and their checker: finite data-representations of
our proof system’s trees, and an algorithm that certifies if a given proof object faithfully
proves the satisfaction or violation of a formula under a given assignment and stream.
We discuss the soundness, completeness, and executability of these constructions.

To algorithmically manipulate proof trees, we define an explicit representation of
satisfactions sp and violations vp via the grammar in Figure 3, where each constructor
corresponds to a proof rule of our proof system (Figure 2), and its arguments represent
subproofs and parameters that are part of a rule. The disjoint union p= sp⊎vp is our
type of proof objects. The proof object ∀+ requires information about satisfactions for
all domain elements d ∈ D which we finitely represent with our valued partitions P ∈⊎

D(sp). Recall that a partition P of a set A is a collection of non-empty, pair-wise disjoint
subsets of A that cover A. That is, Di∩D j =∅ for Di, D j ∈ P with Di ̸= D j and

⋃
P = A.

Partitions enable us to finitely represent all elements of the domain using finitely many
finite sets and the co-finite complement of their union. In valued partitions P ∈

⊎
D(sp),

each set in the partition is tagged with a satisfaction explaining why its elements satisfy
the argument of a universally quantified formula. Formally, our valued partitions P ∈⊎

D(Z) are lists of pairs of a set Di and a value z ∈ Z from a given set Z such that the sets
Di form a partition of D. Similarly, ∃− stores a valued partition P∈

⊎
D(vp) of violations.

Our proof objects p ∈ p represent satisfactions or violations at a certain time-point.
We define a function tp(p) (omitted) to compute this time-point. Either this information
can be obtained recursively (e.g., tp(#+(p)) = tp(p)−1) or, in cases where it cannot, it
is stored directly in the proof objects (e.g., tp(tt+(i)) = i). We lift tp to sequences (yield-
ing sequences of time-points) and valued partitions as tp(P) = tp(p1), where (D1, p1)
is the partition P’s first entry. To characterize valid proof objects, we define the relation
⊢σ ( Figure 4) that checks that proof objects constitute correct applications of our proof
system’s rules. Here, ⊢ is not an executable algorithm yet since the proof objects ∀+ and
∃− require a recursive call for each element of each set in the partition, and at least one of
such sets is infinite for infinite domains. We will improve on this aspect after an example.
Example 2. The following violation proof object p at time-point 3 (i.e., tp(p) = 3) is
valid for formula φ on stream σ from Example 1 (i.e., v, p ⊢σ φ for any assignment v):

p = ∀−(a,Charlie,∀−( f ,152, p−→)), where
p−→ =→−(p+L , p

−
♦ ), p+L = p+(3,publish, [a, f ]),

p−♦ = ♦−(3, [∃−(x, [
(
D, p−2

)
]),∃−(x, [

(
D, p−3

)
])]), and

p−i = ∧−R (p−(i,approve, [m, f ])) for i ∈ {2,3}.
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v, tt+(i) ⊢ tt v, ff−(i) ⊢ ff
v,p+(i,p, t) ⊢ p(t) iff p(JtKv) ∈ Γi v,p−(i,p, t) ⊢ p(t) iff p(JtKv) /∈ Γi
v,≈+(i, x,c) ⊢ x≈ c iff v(x) = c v,≈−(i, x,c) ⊢ x≈ c iff v(x) ̸= c
v,¬+(vp) ⊢ ¬α iff v,vp ⊢ α v,¬−(sp) ⊢ ¬α iff v,sp ⊢ α
v,→+

L (vp) ⊢ α→ β iff v,vp ⊢ α v,∧−L (vp) ⊢ α∧β iff v,vp ⊢ α
v,→+

R (sp) ⊢ α→ β iff v,sp ⊢ β v,∧−R (vp) ⊢ α∧β iff v,vp ⊢ β
v,∃+(x,d,sp) ⊢ ∃x. α iff v[x 7→ d],sp ⊢ α v,∨+L (sp) ⊢ α∨β iff v,sp ⊢ α
v,∀−(x,d,vp) ⊢ ∀x. α iff v[x 7→ d],vp ⊢ α v,∨+R (sp) ⊢ α∨β iff v,sp ⊢ β
v,∧+(sp1,sp2) ⊢ α∧β iff v,sp1 ⊢ α and v,sp2 ⊢ β and tp(sp1) = tp(sp2)
v,∨−(vp1,vp2) ⊢ α∨β iff v,vp1 ⊢ α and v,vp2 ⊢ β and tp(vp1) = tp(vp2)
v,→−(sp1,vp2) ⊢ α→ β iff v,sp1 ⊢ α and v,vp2 ⊢ β and tp(sp1) = tp(vp2)
v,∀+(x,P) ⊢ ∀x. α iff

∧
(Dk,spk) ∈ P. tp(spk) = tp(P)and

∧
d ∈ Dk. v[x 7→ d],spk ⊢ α

v,∃−(x,P) ⊢ ∃x. α iff
∧
(Dk,vpk) ∈ P. tp(vpk) = tp(P)and

∧
d ∈ Dk.v[x 7→ d],vpk ⊢ α

v, +(sp) ⊢ Iα iff v,sp ⊢ α and tp( +(sp)) = tp(sp)+1 and τtp( +(sp))−τtp(sp) ∈ I
v,#+(sp) ⊢#Iα iff v,sp ⊢ α and tp(#+(sp))+1 = tp(sp) and τtp(sp)−τtp(#+(sp)) ∈ I
v,♦+(i,sp) ⊢ ♦Iα iff v,sp ⊢ α and i≥ tp(sp) and τi−τtp(sp) ∈ I
v,♢+(i,sp) ⊢ ♢Iα iff v,sp ⊢ α and i≤ tp(sp) and τtp(sp)−τi ∈ I
v,■+(i,sp) ⊢■Iα iff (

∧
sp ∈ sp. v,sp ⊢ α) and tp(sp) =

[
E

p
i (I),L

p
i (I)

]
and τi ≥ τ0 + I

v,□+(i,sp) ⊢□Iα iff (
∧

sp ∈ sp. v,sp ⊢ α) and tp(sp) =
[
Ef

i(I),L
f
i(I)

]
v,S+(sp,sp) ⊢ α SI β iff (

∧
sp′ ∈ sp. v,sp′ ⊢ α) and v,sp ⊢ β and tp(S+(sp,sp))≥ tp(sp)

and tp(sp) =
[
tp(sp)+1,tp(S+(sp,sp))

]
and τtp(S+(sp,sp))−τtp(sp) ∈ I

v,U+(sp,sp) ⊢ α UI β iff (
∧

sp′ ∈ sp. v,sp′ ⊢ α) and v,sp ⊢ β and tp(U+(sp,sp))≤ tp(sp)
and tp(sp) =

[
tp(U+(sp,sp)),tp(sp)

)
and τtp(sp)−τtp(U+(sp,sp)) ∈ I

v, −0 ⊢ Iα iff tp( −0 ) = 0 v, −<I(i) ⊢ Iα iff i > 0 and τi−τi−1 < I
v,#−<I(i) ⊢#Iα iff τi+1−τi < I v, −>I(i) ⊢ Iα iff i > 0 and τi−τi−1 > I
v,#−>I(i) ⊢#Iα iff τi+1−τi > I v,■+

<I(i) ⊢■Iα iff τi < τ0 + I
v,♦−<I(i) ⊢ ♦Iα iff τi < τ0 + I v,S−<I(i) ⊢ α SI β iff τi < τ0 + I
v, −(vp) ⊢ Iα iff v,vp ⊢ α and tp( −(vp)) = tp(vp)+1
v,#−(vp) ⊢#Iα iff v,vp ⊢ α and tp(#−(vp))+1 = tp(vp)
v,♦−(i,vp) ⊢ ♦Iα iff (

∧
vp ∈ vp. v,vp ⊢ α) and tp(vp) =

[
E

p
i (I),L

p
i (I)

]
and τi ≥ τ0 + I

v,♢−(i,vp) ⊢ ♢Iα iff (
∧

vp ∈ vp. v,vp ⊢ α) and tp(vp) =
[
Ef

i(I),L
f
i(I)

]
v,■−(i,vp) ⊢■Iα iff v,vp ⊢ α and i≥ tp(vp) and τi−τtp(vp) ∈ I
v,□−(i,vp) ⊢□Iα iff v,vp ⊢ α and i≤ tp(vp) and τtp(vp)−τi ∈ I
v,S−∞(i,vp) ⊢ α SI β iff (

∧
vp ∈ vp. v,vp ⊢ β) and tp(vp) =

[
E

p
i (I),L

p
i (I)

]
and τi ≥ τ0 + I

v,S−(i,vp,vp) ⊢ α SI β iff (
∧

vp ∈ vp. v,vp ⊢ β) and v,vp ⊢ α and E
p
i (I)≤ tp(vp)≤ i

and tp(vp) =
[
tp(vp),Lp

i (I)
]

and τi ≥ τ0 + I
v,U−∞(i,vp) ⊢ α UI β iff (

∧
vp ∈ vp. v,vp ⊢ β) and tp(vp) =

[
Ef

i(I),L
f
i(I)

]
v,U−(i,vp,vp) ⊢ α UI β iff (

∧
vp ∈ vp. v,vp ⊢ β) and v,vp ⊢ α and i≤ tp(vp) < Lf

i(I)
and tp(vp) =

[
Ef

i(I),tp(vp)
]

Fig. 4: Proof checker for a fixed stream σ= ⟨τi,Γi⟩i∈N.

Indeed, we use the definition in Figure 4 to certify that v, p ⊢σ φ:

v, p ⊢ φ iff v[a 7→ Charlie],∀−( f ,152, p−→) ⊢ ∀ f . φL→ φR
iff v[a 7→ Charlie, f 7→ 152], p−→ ⊢ φL→ φR
iff v[a 7→ Charlie, f 7→ 152], p+L ⊢ φL and tp(p+L ) = 3 = tp(p−♦ ) and

v[a 7→ Charlie, f 7→ 152], p−♦ ⊢ φR

iff v[a 7→ Charlie, f 7→ 152],∃−(x, [
(
D, p−i

)
]) ⊢ φ∃ for i ∈ {2,3}

iff v[a 7→ Charlie, f 7→ 152, x 7→ d], p−i ⊢ φ1∧φ2 for all d ∈ D, i ∈ {2,3}
iff approve(d,152) /∈ Γi for all d ∈ D, i ∈ {2,3}, which is true.
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LRTP i tt = LRTP i ff = LRTP i (p(t)) = LRTP i (x≈ c) = i,
LRTP i (Q x. α) = LRTP i (¬α) = LRTP i α for Q ∈ {∀,∃},
LRTP i (α⊕β) = max (LRTP i α) (LRTP i β) for ⊕ ∈ {∨,∧,→},
LRTP i ( Iα) = LRTP (i−1)α, LRTP i (#Iα) = LRTP (i+1)α,
LRTP i (♢Iα) = LRTP i (□Iα) = LRTP (Lf

i(I))α,
LRTP i (♦Iα) = LRTP i (■Iα) = LRTP (LTP

past
i I)α,

LRTP i (α SI β) = max (LRTP i α) (LRTP (LTP
past
i I)β),

LRTP i (α UI β) = max (LRTP (Lf
i(I)−1)α) (LRTP (Lf

i(I))β), where
LTP

past
i I =

(
if τi ≥ τ0 + I then L

p
i (I) else 0

)
.

Fig. 5: The formula’s latest relevant time-point at i for a fixed stream σ= ⟨τi,Γi⟩i∈N.

We implicitly use in the above the true statements publish(Charlie,152) ∈ Γ3, 0≤ τ3,
and tp([∃−(x, [

(
D, p−2

)
]),∃−(x, [

(
D, p−3

)
])]) = [2,3] = [Ep

i (I),L
p
i (I)].

Theorem 2. Fix a stream σ. The relation ⊢ is sound and complete in the sense that
v, i ⊨ α iff there is a satisfaction sp such that v,sp ⊢ α and tp(sp) = i. Similarly v, i ⊭ α
iff there is a violation vp such that v,vp ⊢ α and tp(vp) = i.

We have established the above result in Isabelle. Below we sketch our overall ap-
proach and highlight the main challenge. We show both soundness and completeness
by relating proof object validity (⊢) to the proof system (⊢+ and ⊢−), which we already
know to be sound and complete, i.e., related to the semantics ⊨. Soundness is easy as the
proof object directly provides the recipe for correctly applying the proof system rules.
Formally, if v,sp ⊢ α then v, tp(sp) ⊢+ α, and if v,vp ⊢ α, then v, tp(vp) ⊢− α. The proof
follows immediately by mutual induction on the proof object structure.

Completeness of ⊢ requires us to provide a valid proof object just from knowing
v, i ⊢+ α or v, i ⊢− α. We proceed by mutual induction on the derivations of ⊢+ and ⊢−.
Only two of the quantifier cases are challenging. For the satisfaction of the universal
quantifier (and similarly for the violation of ∃), we must construct a valued partition
with finitely many subproofs. However, the induction hypothesis yields a separate proof
object for every element of the domain D, and all these proof objects may a priori be
different. The crucial observation is that for all values that do not occur in the stream
(or at least are not in reach of α with respect to a time-point i) we can reuse the same
proof object. To formalize this observation, we first define a formula’s active domain at i,
written ADi(α), which formalizes the in “reach” intuition. To this end, we first define the
latest relevant time point (LRTP i α) of α at i (Figure 5). Intuitively, LRTP i α marks the
largest time-point that may influence α’s satisfiability at i. It exists, because we assume
that future temporal operators have bounded intervals. Based on this, we define:

ADi(α) = D(α)∪
⋃

k≤LRTP i α
{d | d appears in some p(d1, . . . ,dn) ∈ Γk}.

Here we write D(α) for the set of constants d ∈ D occurring in subformulas of the form
x≈ d in α. (In contrast to constants occurring in atomic predicates, constants occurring in
equalities may appear in α’s satisfying assignments even if they are not part of the trace.)
Note that ADi(α) is finite. The active domain lets us formalize the key observation:

Lemma 1. Fix a stream σ, a formula α, a proof p, and two assignments v and v′. Let
i = tp(p), AD = ADi(α), and V be the set of α’s free variables. Assume that v and v′
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may only disagree on V for values outside of the active domain at i, i.e.,

∀x ∈ V. v(x) = v′(x)∨ (v(x) /∈ AD∧ v′(x) /∈ AD).

Then, p’s validity status is the same for both assignments, i.e., v, p ⊢ α iff v′, p ⊢ α.

We now can finish the ∀+ case of the completeness proof. By the induction hy-
pothesis, there is a satisfaction p(d) ∈ sp for each domain element d ∈ D. Moreover,
{{d} | d ∈ ADi(α)}∪{D\ADi(α)} is a finite partition of D. Hence, the list of pairings
({d}, p(d)) for each d ∈ ADi(α) and (D\ADi(α), p(z)) for some z ∈D\ADi(α) (which
exists as D is infinite) is a valued partition. Moreover, all subproofs are valid for all the
values contained in the partition sets by combining the induction hypothesis with the
above congruence Lemma 1 (for p = p(z)), and thus so is the overall ∀+ proof object.

Lastly, we address the executability issue. The validity relation ⊢ works with assign-
ments v of values to variables. To avoid performing infinitely many recursive calls for the
∀+ and ∃− proof objects we now will work with set assignments V of sets of values to
variables. We define a validity relation V, p ⊢ α based on set assignments. The definition
is the same as the one of v, p ⊢ α except for the predicate and the quantifier cases:

V, p+(i,p, t) ⊢ p(t) iff {p}× JtKV ⊆ Γi
V, p−(i,p, t) ⊢ p(t) iff {p}× JtKV ⊆ D\Γi
V, ∀+(x,P) ⊢ ∀x. α iff

∧
(Dk,spk) ∈ P. tp(spk)=tp(P) and V[x 7→ Dk], spk ⊢ α

V, ∃+(x,d,sp) ⊢ ∃x. α iff V[x 7→ {d}], sp ⊢ α

and dually for ∃− and ∀−. Here, JtKV represents a transformation of the list of values
JtKv to the set of all possible lists of values generated by V . Set assignments allow us
to delay deciding values for quantifier subproofs to the predicate base case. Note that
{p}× JtKV ⊆ Γi and {p}× JtKV ⊆ D\Γi are decidable because due to our partitions, we
only encounter finite and co-finite sets. The set-assignment-based validity check is thus
executable and thus provides the algorithm that we use as our formally verified proof
object checker: v, p ⊢ α= (λx.{v(x)}), p ⊢ α (proved by induction on α using Lemma 1).

4 Partitioned Decision Trees

Our proof system is parameterized with an assignment, but in our monitoring approach
we are interested in computing a proof object for every assignment. In this section, we
introduce partitioned decision trees (PDTs), a specialized data structure for representing
and efficiently manipulating variable assignments, inspired by the use of BDDs in run-
time verification [17]. We want to represent functions of the form f : D× . . .×D→ p,
i.e., mappings from tuples of domain elements to proof trees, where each tuple corre-
sponds to a variable assignment to the formula’s free variables. As argued in the previous
section, we are only interested in such functions with a finite range. Thus, we organize
the domain into a finite number of subsets D× . . .×D such that each tuple element is
partitioned separately (using valued partitions over the domain). As before, we work with
finite and co-finite sets in the partition. PDTs P(A) are defined inductively as follows:

P(A) = Leaf A | Node (V,
⊎

D
(P(A)))
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a

f f f f

▲−1 ▲+ ▲+
2 ▲+ ▲−3 ▲−4 ▲+ ▲+

{Alice}

{Bob} {Charlie}

D\{Alice,Bob,Charlie}

{163} D\{163}{163} D\{163} {152} {163}

D\{152,163}

D

Fig. 6: Resulting PDT for our running example at time-point 3.

PDTs have leaves and nodes. Leaves store objects from the set A, while nodes store pairs
of the form (x,P), where x is a variable and P, a valued partition of the domain storing
PDTs. PDTs generalize binary decision trees along two dimensions. First, the branching
of their nodes is not binary but follows a given partition of the infinite domain D. Second,
their leaves do not store Boolean values. Instead, they store arbitrary objects, even though
we will mostly use them with proof objects A = p. PDTs provide a way to organize
the infinitely many possible variable assignments in a structured manner, storing only
finitely many different proof objects. In monitoring, partitions will arise naturally, guided
by the values occurring in the stream and assembled via operations that combine them.

Example 3. We continue
publish(a, f ) /∈ Γ3

v,3 ⊢− publish(a, f )
p−

v,3 ⊢+ φ′
→+

L

Fig. 7: Proof tree ▲+.

Example 3. We continue the publish–approve example from
Example 1. We consider the same stream but drop the top-
level quantifiers from the formula φ: we only consider φ′

with its free variables a and f . Figure 6 shows the PDT
representing all assignments for φ′ at time-point 3. The root
node represents variable a, and the edges partition the values that a can take into the fol-
lowing domain subsets: {Alice},{Bob},{Charlie}, and D\{Alice,Bob,Charlie}.
The second level is analogous for variable f . At every level of the PDT, the union of all
choices cover the entire domain D (by definition of partitions) and the partitions may dif-
fer at every node. The leaves of the PDT are different proof trees (formally, proof objects)
which we represent by small black triangles. For example, ▲−3 is the proof tree of φ′’s
violation shown in Example 1. In contrast, ▲+ (occurring in multiple leaves) is the proof
tree shown in Figure 7 of φ′’s vacuous satisfaction: the left hand side of the implication
(publish(a, f )) is violated for any assignment v updated by following the path from the
PDT’s root to the respective leaf (e.g., taking a = Alice and f = 42 ∈ D\{163}).

Since PDTs are a generalization of BDDs, we use similar functions to manipulate
them. We list the most important ones, for partitions and PDTs in Figure 8, but we only
show and discuss the implementation of apply2, merge2, and hide. Most PDT-functions
are parameterized by a variable list vs :: V fixing the variable order. The functions
map_part and apply1 lift unary functions on objects to partitions and PDTs respectively.

The functions merge2 and apply2 do the same for binary functions; apply2 gener-
alizes the well-known apply function on BDDs [16]. On leaves, apply2 maps f to the
objects. When operating on a leaf and a node, apply2 pushes f partially applied to the
leaf to the node’s leaves using apply1. Finally, on pairs of nodes, it proceeds recursively
depending which of x, y, and z are equal. The most interesting case, x = y = z occurs
when both PDTs partition the domain values for z in different ways. Thus, we must
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map_part :: (A⇒ B)⇒
⊎
D(A)⇒

⊎
D(B)

merge2 :: (A⇒ B⇒C)⇒
⊎
D(A)⇒

⊎
D(B)⇒

⊎
D(C)

merge2 f [] P2 = []
merge2 f ((D1, v1) # P1) P2 =
let P3 =map_filter (λ(D2, v2). if D1∩D2 ̸=∅ then Some (D1∩D2, f v1 v2) else None) P2;

P4 =map_filter (λ(D2, v2). if D2 \D1 ̸=∅ then Some (D2 \D1, v2) else None) P2
in P3 @ merge2 f P1 P4

pdt_of :: V⇒ A⇒ A⇒ 2(V⇀D)⇒ P(A) split_prod :: P(A×B)⇒ P(A)×P(B)
apply1 :: V⇒ (A⇒ B)⇒ P(A)⇒ P(B) split_list :: P(A)⇒ P(A)
apply2 :: V⇒ (A⇒ B⇒C)⇒ P(A)⇒ P(B)⇒ P(C)
apply2 vs f (Leaf l1) (Leaf l2) = Leaf (f l1 l2)
apply2 vs f (Leaf l1) (Node (x, P2)) = Node (x,map_part (apply1 vs (λl2. f l1 l2)) P2)
apply2 vs f (Node (x, P1)) (Leaf l2) = Node (x,map_part (apply1 vs (λl1. f l1 l2) P1)
apply2 (z # vs) f (Node (x, P1)) (Node (y, P2)) =
if x = z and y = z then Node (z, merge2 (apply2 vs f ) P1 P2)
else if x = z then Node (x,map_part (λl. apply2 vs f l (Node (y, P2))) P1)
else if y = z then Node (y,map_part (λr. apply2 vs f (Node (x, P1)) r) P2)
else apply2 vs f (Node (x, P1)) (Node (y, P2))

apply3 :: V⇒ (A⇒ B⇒C⇒ D)⇒ P(A)⇒ P(B)⇒ P(C)⇒ P(D)

hide :: V⇒ (A⇒ A)⇒ (
⊎
D(A)⇒ A)⇒ P(A)⇒ P(A)

hide vs leaf node (Leaf l) = Leaf (leaf l)
hide [z] leaf node (Node (x, P)) = Leaf (node (map_part unleaf P))
hide (z # vs) leaf node (Node (x, P)) =
if x = z then Node (z, map_part (hide vs leaf node) P) else hide vs leaf node (Node (x, P))

Fig. 8: Selected functions on partitions and PDTs.

combine both partitions. For this, we use merge2 that takes two valued partitions P1 and
P2, and iteratively “erodes” P2 by intersecting its elements with the sets in P1 while
applying f . Since both P1 and P2 cover D, the resulting set of intersections is a valued
partition. The function apply3 analogously combines three PDTs into one.

The function hide traverses the PDT similarly to apply1, while eliminating the last
variable in the given variable list. It uses two higher-order arguments, in case the last
layer is present (node) or absent (leaf ). The function pdt_of vs A B V constructs a PDT
from a finite set of partial assignments (V :: 2(V⇀D)) using A for leaves reached by paths
from the set, and B for the other leaves. Finally, the split_∗ functions transpose a PDT
storing pairs (lists of equal length) into a pair (list) of PDTs.

5 Monitoring Algorithm

We follow the typical online monitoring algorithm structure consisting of an initialization
and a step (evaluation) function [25, 30]. The initializer init (omitted as standard) com-
putes our monitor’s initial state s ∈ S from an MFOTL specification α. Figure 9 shows
an excerpt of our monitor’s state, which recursively follows the formula structure and
augments some operators with additional information, such as buffers storing verdicts
from subformulas (B2 for ∧ and B3 for S) or an operator-specific state (Ssaux for S).
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B2 = P(p)×P(p) B3 = P(p)×P(p)×N×N Ssaux = . . .

S=MPred E T |MAnd S S B2 |MExists E S |MSince I S S B3 (P(Ssaux)) | · · ·
eval :: V⇒ N⇒ N⇒ E×D⇒ S⇒ P(p)×S
eval vs τ i Γ (MPred p ts) =

let e = pdt_of (filter (λv. v ∈ fv(ts)) vs) (p+(i,p, ts)) (p−(i,p, ts))
{σ | ∃ds. p(ds) ∈ Γ∧match ts ds = Some σ} in ([e],MPred p ts)

eval vs τ i Γ (MAnd s1 s2 buf ) = let (es1,s′1) = eval vs τ i Γ s1; (es2,s′2) = eval vs τ i Γ s2;
(es,buf ′) = buf2_take (apply2 vs do_and) (buf2_add buf es1 es2) in (es,MAnd s′1 s′2 buf ′)

eval vs τ i Γ (MExists x s) = let (es,s′) = eval (vs@[x]) τ i Γ s
in (map (hide (vs@[x]) (do_exists_leaf x) (do_exists_node x)) es,MExists x s′)

eval vs τ i Γ (MSince I s1 s2 buf saux) =
let (es1,s′1) = eval vs τ i Γ s1; (es2,s′2) = eval vs τ i Γ s2;

(es,buf ′,saux′) = buf2t_take (λe1 e2 (τ, i) saux.
let (saux′,es′) = split_prod (apply3 vs (update_since I τ i) e1 e2 saux′)
in (saux′,split_list es′)) (buf2t_add buf es1 es2 [(τ, i)]) saux

in (es,MSince I s′1 s′2 buf ′ saux′)

Fig. 9: Involved types and selected cases of the monitor’s eval function

do_exists_leaf x p = if p ∈ sp then ∃+(x,d← D,p) else ∃−(x, [(D,p)])
do_exists_node x P = if

∨
(Di, p) ∈ P. p ∈ sp

then min (map_filter (λ(Di, p). if p ∈ sp then Some (∃+(x,d← Di,p))) else None) P)
else ∃−(x,P)

Fig. 10: Functions do_exists_leaf and do_exists_node.

Our function eval, partly shown in Figure 9, takes as inputs a new time-point i (along
with its time-stamp τ and database Γ) and a monitor state s and outputs the next state
s′ and a list of PDTs of proof objects as verdicts. (In addition, eval keeps track of the
variable ordering used in PDTs via the parameter vs.) Lists in the output are necessary
because delays may occur for (bounded) future operators and a single time-point might
trigger multiple outputs. Our algorithm extends Lima et al.’s algorithm [25] computing
proof trees for MTL. We highlight our key additions to eval and the state Figure 9 in gray.

We focus on the predicate, conjunction, existential quantifier, and since cases. In the
predicate case, we find all partial assignments σ mapping the predicate’s variables to
the values ds, so that p(ds) ∈ Γ. We reuse VeriMon’s match function [30] to compute
such partial assignments. We convert this set of assignments to a PDT using pdt_of.
In the resulting PDT, matching assignments lead to leaves using the satisfaction proof
p+(i,p, ts), whereas the others lead to the corresponding violation proof p−(i,p, ts).

The conjunction case is taken almost without changes from Lima et al.’s [25] MTL
algorithm. We reuse the buffering functions buf2_add and buf2_take. The first adds
partial results to the buffer, while the second combines these results and dequeues them
once both subformulas have produced results for a time-point. The only difference is that
our buffers store PDTs of proof objects, whereas the MTL algorithm works with proposi-
tional proof objects. Accordingly, we reuse the Lima et al.’s function do_and :: p⇒ p⇒ p
to combine two proof objects conjunctively, but lift it to PDTs using apply2.

The quantifier cases are a new addition of our work. As both cases proceed dually,
we focus on ∃x.α formulas. Considering that α may have one more free variable than
∃x.α, the recursive call appends x to the variable list ordering. The recursive call’s output
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is processed using our function hide to eliminate the quantified variable. The interesting
cases occur near the leaves of α’s PDTs. If x is not present, hide will encounter a leaf,
i.e., a proof object, and use the function do_exists_leaf (Figure 10) to perform a case
distinction: satisfactions result in a satisfaction (sp) of ∃x.α with an arbitrary element
d of the domain as the witness (we write x← X to denote an arbitrarily chosen element
x of a non-empty set X); violations result in a violation (vp) with the trivial partition. If
x is present as the last decision node, then hide will use do_exists_node (Figure 10) to
construct the proof object for ∃x.α. It performs a case distinction whether a satisfaction
proof is contained in the partition of this last node. If it is, ∃x.α is satisfied and we
compute the smallest (in proof size) such satisfaction proof, taking as our witness an
arbitrary element of the respective partition set. Otherwise, all leaves are violations and
we obtain a violation proof of ∃x.α.

To reuse Lima et al.’s [25] temporal operator evaluation, our state stores a PDT whose
leaves are the auxiliary state of these algorithms (instead of proof objects). This allows us
to keep the complex auxiliary state and its update unchanged. For example, we use apply3
to lift Lima et al.’s [25] update_since function to two PDTs storing proof objects for sub-
formulas and a third one storing the auxiliary state. The resulting PDT has type P(Ssaux×
p), which we transpose into the desired P(Ssaux)×P(p) using split_prod and split_list.

6 Implementation and Case Study

We implement our algorithm in a new monitoring tool, called WHYMON [2]. Our im-
plementation consists of 4500 lines of OCaml code and incorporates an optimization of
collapsing partition sets with the same stored values both in proof objects and in PDTs.
Our formally verified checker contributes additional 1700 lines of OCaml code gener-
ated from our Isabelle formalization, which itself comprises 6400 lines of definitions
and proofs. The checker’s main function lifts the validity check of proof objects (⊢) to
PDTs, i.e., check : trace→ formula→ pdt→ bool, and is used to certify WHYMON’s
output. WHYMON includes a visualization [3] implemented in React [20] that consists
of 2400 lines of JavaScript and invokes a JavaScript version of our monitor, gener-
ated by Js_of_ocaml [32]. Here, we consider the data race policy [18] that captures
possible concurrency issues in multithreaded programs on a stream prefix generated
by Raszyk [27, Section 4.3]. Furthermore, we consider Nokia’s Data-collection Cam-
paign [4], which comes with a stream prefix of around 5 million time-points [1], for which
we focus on the del-2-3 policy [12] controlling data propagation between databases. We
describe a violation for each scenario highlighting the advantages of our approach.

Example 4. We first return to Example 3 in our visualization tool, depicted in Figure 11.
The table includes TP (time-points), TS (time-stamps), and Values columns. The follow-
ing columns show the topmost operator of φ′’s subformulas or its predicate names (and
their variables). In the Values column, for each of the already evaluated time-points, there
is an associated button enclosing a ✓ (for satisfactions), or a ✗ (for violations) or both.
After clicking on this button, we are presented with a dropdown menu (as in Figure 12)
that corresponds to a partition. The listed values are the (potentially multiple) variable
assignments of the resulting PDT for that specific time-point. The formula φ′ contains
two free variables, a and f , and to single out a verdict we must select one value for
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each. In particular, at time-point 3 we select a = Charlie and f = 152. Note that in the
visualization we focus on readability and omit set parentheses. Moreover, Other denotes
the complement of the listed values. After choosing the assignments, a Boolean verdict
appears in the next column matching the topmost operator of φ′, namely→. Clicking
on this Boolean verdict reveals and highlights the Boolean verdicts associated with its
justification. The subformulas’ columns of the current inspection are also highlighted.
In this case, the implication is violated because the left side is satisfied, while the ♦[0,7]
subformula is violated. We can explore this verdict further: the violation is justified by
those of its subformula at time-points 2 and 3 (the time-points inside the interval are
also highlighted). For each time-point, there is another dropdown menu where we can
select an assignment for m. Here, the only listed value is Any, which corresponds to D.
Thus, the existential quantifier is violated because the subformula approve(m,152) is
violated for all values that m can be assigned to (D), and all justifications are identical.

Data Race Detection Multithreaded programs are pervasive and hard to debug. In par-
ticular, they are prone to data races, which occur when two threads access (read or write
to) a shared address concurrently and at least one of these accesses is a write. Locking
mechanisms that synchronize access to variables shared between threads are a plausible
solution. We consider the following policy to detect data race potentials [18]:

φdr = datarace(t1, t2, x)→∃l.(acqnrel(t1, x, l)∧acqnrel(t2, x, l)), with
datarace(t1, t2, x) = ♦ (read(t1, x)∨write(t1x))∧♦write(t2, x) , and
acqnrel(t, x, l) = ■ ((read(t, x)∨write(t, x))→ (¬rel(t, l) S acq(t, l)))

where the predicates read(t, x) and write(t, x) specify read and write operations per-
formed by thread t to shared address x, and acq(t, l) and rel(t, l) specify the acquisition
and the release of lock l by thread t. Havelund et al. [18] consider a closed formula
variant of this policy as their tool, DEJAVU, only supports closed formulas. In contrast,
WHYMON supports open formulas. We consider the stream prefix:

⟨(0,{acq(9,9)}),(1,{read(9,3)}),(2,{acq(13,19)}),(3,{acq(15,3)}),
(4,{acq(18,15)}),(5,{read(13,5)}),(6,{write(15,4)}),(7,{write(15,3)}), . . .⟩

At time-point 7, WHYMON outputs a PDT with non-trivial assignments. We focus on the
single violation in this PDT, which corresponds to the assignment ({9},{15},{3}) for (t1,
t2, x). This violation is shown in Figure 13. The topmost operator of φdr is an implication,
and it is violated because the left side is satisfied (there was a data race), while the right
side (the lock requirement) is violated. Specifically, the data race occurred because
thread t1 = 9 read address 3 at time-point 1, satisfying the ♦[0,∞) subformula in the left
conjunct, and thread t2 = 15 wrote to address 3 at the current time-point 7, satisfying the
♦[0,∞) subformula in the right conjunct. Moving to the right side of the implication, the
violation of the existential indicates that its subformula is violated for every value of D.
In particular, the subsets of the domain {9} and {9}C are each associated with a different
violation. Here, we focus on the violation where l = 9. The subformula is a conjunction,
and to be violated it suffices that one of the conjuncts is violated. This violation stems
from the violation of the right conjunct ■[0,∞) (note that t2 = 15 is listed as the variable
in the predicate columns). We omit the columns referring to the left conjunct, since all
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entries are empty. Once again, the implication is violated because the left side is satisfied,
i.e., thread t2 = 15 wrote to address 3 at time-point 7, satisfying the disjunction, but
S[0,∞) on the right side is violated, because thread t2 = 15 never acquired the lock l = 9.

Data Propagation Nokia’s Data-collection Campaign [4] used three databases db1, db2
and db3 in the collection of sensitive information from mobile phones of participants. We
focus on the policy φdel [12], which controls the data propagation between databases db2
and db3: if data is deleted from db2, then it must be deleted from db3 within 1 minute.

φdel = delete(x,db2,y,data)∧data ̸≈ [unknown]→ ♢[0,60]∃u,v. delete(u,db3,v,data)

where db2, db3, and [unknown] are constants and delete(dbuser,db, pid,data) specifies
the deletion of data from participant pid from database db using database user dbuser.
We used the REPLAYER tool [22] to convert the stream prefix to WHYMON’s format.
We executed WHYMON’s command line interface with the entire prefix and found two
violations. The following experiments were conducted on a computer with an Apple M1
Chip (8 cores) and 16GB of RAM. WHYMON took 17m51s to process the entire prefix.
We also executed MONPOLY with a slightly modified yet equivalent policy (due to moni-
torability restrictions), and its running time amounted to 1m10s. MONPOLY outperforms
WHYMON, but we must acknowledge the different outputs both monitors produce. MON-
POLY only outputs variable assignments, whereas WHYMON outputs entire PDTs con-
taining all assignments and a justification of the verdict in the form of a proof tree for each.
We extract 100 time-points containing both violations and focus on the violation at time-
point 79 for the assignment ({189810327},{user2},{[unknown]}) for (data,x,y),
depicted in Figure 14. Time-stamps are converted to actual dates (by enabling the option)
and we omit time-points that do not contain relevant events for the violation. Let

Γ79 = {delete(user2,db2,[unknown],189810327),
Γ80 = {delete(triggers,db3,[unknown],[unknown])},
Γ81 = {delete(user2,db2,[unknown],189810328)}, and Γ82 = Γ83 = Γ84 =∅.

The implication is violated because the left side is satisfied (there was a deletion at the cur-
rent time-point 79), but ♢[0,59] is violated. Note that [0,60) was replaced with the equiva-
lent interval [0,59]. For each time-point of [Ef

79([0,59]),Lf
79([0,59])] = {79, . . . ,84}, the

subformula is violated. Regardless of the values we assign to u and v (all violations are
identical), the subformula delete(u,db3,v,189810327) is violated.

7 Conclusion

We describe an approach for MFOTL monitoring with verdicts in the form of proof ob-
jects for every free variable assignment. Such verdicts are useful for understandability and
certification, which increases the monitor’s trustworthiness. We implement our approach
in the tool WHYMON along with an interactive visualization for these verdicts, which we
invite the reader to explore [3]. As future work, we plan to provide support for equality
between variables and to improve our monitor’s performance by, e.g., stream slicing [29].

Data Availability Statement Our artifact [26] includes WHYMON’s source code at the
artifact submission time together with instructions on how to set up WHYMON locally,
extract our PDT checker, execute our examples, and replicate our case study.
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8. Basin, D.A., Bhatt, B.N., Krstić, S., Traytel, D.: Almost event-rate independent monitoring.
Formal Methods Syst. Des. 54(3), 449–478 (2019). https://doi.org/10.1007/s10703-018-00328-
3

9. Basin, D.A., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on lasso words.
In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 37–55. Springer (2018).
https://doi.org/10.1007/978-3-030-01090-4_3

10. Basin, D.A., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline
monitoring of temporal specifications. Formal Methods Syst. Des. 49(1-2), 75–108 (2016).
https://doi.org/10.1007/s10703-016-0242-y
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