
Verified Time-Aware Stream Processing1

Rafael Castro Gonçalves Silva #2

University of Copenhagen3

Dmitriy Traytel #4

University of Copenhagen5

Abstract6

Stream processing frameworks provide programming abstractions that allow their users to express7

the desired time-dependent data analysis. The frameworks organize the computation as a directed8

graph of interconnected operators that perform event-wise transformations. We tackle the correctness9

question for programs expressed in this way. To this end, we model (possibly stateful) operators and10

define their composition, model data streams with time-stamps and watermarks, define reusable,11

modular operators, and prove their correctness in the Isabelle/HOL proof assistant, taking advantage12

of its advanced coinductive methods infrastructure. We demonstrate the usefulness of our model by13

verifying stream processing algorithms computing incremental histograms and relational joins.14

2012 ACM Subject Classification Security and privacy → Logic and verification; Computing15

methodologies → Distributed algorithms; Software and its engineering → Data flow languages16

Keywords and phrases stream processing, verification, coinduction, Isabelle/HOL17

Digital Object Identifier 10.4230/LIPIcs...18

Funding This work is supported by a Novo Nordisk Fonden start package grant (NNF20OC0063462).19

1 Introduction20

Data stream processing frameworks, such as Apache Flink [10], Apache Samza [18], Apache21

Spark [38], Google Cloud Dataflow [4], and Timely Dataflow [29,31,32] are widely used tools22

for the low-latency parallel processing of large quantities of data arriving at a high velocity and23

possibly out of order at a software system. For many developers, these frameworks take the24

role of both the programming language and the operating system as they provide high-level25

abstractions that transparently hide much of the complexity of parallel programming.26

Most stream processing frameworks follow the dataflow paradigm in which operators27

transform streams of time-stamped events and the entire program, called dataflow, consists28

of a graph of operators that together orchestrate the desired computation. Dataflows are29

programmed at this logical level of abstraction, yet they are deployed and executed in parallel30

on multiple workers, which can be separate processes or even separate machines.31

Despite their popularity, stream processing frameworks are notorious for correctness32

issues [17,21–23,36,37]. The predominant countermeasure to errors in the stream processing33

(and the wider distributed systems) community is testing [5, 17, 37]. For certain kinds of34

errors, random testing is effective [26]. Others are hard to detect [21] and require specialized35

approaches [23]. But no matter how elaborated, testing remains fundamentally incomplete.36

How to formally reason about and prove the correctness of programs implemented in these37

frameworks? To answer this question, in this paper we focus on the logical level where the38

question becomes: “How to reason about operators and their composition?” More specifically,39

we use the Isabelle/HOL proof assistant (Section 2) to model operators as coinductive40

input/output state machines, the event streams they manipulate as lazy lists (i.e., potentially41

infinite sequences), and to define composition of operators by corecursion (Section 3).42

Stream processing frameworks manage out-of-order data streams through logical time-43

stamps and completeness metadata. Logical time-stamps do not necessarily represent chrono-44

© Rafael Castro Gonçalves Silva, Dmitriy Traytel;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rasi@di.ku.dk
https://orcid.org/0000-0002-0723-231X
mailto:traytel@di.ku.dk
https://orcid.org/0000-0001-7982-2768
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Verified Time-Aware Stream Processing

logical time; rather, they can encompass application-specific semantics, such as grouping of45

data items based on different versions or origins. The completeness metadata informs operat-46

ors when a group is complete, i.e., no further data for this group will be arriving in the future,47

which may prompt the operator to send final results for this group and clean up its state.48

We instantiate our core model with event streams that incorporate partially ordered49

time-stamps and use watermarks [6] as the completeness metadata (Section 4). We define fun-50

damental correctness notions for such event streams, which we call monotonicity (watermark51

give correct predictions about future events) and productivity (all data items are eventually52

followed by corresponding watermarks). We then identify and prove the correctness of basic,53

reusable operators for time-dependent batching of data and incremental computations. To54

prove correctness of an operator, we develop a blueprint consisting of four properties: (1)55

operator-specific soundness, which describes the desired properties of an operator’s output, (2)56

operator-specific completeness, which characterizes what must be contained in an operator’s57

output, (3) monotonicity preservation, and (4) productivity preservation. The properties58

(3) and (4) are crucial for reasoning about composed operators.59

To validate our model we conduct two case studies (Section 5). First, we define an60

incremental histogram computation as the composition of our above reusable operators. We61

show how the building blocks’ correctness properties compose to yield the overall correctness62

property. In addition, we define an optimized incremental histogram computation directly as a63

single operator and establish the equivalence between the modular and the optimized variant.64

Second, we use partially ordered time-stamps, which allow us to model operators with multiple65

inputs as operators with a single input using the disjoint sum order on time-stamps. We use66

this insight to define and verify a streaming relational join operator using our building blocks.67

Our formalization is not tied to any particular stream processing framework, although68

many of the design choices were inspired by Timely Dataflow [31]. Our work is best understood69

as a model for specifying and proving correctness of abstract algorithms in the dataflow70

paradigm. For example, we represent data streams as lazy lists instead of actual data channels,71

e.g., the network layer is not part of our model. Nonetheless, our operators are executable, in72

that we can run small examples before engaging with the formal proofs and test our conjectures.73

Our formalization is publicly available [1]. In summary, we make the following contributions:74

We develop a framework for formally specifying time-aware stream processing programs,75

which supports the modular composition of building block operators, provides executable76

specifications, and is validated in two case studies.77

We distill a four-ingredient proof methodology for operator correctness: soundness,78

completeness, monotonicity preservation, and productivity preservation.79

Our work constitutes a case study in advanced coinductive methods in a proof assistant80

including mixing friendly corecursion [8] and monadic recursion [19], coinduction up to81

friends [8] and other generalizations of (co)inductive proofs.82

Related Work Our long term objective is to formalize and verify a simplified variant of the83

Timely Dataflow [32] stream processing framework in Isabelle. The present work arose from84

the need to specify what Timely Dataflow programs are expected to do, without delving into85

framework-specific details. This background explains some of our design choices and justifies86

why we could not reuse an existing model from the literature. As a distinguishing feature,87

Timely Dataflow uses partially ordered time-stamps to support cyclic dataflows. We inherit88

this design choice, and while we have not yet formalized cyclic operator graphs, our framework89

is prepared to do so. Moreover, we benefit from partially ordered time-stamps when modeling90

operators with multiple inputs. This design choice also requires us to generalize the standard91

R. Castro G. Silva, D. Traytel XX:3

notion of watermarks [6], which traditional stream processing frameworks with totally ordered92

time-stamps use [4, 10, 18]. After receiving a traditional watermark wm, the operator is93

aware that no event with time-stamp t < wm will be received in the future. This notion of94

monotonicity [6] inspired our generalization to partial orders shown in Subsection 4.1.95

Next, we discuss related pen-and-paper formalizations of stream processing. Kahn net-96

works [16] are often considered as the origin of dataflow programming but lack a notion of time.97

Hancock et al. [13] develop stream processors as a programmable representation of continuous98

stream transformations. Continuity in this context means that a finite prefix of the output is99

determined by a finite prefix of the input. Stream processors are a popular example of mixing100

recursion and corecursion and have been formalized in Agda [3,11] and Isabelle/HOL [9]. They101

lack a notion of time and the fact that they include the continuity proof in their very structure102

complicates the definition of time-aware operators. In contrast, our approach decouples the103

definition of operators from proofs of their desirable properties. Mamouras [27] organizes ab-104

stractions of streams as monoids and operators as deterministic stream transducers. We follow105

a similar approach, albeit being less general (representing streams as lazy lists) and equating106

transducers with their semantics using a shallow embedding via a coinductive datatype.107

Mamouras’ framework has a notion of time, but restricts time-stamps to be natural numbers.108

In the context of proof assistants, the Isabelle formalization of the FOCUS system [34,35]109

models time-aware, but in-order possibly infinite streams and operators transforming them.110

Once again, it uses natural numbers as time-stamps. Hinrichsen et al. [15] model the seminal111

MapReduce framework [12] in Coq. MapReduce processes finite data batches in parallel and112

without a notion of time. Lochbihler and Hölzl [24] define in Isabelle recursive functions on113

lazy lists as fixpoints in chain-complete partial orders [19]. We reuse their library of lazy lists.114

2 Codatatypes, Coinduction, and Corecursion115

We introduce Isabelle’s infrastructure for defining and reasoning about coinductive datatypes,116

short codatatypes [7]. The following codatatype enat of extended natural numbers has the117

infinity element ESucc (ESucc (ESucc (. . .))). If datatype was used instead of codatatype118

below, the infinity element would not exist and the type would be isomorphic to nat.119

120

codatatype enat = EZero | ESucc enat121
122

To represent finite and infinite data streams in a single type, we work with the codatatype123

of lazy lists, i.e., finite or infinite sequences of elements:124

125

codatatype (lset: ′a) l list = lnull: LNil ([#]) | LCons (lhd: ′a) (ltl: ′a llist) (infixr ## 65)126

for map: lmap where ltl LNil = LNil127
128

This command introduces the type ′a llist of potentially infinite sequences along with:129

constructors LNil :: ′a llist, written [#], and LCons :: ′a ⇒ ′a llist ⇒ ′a llist, written ##,130

selectors lhd :: ′a llist ⇒ ′a (where lhd [#] = undefined, i.e., a fixed, unspecified value of131

type ′a) and ltl :: ′a llist ⇒ ′a llist (where ltl [#] = LNil as specified),132

discriminator lnull :: ′a llist ⇒ bool returning true iff its argument is [#],133

the functorial action lmap :: (′a ⇒ ′b) ⇒ ′a llist ⇒ ′b llist, and134

the function lset :: ′a llist ⇒ ′a set extracting the set of elements contained in the lazy list.135

The codatatype command provides a coinduction principle to reason about equality.136

Proving that two lazy lists are equal reduces to exhibiting a bisimulation R that relates them.137

A bisimulation is a relation that is stable under discriminators and destructors. Formally, we138

obtain the following coinduction principle for l list:139

XX:4 Verified Time-Aware Stream Processing

R lxs lys =⇒ (
∧

lxs lys . R lxs lys =⇒ lnull lxs ←→ lnull lys ∧
¬lnull lxs =⇒ ¬lnull lys =⇒ lhd lxs = lhd lys ∧ R (ltl lxs) (ltl lys)) =⇒ lxs = lys (1)

140

Here,
∧

is universal quantification. An induction principle for lset membership is also derived:141

x ∈ lset lxs =⇒ (
∧

x lxs. P x (x ## lxs)) =⇒
(
∧

x lxs y . y ∈ lset lxs =⇒ P y lxs =⇒ P y (x ## lxs)) =⇒ P x lxs (2)
142

All functions in Isabelle/HOL must be total. This is guaranteed for terminating recursive143

functions on datatypes. In contrast, corecursive functions produce elements of codatatypes144

are total when they are productive, i.e., they always eventually output a codatatype con-145

structor. Corecursive functions are defined with the corec command, where the corecursive146

calls must be guarded by a codatatype constructor, which ensures productivity. For example:147

148

corec lshift :: ′a list ⇒ ′a llist ⇒ ′a llist (infixr @@ 65) where149

xs @@ lys = case xs of [] ⇒ lys | x # xs′ ⇒ x ## (xs′ @@ lys)150
151

where [] and infix # are the ordinary constructors of the (finite) list datatype.152

Many total corecursive functions involve other operations than the guarding constructor153

in the context surrounding the corecursive call. An example is lconcat characterized by:154

lconcat lxs = case lxs of [#] ⇒ [#] | xs ## lxs′ ⇒ xs @@ lconcat lxs′
155

The corec command permits functions to be used freely in definitions if they have been156

previously registered as (and proved to be) friendly [8]. A function is friendly when it preserves157

productivity in a rather rigid way: it may consume at most one constructor to produce one con-158

structor. Isabelle can automatically prove that lshift is friendly by supplying the (friend) op-159

tion to the above lshift definition (and adjusting it mildly). With lshift registered as a friend, we160

can define lconcat, although not using the above equation, which lacks a guarding constructor161

and hides the complication that all lists in xss may be empty (in which case lconcat xss = [#]).162

We refer for details to our formalization, which derives the above equation as a lemma.163

The coinduction principle (1) is inconvenient for corecursive functions that use friends in164

their corecursive call contexts. The corec command automatically derives the coinduction165

up to congruence principle, which replaces R (ltl xs) (ltl ys) by cong R (ltl xs) (ltl ys) in (1),166

for the congruence closure cong with respect to currently known friends, and thus allows the167

bisimulation proof to descend under these friends.168

Coinductive predicates are definitions as Knaster–Tarski greatest fixpoints on the predicate169

lattice [33]. They resemble inductive predicates, but allow the introduction rules to be applied170

infinitely often. Consider the prefix relation on lazy lists:171

172

coinductive lprefix :: ′a llist ⇒ ′a llist ⇒ bool where173

lprefix [#] lys174

| lprefix lxs lys =⇒ lprefix (x ## lxs) (x ## lys)175
176

Any finite prefix will eventually reach the base case; the coinductive bit is relevant here to177

ensure that the definition is reflexive, also for infinite lazy lists. Coinductive predicates are178

accompanied by a coinduction principle. To prove that a coinductive predicate holds for some179

arguments, we must exhibit a witness relation R that relates them. For lprefix, R is a witness180

relation if for any R-related lazy lists either the left argument is empty, or both arguments181

are non-empty, their heads equal, and their tails related by either R or lprefix. Formally:182

R lxs lys =⇒ (
∧

lxs lys . R lxs lys =⇒ lnull lxs ∨
(¬ lnull lxs ∧ ¬ lnull lys =⇒ lhd lxs = lhd lys ∧
(R (ltl lxs) (ltl lys) ∨ lprefix (ltl lxs) (ltl lys)))) =⇒ lprefix lxs lys

(3)
183

R. Castro G. Silva, D. Traytel XX:5

3 Lazy Lists Processors184

We introduce operators as a codatatype, give them a semantics as lazy list transformers, define185

sequential composition, and prove that its correctness with respect to the given semantics.186

3.1 Operators on Lazy Lists187

We define the codatatype (′i, ′o) op of operators with a single constructor parametrized by a188

user defined function, which we call logic, and a lazy list:189

190

codatatype (′i, ′o) op = Logic (apply: (′i ⇒ (′i, ′o) op × ′o list)) (exit: ′o llist)191
192

The type variable ′i represents the operator’s inputs, and ′o its outputs. The selector apply ap-193

plies the operator’s logic to an input, yielding a pair consisting of a new (evolved) operator and194

a list of outputs. The new operator can again be applied to another input, etc. The selector exit195

handles the situation when there are no more inputs. In this case, the operator may produce196

final outputs. An operator can be seen as an infinitely deep tree branching over ′i (which also197

may be infinite): apply follows a branch, depending on the provided input, to the next node.198

It may seem that our operators are stateless, but corecursive functions may have additional199

parameters representing the state. Our first example operator has state: it buffers data until200

a buffer limit n is reached, and then it performs a bulk operation with the function f. At the201

end of the input stream any remaining data in the buffer is output as well:202

203

corec bulk op where bulk op f n buf = Logic (λe. if length (e # buf) < n204

then (bulk op f n (e # buf), []) else (bulk op f n [], f (e # buf))) (llist of (f buf))205
206

We define next how an operator can be applied to an entire, possibly infinite lazy list.207

We start with the auxiliary function produce1, which iterates apply until the operator pro-208

duces a non-empty output x # xs, in which case Some (Inl (op′, x, xs, lxs′)) is returned. The209

operator may fail to produce a non-empty output, either because the input lazy list ends210

(Some (Inr op′)), or nothing in the infinite lazy list causes any output to be produced (None).211

212

partial function (option) produce1 where213

produce1 op lxs = (case lxs of [#] ⇒ Some (Inr op)214

| h ## lxs′ ⇒ (case apply op h of (op′, []) ⇒ produce1 op′ lxs′
215

| (op′, x # xs) ⇒ Some (Inl (op′, x, xs, lxs′))))216
217

The partial function command [19] defines functions by recursion in the option monad (with218

non-termination represented by None). The command automatically derives an induction219

principle for the terminating executions of produce1, which we rewrite as:220

produce1 op lxs = Some y =⇒
(
∧

op h lxs′ op′ zs. apply op h = (op′, []) =⇒ Q op′ lxs′ zs =⇒ Q op (h ## lxs′) zs) =⇒
(
∧

op h x xs lxs′ op′. produce1 op (h ## lxs) = Some (Inl (op′, x, xs, lxs′)) =⇒
apply op h = (op′, x # xs) =⇒ Q op (h ## lxs′) (Inl (op′, x, xs, lxs′))) =⇒

(
∧

op. Q op [#] (Inr op)) =⇒ Q op lxs y

(4)

221

We define produce to corecursively repeat this processes and concatenate the outputs.222

The following definition requires @@ to be (registered as) friendly.223

224

corec produce where produce op lxs = (case produce1 op lxs of None ⇒ [#]225

| Some (Inr op′) ⇒ exit op′
226

| Some (Inl (op′, x, xs, lxs′)) ⇒ x ## (xs @@ produce op′ lxs′))227
228

XX:6 Verified Time-Aware Stream Processing

3.2 Sequential Composition229

The (sequential) composition of two operators means giving the first operator’s output as input230

to the second operator. As our operators output lists, this requires folding the second operator231

over the output of the first, for which we use the following finite list variant of produce:232
233

definition fproduce op xs = fold (λe (op, out).234

let (op′, out′) = apply op e in (op′, out @ out′)) xs (op, [])235
236

The infix @ is the list append function. The composition operator is:237
238

corec comp op where comp op op1 op2 = Logic (λev.239

let (op1
′, out) = apply op1 ev; (op2

′, out′) = fproduce op2 out240

in (comp op op1
′ op2

′, out′)) (produce op2 (exit op1))241
242

The composed exit value iteratively applies op2 to op1’s exit. The correctness of comp op243

states that its production corresponds to the functional composition of its arguments’ produc-244

tions: produce (comp op op1 op2) lxs = produce op2 (produce op1 lxs). Unfortunately, this245

equality does hold unconditionally: if op1 enters an unproductive state (produce1 returns246

None), then the equality reduces to [#] = exit op2. Therefore, we add an assumption stating247

that either op1 and all its evolutions are eventually productive or op2’s and all its evolutions’248

exit is [#]. To this end, we introduce another operator that skips the first n outputs of an249

operator, but does not alter that operator’s evolution:250
251

corec skip op where skip op op n = Logic (λev. let (op′, out) = apply op ev in252

if length out < n then (skip op op′ (n − length out), [])253

else (op′, drop n out)) (ldropn n (exit op))254
255

Using ldropn, which drops the first n elements of a lazy list, the correctness of skip op is:256

produce (skip op op n) lxs = ldropn n (produce op lxs) (5)257

We prove (5) by coinduction up to congruence, instantiating the bisimulation candidate R with258

λl r. ∃op n lxs. l = produce (skip op op n) lxs ∧ r = ldropn n (produce op lxs)
259

(Isabelle’s coinduction proof method automatically constructs this canonical instantiation.)260

Proving that R is a bisimulation up to congruence yields three subgoals about arbitrary R-261

related lazy lists l and r: (i) lnull l ←→ lnull r, (ii) lhd l = lhd r, and (iii) cong R (ltl l) (ltl r),262

where (ii) and (iii) may additionally assume that l and r do not satisfy lnull. All subgoals263

are proved with lemmas about produce1 that are proved by its induction principle (4).264

Correctness of comp op is then expressed as265

(∀n. produce1 (skip op op1 n) lxs ̸= None) ∨ (∀xs. exit (fst (fproduce op2 xs)) = [#]) =⇒
produce (comp op op1 op2) lxs = produce op2 (produce op1 lxs) (6)

266

The proof of (6) also proceeds by coinduction up to congruence. Again, different lemmas267

about produce1 must be proved, one relevant example being:268

produce1 (comp op op1 op2) lxs = None =⇒
produce op1 lxs = ys @@ lys =⇒ ∃op2

′. fproduce op2 ys = (op2
′, []) (7)

269

We proceed by an induction on ys. Its induction step case is:270

(
∧

op1 op2 lxs lys. produce1 (comp op op1 op2) lxs = None =⇒
produce op1 lxs = ys @@ lys =⇒ ∃op2

′. fproduce op2 ys = (op2
′, [])) =⇒

produce1 (comp op op1 op2) lxs = None =⇒ produce op1 lxs = (y # ys) @@ lys =⇒
∃op2

′. fproduce op2 (y # ys) [] = (op2
′, [])

271

R. Castro G. Silva, D. Traytel XX:7

stream1 =
DT t4 d DT t0 a DT t1 c WM t1 DT t5 c

DT t3 a DT t5 a DT t2 b WM t5 WM t2 · · ·

(a) Prefix of stream1

Ct0 : {a}

Ct1 : {c} Ct2 : {b} Ct3 : {a}

Ct4 : {d} Ct5 : {a,c}

(b) Corresponding set of collections

Figure 1 An example stream and its collections (ordered by their time-stamps)

There is a mismatch between ys in the induction hypothesis and y # ys in the assumption272

about produce op1 lxs, so that we cannot use op1 to instantiate the induction hypothesis.273

Our solution is to is instantiate op1 in the induction hypothesis with skip op op1 1. Using274

skip op as a means of generalization is a common pattern in our development. It allows us275

to formulate statements about arbitrary positions in the output of produce. Namely, when276

produce1 (skip op op n) lxs returns Some (Inl (op, x, xs, lxs)), the value x is op’s nth output.277

4 Time-Aware Operators278

We model time-aware data streams. Events are either time-stamped data items or watermarks:279

280

datatype (′t::order, ′d) event = DT (tmp: ′t) (data: ′d) | WM (tmp: ′t)281
282

Here, time-stamps ′t are assumed to form a partial order via Isabelle’s order type class.283

A (time-aware data) stream is a lazy list of type (′t, ′d) event llist. A collection Ct is the284

multiset containing all the data items with the time-stamp t from a time-aware data stream.285

A watermark WM wm completes a time-stamp DT t d if wm ≥ t. A complete collection is a286

collection from the lazy list that is completed by some watermark from that lazy list. Figure 1a287

shows a prefix of an out-of-order stream, named stream1, and Figure 1b is shows the associated288

set of collections for all time-stamps occurring in the prefix. We arrange the set of collections in289

a Hasse diagram, partially ordered by the collections’ time-stamps. That is in this example, we290

assume that t0 < t1 < t4, t0 < t2 < t5, and t0 < t3 < t5 are the inequalities that hold for ′t.291

4.1 Monotonicity and Productivity292

Watermarks denote that some collection is completed, allowing operators to safely send out-293

puts and clean up their state. If the stream violates the property that after a watermark wm294

no data with time-stamp t ≤ wm will arrive, then operators may no longer work as expected.295

In other words, the time-stamps on data items must respect a monotonicity property, which296

intuitively means “never moving backwards” in relation to the already seen watermarks [6].297

It is not enough to prohibit time-stamps below the last received watermark due to partially-298

ordered time-stamps: e.g., given the order from Figure 1b, if WM t4 was received just after299

WM t5 tracking only one of these incomparable time-stamps would necessarily lose information.300

Instead, we track a set W of received watermarks and ensure that for all wm′ in W , every301

future time-stamp in not less or equal than wm′. Timely Dataflow [32] uses a similar (dual)302

notion of frontiers, which are antichains of time-stamps (i.e., sets of incomparable time-stamps)303

that may be encountered in the future. We use plain sets rather than antichains for simplicity.304

As streams may be infinite, the monotonicity property is defined coinductively:305

306

coinductive mono where mono [#] W307

| mono lxs ({wm} ∪ W) =⇒ mono (WM wm ## lxs) W308

| (∀wm ∈ W. ¬ wm ≥ t) =⇒ mono lxs W =⇒ mono (DT t d ## lxs) W309
310

The prefix of stream1 shown in Figure 1a satisfies mono stream1 {}.311

XX:8 Verified Time-Aware Stream Processing

inductive mono cong for R where R lxs W =⇒ mono cong R lxs W
| mono cong R lxs (WMs xs∪W) =⇒ mono (llist of xs) W =⇒ mono cong R (xs @@ lxs) W
inductive prod cong for R where R lxs =⇒ prod cong R lxs
| prod cong R lxs =⇒ (∀n < length xs. ∀t d . nth xs n = DT t d −→

(∃wm ≥ t. WM wm ∈ lset (drop (Suc n) xs @@ lxs))) =⇒ prod cong R (xs @@ lxs)
R lxs W =⇒ (

∧
lxs W. R lxs W =⇒ lnull lxs ∨ (∃wm lxs′. lxs = WM wm ## lxs′ ∧

(mono cong R lxs′ ({wm} ∪ W) ∨ mono lxs′ ({wm} ∪ W))) ∨
(∃t d lxs′. lxs = DT t d ## lxs′ ∧ (∀wm ∈ W. ¬ t ≤ wm) ∧

(mono cong R lxs′ W ∨ mono lxs′ W))) =⇒ mono lxs W

(8)

R lxs =⇒ (
∧

lxs. R lxs =⇒ lfinite lxs ∨
(∃wm lxs′. lxs = WM wm ## lxs′ ∧ ¬ lfinite lxs′ ∧ (prod cong R lxs′ ∨ prod lxs′)) ∨
(∃t d lxs′. lxs = DT t d ## lxs′ ∧ ¬ lfinite lxs ∧ (∃wm≥t. WM wm ∈ lset lxs′) ∧

(prod cong R lxs′ ∨ prod lxs′))) =⇒ prod lxs

(9)

Figure 2 Coinduction up to lshift-congruence principles for mono and prod

Streams must be productive, i.e., always eventually make it possible to produce outputs.312

We require that for all seen data items DT t d, there eventually is a watermark WM wm with313

wm ≥ t. This is crucial for operators’ completeness: for every consumed time-stamp there314

must be an associated output. For finite streams (lfinite), the requirement can be ignored315

as the stream’s end represents the computation’s end. We define productivity coinductively:316

317

coinductive prod where lfinite lxs =⇒ prod lxs318

| ¬ lfinite lxs =⇒ (∃u ≥ t. WM u ∈ lset lxs) =⇒ prod lxs =⇒ prod (DT t d ## lxs)319

| prod lxs =⇒ prod (WM t ## lxs)320
321

In Figure 1a, stream1 may respect this property if it is finite, or if there is a watermark322

completing t4 at some later position and the rest of the lazy list respects prod.323

The automatically derived coinduction principles for both coinductive predicates are324

inconvenient for proving some of the properties in Subsection 4.3 due to the occurrence of325

lshift in produce. The corec command [8] derives the coinduction up to congruence principle326

only for lazy list equality. Therefore, we manually prove coinduction up to congruence for327

both predicates using their respective regular coinduction principles. To this end, we define328

inductively in Figure 2 custom congruence closure (under lshift) predicates for both mono329

and prod. The congruence closure predicates are parameterized by a relation R and allow us330

to descend under lshift provided that the prefixed list xs preserves the respective properties.331

In Figure 2, WMs returns the set of all wm values from all watermarks WM wm in a list,332

nth returns the nth element of a list and drop removes the first n elements of a list. The333

respective coinduction up to congruence principles (8) and (9) are also shown in Figure 2.334

4.2 Building Blocks335

We introduce two operators, which we call building blocks, for batching and incremental336

computations. The batching operator creates batches, which are lists of pairs of time-stamps337

and data, consisting of completed time-stamps that were not part of a previous batch. We338

introduce an auxiliary function for creating batches given a list of watermarks:339

340

fun batches where batches [] tds = ([], tds)341

| batches (wm # wms) tds = let (bs, tds′) = batches wms [(t, d) ← tds. ¬ t ≤ wm]342

in (DT wm [(t, d) ← tds. t ≤ wm] # bs, tds′)343
344

R. Castro G. Silva, D. Traytel XX:9

produce (batch op [(t0,a)]) stream1 =
DT t1 [(t0,a),(t0,a),(t1,c)] WM t1 DT t5 [(t2,b), (t3,a), (t5,a),(t5,c)] WM t5 WM t2 · · ·

Figure 3 A prefix of produce (batch op [(t0,a)]) stream1

produce (incr op []) (produce (batch op [(t0,a)]) stream1) =
DT t0 [(t0,a),(t0,a),(t1,c)] DT t1 [(t0,a),(t0,a),(t1,c)] WM t1

DT t5 [(t0,a),(t0,a),(t1,c),(t2,b),(t3,a),(t5,a),(t5,c)] WM t5 WM t2 · · ·

Figure 4 A prefix of produce (incr op []) (produce (batch op [(t0,a)]) stream1)

For every watermark in its first argument, batches computes a batch consisting of pairs from345

its second argument that have a time-stamp below that watermark. The batch operator is:346

347

corec batch op where348

batch op tds = Logic (λev. case ev of DT t d ⇒ (batch op (tds @ [(t, d)]), [])349

| WM wm ⇒ let (out, tds′) = batches [wm] tds350

in (batch op tds′, [x ← out. data x ̸= []] @ [WM wm]))351

(let wms = maximal antichain list (map fst tds) in llist of (fst (batches wms tds)))352
353

Here, maximal antichain list computes a maximal antichain, i.e., a list of distinct, maximal,354

and incomparable elements from its argument. The operator’s buffer tds accumulates received355

DT items and only outputs them (and removes the from the buffer) when a watermark with356

a greater or equal time-stamp arrives. The end of the input stream is interpreted by the357

operator’s exit as a final watermark which completes all time-stamps in the buffer. Figure 3358

shows the output of batch op [(t0,a)] after consuming the stream prefix from Figure 1a.359

The watermark WM t1 causes the output of a batch containing the collections Ct0 and Ct1 ,360

whereas WM t5 outputs all other newly completed collections. If the stream ends at that361

point, then there will be a final output with DT t4 [(t4,d)] caused by the operator’s exit.362

The incremental computation operator appends batches, creating accumulated batches:363

364

corec incr op where365

incr op abs = Logic (λev. case ev of WM wm ⇒ (incr op abs, [WM wm])366

| DT wm b ⇒ (incr op (abs @ b), map (λt. DT t (abs @ b)) (remdups (map fst b)))) [#]367
368

Here, remdups removes duplicates in a list. The incr op operator receives batches and369

produces batches that are incrementally accumulated. For each time-stamp of the received370

batch, it outputs a new batch that is concatenated with all previously received batches.371

The batches are produced without inspecting the time-stamps. Hence, they may include372

incomparable time-stamps. This design choice simplifies the soundness property. Figure 4373

shows the output stream of incr op [] after consuming the stream prefix from Figure 3.374

4.3 Correctness375

We identify four correctness properties of time-aware operators: soundness, completeness,376

preservation of monotonicity and preservation of productivity. Soundness means that each377

operator output meets the operator-specific specification. Completeness means that each378

input is somehow represented in the operator’s output under operator-specific conditions.379

For batch op and incr op, soundness and completeness statements rely on the auxiliary380

definitions in Figure 5. There, list of converts a finite lazy list into a list (and returns381

undefined for infinite lazy lists), lfilter filters lazy lists, mset transforms a list into a multiset,382

and ltakeWhile takes the elements from a lazy list white the given predicate holds.383

XX:10 Verified Time-Aware Stream Processing

definition map filter :: (′a ⇒ ′b option) ⇒ ′a list ⇒ ′b list where
map filter f xs = map (λx . the (f x)) (filter (λx. f x ̸= None) xs)

definition DTs lxs t = map filter (λev. case ev of DT t d ⇒ Some d | WM wm ⇒ None)
(list of (lfilter (λev. case ev of DT t′ d ⇒ t′ = t | WM wm ⇒ False) lxs))

definition lcoll lxs t = mset (DTs lxs t)
definition coll xs t = mset (map snd (filter (λ(t′, d). t′ = t) xs)
definition set t xs = set (map fst xs)
definition ts lxs t = {t′. ∃d′. DT t′ d′ ∈ lset lxs ∧ t′ ≤ t}
definition ws lxs wm = {wm′. WM wm′ ∈ lset (ltakeWhile ((̸=) (WM wm)) lxs)}
definition incompletes lxs = (let xs = filter (λev. case ev of

DT t d ⇒ ¬ (∃wm ≥ t. WM wm ∈ lset lxs) | WM ⇒ False) (list of lxs)
in maximal antichain list (map tmp xs))

definition ws2 lxs wm = set (takeWhile ((̸=) wm) (incompletes lxs))
definition batch ts lxs wm = if WM wm ∈ lset lxs

then {t′ ∈ ts lxs wm. ¬ (∃wm′ ≥ t′. wm′ ∈ ws lxs wm)}
else {t′ ∈ ts lxs wm. ¬ (∃wm′ ≥ t′. wm′ ∈ ws2 lxs wm ∨ WM wm′ ∈ lset lxs)}

Figure 5 Auxiliary definitions for the soundness and completeness of the building blocks

Collections are formalized for both list and l list types, respectively, by coll and lcoll.384

As exemplified by Figure 3, the time-stamps of separate batches are disjoint. Under the385

mono assumption the list of used in DTs is only applied to finite lazy lists because lfilter is386

guaranteed to only find finitely many elements. The functions ws and ws2 represent the387

time-stamps of outputs that possibly happened prior to receiving wm. Here, ws2 is the special388

case for exit, in which there are no actual watermarks completing these time-stamps, so we389

take the maximal antichain of time-stamps that do not have completing watermarks instead.390

4.3.1 Correctness of batch op.391

For batch op, the intuitive meaning of soundness is: for an output DT wm b, the batch b392

is formed by all completed collections with time-stamps ≤ wm that were not yet output. We393

characterize the time-stamps belonging to b by batch ts in Figure 5. Thereby, we distinguish394

whether the time-stamps are below a watermark from the stream. The full soundness lemma is:395

mono lxs W =⇒ DT wm b ∈ lset (produce (batch op tds) lxs) =⇒
(∀t ∈ set t b. coll b t = lcoll lxs t + coll tds t) ∧
set t b = batch ts ((map (λ (t,d). DT t d) tds) @@ lxs) wm

(10)
396

The soundness proof proceeds by induction on lset (2). However, another mismatch with the397

induction hypothesis forces us to generalize the operator using skip op. To finish the proof,398

we use several lemmas about produce1 that follow by the respective induction principle (4).399

Completeness of batch op states that every input DT t d must be present as (t, d) in400

some output batch. From batch op’s soundness (10) we already know that the time-stamps401

in the output batches form completed collections. Hence we only need to show that the402

time-stamp is present in some batch. Because of the exit call, we know that every time-stamp403

eventually will be in some batch, even if there is no watermark completing it. We formally404

state the completeness of batch op as follows:405

prod lxs =⇒ DT t d ∈ lset lxs ∨ t ∈ set t tds =⇒
lfinite lxs ∨ (∀t′ ∈ set t tds. ∃wm ≥ t′ . WM wm ∈ lset lxs) =⇒
∃wm b. DT wm b ∈ lset (produce (batch op tds) lxs) ∧ t ∈ set t b

(11)
406

R. Castro G. Silva, D. Traytel XX:11

The third assumption extends the concept of productivity to also include the buffer tds. Com-407

pleteness follows by induction on lset (2). In the base case, the time-stamp is already in the buf-408

fer, or enters the buffer after one call of produce1. We prove an (omitted) auxiliary lemma that409

if a time-stamp is in the buffer, it will eventually be part of the output, regardless whether there410

is a completing watermark in the stream or the stream is finite. The induction step follows by411

showing that t eventually enters the buffer, which reduces the problem to the auxiliary lemma.412

The preservation of mono by batch op requires an additional assumption about the buffer,413

which may be output in batch op’s exit, and follows by coinduction up to congruence (8).414

The preservation prod follows similarly by coinduction up to congruence (9).415

mono lxs W =⇒ (∀t ∈ set t tds. ∀wm ∈ W. ¬ t ≤ wm) =⇒
mono (produce (batch op tds) lxs) W (12)

prod lxs =⇒ prod (produce (batch op tds) lxs) (13)
416

4.3.2 Correctness of incr op.417

The soundness for incr op describes its outputs: an accumulated batch ab which is the418

concatenation of the buffer with accumulated batches from some prefix of the incoming data419

stream. The notion of accumulated batches is given by:420

421

fun ltake DT where422

ltake DT (Suc n) (WM ## lxs) = ltake DT n lxs423

| ltake DT (Suc n) (DT t b ## lxs) = (t, b) # ltake DT n lxs424

| ltake DT = []425

definition acc batches n lxs ≡ concat (map snd (ltake DT n lxs))426
427

The soundness of incr op relates the produced batch DT t ab with the accumulated428

consumed prefix, and asserts that t originated from the accumulated batches:429

DT t ab ∈ lset (produce (incr op abs) lxs) =⇒
∃n. ab = abs @ acc batches n lxs ∧ t ∈ set t (acc batches n lxs) (14)

430

As for batch op, soundness requires a generalization with skip op and proceeds by induction431

on produce1 (4) after unfolding produce.432

The completeness of incr op says that every t in every received batch will result in an433

accumulated batch, and it follows by induction on lset (2):434

DT wm b ∈ lset lxs =⇒ t ∈ set t b =⇒ ∃ab. DT t ab ∈ produce (incr op abs) lxs (15)
435

The preservation of mono and prod by incr op also follow, respectively, from their coin-436

duction up to congruence, lemmas (8) and (9), but each require an additional assumption:437

mono lxs W =⇒ (∀n wm b. n < llength lxs −→ lnth lxs n = DT wm b −→
(∀t′∈ set t b . t′ ≤ wm ∧

(∀wm′ ∈ W ∪ vimage WM (lset (ltake n lxs)). ¬ wm′ ≥ t′))) =⇒
mono (produce (incr op abs) lxs) W

(16)

prod lxs =⇒ (∀n wm b. n < llength lxs −→ lnth lxs n = DT wm b −→
(∃m > n. lnth lxs m = WM wm) ∧ (∀t′∈ set t b. t′ ≤ wm) ∧ ¬ b ̸= []) =⇒

prod (produce (incr op abs) lxs)
(17)

438

Here, llength is the length function returning an enat, lnth returns the nth element of a439

lazy list, ltake takes the first n::enat elements from a lazy list, and vimage f B = {x. f x ∈ B}440

is the inverse image of a function. The additional assumptions of the preservation lemmas441

extend the concepts of mono and prod to the time-stamps inside of the incoming batches.442

XX:12 Verified Time-Aware Stream Processing

4.4 Compositional Reasoning443

The operators incr op and batch op are composable:444

445

definition incr batch op tds abs = comp op (batch op tds) (incr op abs)446
447

We prove the four correctness properties for the composed operator by compositional reasoning:448

the proved properties of batch op prove the assumptions of incr op. All proofs start by unfold-449

ing incr batch op and rewriting with comp op’s correctness (6). We note that exit of incr op450

always remains [#], which validates the assumption of (6). For preservation of mono, we inherit451

the additional assumption of (12) which extends monotonicity to the buffer tds. Formally:452

mono lxs W =⇒ (∀t ∈ set t tds. ∀ wm ∈ W. ¬ t ≤ wm) =⇒
mono (produce (incr batch op tds abs) lxs) W (18)

453

Similarly, preservation of productivity is:454

prod lxs =⇒ prod (produce (incr batch op tds abs) lxs) (19)
455

Both lemmas are proved by backwards reasoning with the preservation of monotonicity456

(16) and productivity (17) for incr op, followed by the preservation of monotonicity (12)457

and productivity (17) for batch op, and using batch op’s soundness (10) to discharge the458

additional assumptions of the preservation lemmas for incr op.459

Each accumulated batch produced by incr batch op has some prefix of concatenate DT pro-460

ductions of (batch op). This fact follows as a corollary of the soundness of batch op (10) which461

is then combined with the soundness of incr op (14) to derive soundness of incr batch op:462

mono lxs W =⇒ DT t ab ∈ lset (produce (incr batch op tds abs) lxs) =⇒
∃n. ab = abs @ acc batches n (produce (batch op tds) lxs) ∧
{t′ ∈ set t (acc batches n (produce (batch op tds) lxs)). t′ ≤ t} =
ts lxs t ∪ {t′ ∈ set t tds. t′ ≤ t} ∧
(∀t′ ≤ t. coll (acc batches n (produce (batch op tds) lxs)) t′ = lcoll lxs t′ + coll tds t′)

(20)

463

Completeness of incr batch op follows from that of batch op (11) and incr op (15):464

prod lxs =⇒ DT t d ∈ lset lxs =⇒ ∃b. DT t b ∈ lset (produce (incr batch op [] []) lxs) (21)
465

5 Case Study466

We introduce two other operators using the building blocks, and showcase how their correct-467

ness properties follow compositionally from those of the basic components.468

5.1 Histogram469

A histogram counts a collection’s elements. We compute incremental histograms, which for a470

time-stamp t count not only elements belonging to the collection Ct, but also elements of col-471

lections Ct′ for all smaller time-stamps t′ < t. We write Ht for an incremental histogram that472

counts all elements with time-stamps ≤ t. We represent (incremental) histograms as multisets.473

Partially ordered time-stamps make incremental histograms somewhat counterintuit-474

ive. We recall the earlier example of time-stamp collections in Figure 6a. The time-stamp475

collections Ct0 , Ct2 , and Ct3 result in the incremental histograms Ht0 , Ht2 and Ht3 in476

Figure 6b. The question is “What precisely should Ht5 count and how to compute it?”477

since it has two immediate predecessor incremental histograms Ht2 and Ht3 that moreover478

share Ht0 as their predecessor. Here, we use as our specification the variant that counts479

every included collection only once: Ht5 = Ct0 + Ct2 + Ct3 + Ct5 . A similar example is480

R. Castro G. Silva, D. Traytel XX:13

Ct0 : {a}

Ct1 : {c} Ct2 : {b} Ct3 : {a}

Ct4 : {d} Ct5 : {a,c}

(a) Collections in a partial order

Ht0 : {a}

Ht1 : {c, a} Ht2 : {b, a} Ht3 : {a, a}

Ht4 : {a,c,d} Ht5 : {a,a,a,b,c}

(b) Computed incremental histograms

Figure 6 Computing incremental histograms in partial order

present1 in the Rust implementation of Differential Dataflow [2,28,30], a library for differ-481

ential computation built on top of Timely Dataflow. There, pairs of numbers are used as482

the partially ordered time-stamps, whereas we work with an arbitrary partial order. (In483

our formalization, we additionally verify the more complex specification variant in which484

Ht5 = Ht2 + Ht3 + Ct5 = Ct0 + Ct0 + Ct2 + Ct3 + Ct5 .)485

An implementation of our specification using incr batch op collects the data with time-486

stamps ≤ t from the accumulated batches at time-stamp t. It needs to compute the histogram487

for each newly accumulated batch. Without further assumptions on the partial order, any488

efficient implementation of this incremental histogram specification must keep track of all489

previous incremental histograms, not only maximal ones. For example, in Figure 6a a new490

collection with time-stamp t6 > t0 could show up with t6 being incomparable to all other491

time-stamps. To compute Ht6 , we must thus have access to Ht0 (or Ct0).492

Our specification sums all collections with time-stamps less or equal than a given t. We use493

the generic set summation sum :: ′a set ⇒ (′a ⇒ ′b) ⇒ ′b :: comm monoid add for commut-494

ative monoids (here multisets). We also introduce summation for finite accumulated batches.495

496

definition S lcoll lxs t = sum (ts lxs t) (lcoll lxs)497

definition S coll t xs = sum {t′ ∈ set xs. t′ ≤ t} (coll xs)498
499

To transform the accumulated batches from incr batch op, we use the following time-aware500

map operator and define the incremental histogram operator by composition:501

502

corec map op where map op f = Logic (λev. case ev of503

WM wm ⇒ (map op f, [WM wm]) | DT t d ⇒ (map op f, [DT t (f t d)]))504

definition ihist op tds abs = comp op (incr batch op tds abs) (map op S coll)505
506

From the preservation of mono (18) and prod (19) for incr batch op and map op (omitted),507

both preservation properties are also derived for ihist op. The soundness and completeness508

of the incremental histogram, simplified to use empty buffers, are:509

mono lxs W =⇒ DT t H ∈ lset (produce (ihist op [] []) lxs) =⇒ H = S lcoll lxs t (22)
prod lxs =⇒ DT t d ∈ lset lxs =⇒ ∃H. DT t H ∈ lset (produce (ihist op [] []) lxs) (23)

510

They follow by incr batch op’s soundness (20) and completeness (21), respectively.511

When time-stamps are natural numbers, an efficient implementation of incremental histo-512

grams will compute each Ht by summing the last stored incremental histogram Ht−1 with the513

newest completed time-stamp collection Ct after seeing WM t. This is efficient because the last514

histogram has been already computed. In contrast, our generic incremental histogram is ineffi-515

cient: it has a buffer that is never cleaned, and it recomputes the entire histogram for each accu-516

1 https://github.com/TimelyDataflow/differential-dataflow/blob/250e9c2ad2e9/examples/
multitemporal.rs

https://github.com/TimelyDataflow/differential-dataflow/blob/250e9c2ad2e9/examples/multitemporal.rs
https://github.com/TimelyDataflow/differential-dataflow/blob/250e9c2ad2e9/examples/multitemporal.rs

XX:14 Verified Time-Aware Stream Processing

corec ihist op′ where ihist op′ H buf = Logic (λev. case ev of
DT (t:: ::linorder) d ⇒ (ihist op′ H (buf @ [(t, d)]), [])
| WM wm ⇒ if ∃(t, d) ∈ set buf . t ≤ wm

then let out = [(t,) ← buf. t ≤ wm]; buf′ = [(t,) ← buf. t > wm];
tss = remdups ((map fst out));
Hs = map (λt. DT t (H + (mset (map snd [(t′) ← out. t′ ≤ t])))) tss in

(ihist op′ (H + (mset (map snd out))) buf′, Hs @ [WM wm])
else (ihist op′ H buf, []))

(llist of (map (λt. DT t (H + mset (map snd [(t′,) ← buf. t′ ≤ t])))
(remdups (map fst buf))))

Figure 7 Efficient incremental histogram operator

produce (ihist op′ [] []) DT 1 a WM 1 DT 0 a WM 0 = DT 1 {a} WM 1 DT 0 {a, a} WM 0

produce (ihist op [] []) DT 1 a WM 1 DT 0 a WM 0 = DT 1 {a} WM 1 DT 0 {a} WM 0

Figure 8 Difference between ihist op′ and ihist op

mulated batch from scratch. We optimize the incremental histogram computation, in Figure 7,517

for a totally ordered (linorder typeclass) time-stamp type. The optimized operator has two518

buffers: the first one keeps the last histogram (which makes sense for a total order); the second519

one keeps the tuples not output yet. When new histograms are output, the operator replaces520

the last stored histogram with the most recent one. The two implementations are equivalent521

when applied to streams with totally ordered time-stamps respecting mono. Figure 8 demon-522

strates that the implementations differ when the input is not monotone. The ihist op′ operator523

counts all previously seen events which it stores in its state H, whereas ihist op is aware of524

all time-stamps because it uses accumulated batches including all previous time-stamps.525

We show that the two operators produce the same results for monotone inputs:526

mono lxs W =⇒ (∀t ∈ set t abs. ∃wm ∈ W. t ≤ wm) =⇒
(∀t ∈ set t tds. ∀wm ∈ W. t > wm) =⇒
produce (ihist op′ (mset (map snd abs)) tds) lxs = produce (ihist op tds abs) lxs

(24)
527

Instead of directly proving this equality, we define a coinductive predicate between528

operators that holds if they produce the same outputs when applied to the same monotone529

input. The relation, similarly to mono, uses a set W of seen watermarks, and coinductively530

checks that the time-stamp of the next event is not smaller or equal than any time-stamp in W:531

532

definition eq op lifted ev W op1 op2 R = exit op1 = exit op2 ∧ (case ev of533

DT t d ⇒ (∀wm ∈ W. ¬ t ≤ wm) =⇒ rel prod (R W) (=) (apply op1 ev) (apply op2 ev)534

| WM wm ⇒ rel prod (R ({wm} ∪ W)) (=) (apply op1 ev) (apply op2 ev))535

coinductive eq op where (∀ev. eq op lifted ev W op1 op2 eq op) =⇒ eq op W op1 op2536
537

Here, rel prod relates the elements of two pairs point-wise using the given relations. The538

coinduction principle of eq op is:539

(
∧

W op1 op2 ev. R W op1 op2 =⇒ eq op lifted ev W op1 op2 R) =⇒
R W op1 op2 =⇒ eq op W op1 op2

(25)
540

The relation eq op is a reasonable equivalence of operators: two operators related by541

eq op generate the same outputs via produce when applied to the same monotone input:542

mono lxs W=⇒ eq op W op1 op2 =⇒ produce op1 lxs = produce op2 lxs (26)
543

R. Castro G. Silva, D. Traytel XX:15

This fact follows by the coinduction up to congruence (1). Finally, we prove that our two544

histogram implementations are related using the coinduction principle for eq op (25):545

∀t ∈ set t abs. ∃wm ∈ W. t ≤ wm =⇒ ∀t ∈ set t tds. ∀wm ∈ W . t > wm =⇒
eq op W (ihist op′ (mset (map snd abs)) tds) (ihist op tds abs) (27)

546

Combining this fact with the soundness of eq op (26) implies our desired property (24).547

Our incremental histogram operators are executable using the lazy evaluation library548

by Lochbihler and Stoop [25]. In particular, our definitions do not use any non-executable549

constants such as quantifiers over infinite domains. Furthermore, produce has code equations,550

which enables code generation [14]. Naturally, when working with infinite input lazy lists,551

one can only observe finite prefixes of the output in finite time, e.g., by using ltake DT.552

5.2 Join553

Our second case study illustrates how multiple disjoint time-aware data streams can be repres-554

ented by a single one, which allows us to define operators with multiple inputs. The operator,555

defined in Figure 9, joins data items using a given join :: ′a ⇒ ′a ⇒ ′b option function, and556

uses the sum type ′t + ′t as its time-stamp type: an input with time-stamp Inl t1 is inter-557

preted as coming the first data stream, whereas time-stamp Inr t2 originates from the second558

data stream. We use the point-wise partial order on sum types as the order for our definition.559

That is, Inl t1 is not related to any Inr t2, and Inl t1 ≤ Inl t2 iff t1 ≤ t2 (and similarly for Inr).560

Once again, we use the incr batch op operator, so that we only need to define how to com-561

pute the results from the accumulated batches. In Figure 9, we apply join list to each accumu-562

lated batch, which combines Inl and Inr tuples when they share the same time-stamp, and apply563

the provided join function to all possible combinations. Each joined result is output as an in-564

dividual data item by the flatten operator flatten op, which transforms batches into individual565

data items assigning the time-stamp t from DT t b to each element in the batch b. Finally, we566

remove the sum type from the output time-stamps using the union operator union op, which567

outputs watermarks as soon they are identified as producible, meaning that a greater or equal568

watermark on the opposite side was already consumed. This identification is relevant for the569

preservation of mono, as it is only safe to output a watermark wm after the data on both sides570

is completed for it. The operator union op has two buffers: the first keeps track of watermarks571

not identified as producible yet; the second denotes the maximal antichain of seen watermarks.572

Figure 10 shows the four correctness properties of join op with empty initial buffers to sim-573

plify the involved assumptions. The first two (soundness and completeness) express, respect-574

ively, that each joined item is the result of joining elements from different sides of the input575

data stream, and that every pair of items that can be joined will generate an item in the output.576

Both proofs follow similarly to the soundness (22) and completeness (23) of ihist op. Preserva-577

tion of prod for join op assumes all incoming watermarks to be producible. Under this assump-578

tion, all watermarks will be output. Our proofs rely on four correctness properties of union op579

(omitted), that resemble in terms of additional assumptions closely the properties of join op.580

6 Conclusion581

We used the Isabelle/HOL proof assistant to model (possibly non-terminating) time-aware582

data stream processing. We identified two essential building block operators for batching and583

incremental computations, which we reused in two case studies. Moreover, we established584

the correctness for our operators, combining induction and coinduction. The correctness of585

composed operators follows compositionally from the building block operators’ correctness.586

XX:16 Verified Time-Aware Stream Processing

corec flatten op where
flatten op = Logic (λev. case ev of WM wm ⇒ (flatten op, [WM wm])
| DT t d ⇒ (flatten op, map (DT t) d)) [#]

definition join list where
join list join st xs = (let t = case sum id id st;
lefts = map filter (λ(v, d). case v of Inr ⇒ None
| Inl t′ ⇒ if t = t′ then Some d else None) xs;

rights = map filter (λ(v, d). case v of Inl ⇒ None
| Inr t′ ⇒ if t = t′ then Some d else None) xs in

concat (map (λd1 . map filter (λd2 . join d1 d2) rights) lefts))
definition producible wm MA = (∃wm′ ∈ MA. wm ≤ case sum Inr Inl wm′)
corec union op where union op wms MA = Logic (λ ev. case ev of

DT t d ⇒ (union op wms MA, [DT (case sum id id t) d])
| WM wm ⇒ let MA′ = maximal antichain set (insert wm MA) ;

prds = {wm′ ∈ set (wm # wms). producible wm′ MA′};
(union op [wm′ ← wm # wms. wm′ /∈ prds] MA′,
map (case sum WM WM) [wm′ ← wm # wms. wm′ ∈ prds])) [#]

definition join op tds abs wms MA join = comp op (comp op (incr batch op tds abs)
(comp op (map op (join list join)) flatten op)) (union op wms MA)

Figure 9 Flatten, union, and join operators

mono lxs W =⇒ DT t d ∈ lset (produce (join op [] [] [] {} join) lxs) =⇒
∃d1 d2. join d1 d2 = Some d ∧ d1 ∈ set (DTs lxs (Inl t)) ∧ d2 ∈ set (DTs lxs (Inr t)) (28)

mono lxs W =⇒ prod lxs =⇒ DT (Inl t) d1 ∈ lset lxs =⇒ DT (Inr t) d2 ∈ lset lxs =⇒
join d1 d2 = Some d =⇒ DT t d ∈ lset (produce (join op [] [] [] {} join) lxs) (29)

mono lxs {} =⇒ mono (produce (join op [] [] [] {} join)) {} (30)
prod lxs =⇒ ∀wm ∈ vimage WM (lset lxs). producible wm (vimage WM (lset lxs)) =⇒
prod (produce (join op [] [] [] {} join)) (31)

Figure 10 Correctness properties of join op

We further introduced a reusable generalization technique using the skip op operator that587

allows (co)inductive reasoning about elements at arbitrary positions.588

We benefited from Isabelle’s infrastructure for coinductive predicates, codatatypes, and589

corecursive functions, especially the support for friendly corecursion and monadic recursion590

and associated reasoning principles. A point for future work for Isabelle’s developers could be591

to automatically derive coinduction up to congruence principles for coinductive predicates such592

as our manually derived principles (8) and (9). Our formalization amounts to around 17 000593

lines of definitions and proofs. Of these, the heavy lifting happens for basic libraries (6 000)594

and reusable operators (9 000) with batch op being the main culprit (5 000). In contrast,595

compositional reasoning in our case studies (Section 5) benefits from this groundwork (2 000).596

As future work, we want to use partially-ordered time-stamps to introduce a feedback597

loop operator as in the Timely Dataflow stream processing framework [29,31, 32]. Moreover,598

we currently do not support parallelism. A long-term goal to extend operators with a notion599

of workers they run on, which will enable us to distribute the input stream across workers as600

in Timely Dataflow and reason about the correctness of the resulting distributed streaming601

computation. Our formalization is executable, but it is not efficient because relies on the code602

extraction to purely functional languages. We plan to connect our work to the Isabelle-LLVM603

refinement framework [20] to obtain efficient executable operators.604

R. Castro G. Silva, D. Traytel XX:17

References605

1 The Isabelle/HOL formalization of the results. https://github.com/rafaelcgs10/verified_606

stream_processing. Accessed: 2024-03-18.607

2 Martín Abadi, Frank McSherry, and Gordon D. Plotkin. Foundations of differential dataflow. In608

Andrew M. Pitts, editor, Foundations of Software Science and Computation Structures - 18th609

International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on610

Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,611

volume 9034 of Lecture Notes in Computer Science, pages 71–83. Springer, 2015. doi:612

10.1007/978-3-662-46678-0_5.613

3 Andreas Abel and Brigitte Pientka. Well-founded recursion with copatterns and sized types.614

J. Funct. Program., 26:e2, 2016. doi:10.1017/S0956796816000022.615

4 Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael Fernández-616

Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and617

Sam Whittle. The dataflow model: A practical approach to balancing correctness, latency,618

and cost in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow.,619

8(12):1792–1803, 2015. doi:10.14778/2824032.2824076.620

5 Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany. An analysis621

of network-partitioning failures in cloud systems. In Andrea C. Arpaci-Dusseau and Geoff622

Voelker, editors, OSDI 2018, pages 51–68. USENIX Association, 2018.623

6 Edmon Begoli, Tyler Akidau, Slava Chernyak, Fabian Hueske, Kathryn Knight, Kenneth L.624

Knowles, Daniel Mills, and Dan Sotolongo. Watermarks in stream processing systems:625

Semantics and comparative analysis of apache flink and google cloud dataflow. Proc. VLDB626

Endow., 14(12):3135–3147, 2021. doi:10.14778/3476311.3476389.627

7 Julian Biendarra, Jasmin Christian Blanchette, Aymeric Bouzy, Martin Desharnais, Mathias628

Fleury, Johannes Hölzl, Ondrej Kuncar, Andreas Lochbihler, Fabian Meier, Lorenz Panny,629

Andrei Popescu, Christian Sternagel, René Thiemann, and Dmitriy Traytel. Foundational630

(co)datatypes and (co)recursion for higher-order logic. In Clare Dixon and Marcelo Finger,631

editors, FroCoS 2017, volume 10483 of LNCS, pages 3–21. Springer, 2017. doi:10.1007/632

978-3-319-66167-4_1.633

8 Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, and634

Dmitriy Traytel. Friends with benefits - implementing corecursion in foundational proof635

assistants. In Hongseok Yang, editor, ESOP 2017, volume 10201 of LNCS, pages 111–140.636

Springer, 2017. doi:10.1007/978-3-662-54434-1_5.637

9 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei638

Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In Gerwin639

Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 93–110. Springer,640

2014. doi:10.1007/978-3-319-08970-6_7.641

10 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas642

Tzoumas. Apache flink™: Stream and batch processing in a single engine. IEEE Data Eng.643

Bull., 38(4):28–38, 2015. URL: http://sites.computer.org/debull/A15dec/p28.pdf.644

11 Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively. In Claude Bolduc,645

Josée Desharnais, and Béchir Ktari, editors, MPC 2010, volume 6120 of LNCS, pages 100–118.646

Springer, 2010. doi:10.1007/978-3-642-13321-3_8.647

12 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.648

In Eric A. Brewer and Peter Chen, editors, 6th Symposium on Operating System Design and649

Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages650

137–150. USENIX Association, 2004. URL: http://www.usenix.org/events/osdi04/tech/651

dean.html.652

13 Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Representations of stream processors653

using nested fixed points. Log. Methods Comput. Sci., 5(3), 2009.654

https://github.com/rafaelcgs10/verified_stream_processing
https://github.com/rafaelcgs10/verified_stream_processing
https://github.com/rafaelcgs10/verified_stream_processing
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/3476311.3476389
https://doi.org/10.1007/978-3-319-66167-4_1
https://doi.org/10.1007/978-3-319-66167-4_1
https://doi.org/10.1007/978-3-319-66167-4_1
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/978-3-319-08970-6_7
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1007/978-3-642-13321-3_8
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html

XX:18 Verified Time-Aware Stream Processing

14 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In655

Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, FLOPS 2010, volume 6009 of656

LNCS, pages 103–117. Springer, 2010. doi:10.1007/978-3-642-12251-4_9.657

15 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: session-type658

based reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL):6:1–6:30, 2020.659

doi:10.1145/3371074.660

16 Gilles Kahn. The semantics of a simple language for parallel programming. In Jack L. Rosenfeld,661

editor, Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden,662

August 5-10, 1974, pages 471–475. North-Holland, 1974.663

17 Kyle Kingsbury. Jepsen: Analyses. accessed: Oct 8, 2023. URL: https://jepsen.io/664

analyses.665

18 Martin Kleppmann and Jay Kreps. Kafka, samza and the unix philosophy of distributed666

data. IEEE Data Eng. Bull., 38(4):4–14, 2015. URL: http://sites.computer.org/debull/667

A15dec/p4.pdf.668

19 Alexander Krauss. Recursive definitions of monadic functions. In Ekaterina Komendantskaya,669

Ana Bove, and Milad Niqui, editors, Partiality and Recursion in Interactive Theorem Provers,670

PAR@ITP 2010, volume 5 of EPiC Series, pages 1–13. EasyChair, 2010. doi:10.29007/1mdt.671

20 Peter Lammich. Refinement of parallel algorithms down to LLVM. In June Andronick and672

Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving,673

ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 24:1–24:18. Schloss674

Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.24.675

21 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. TaxDC:676

A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In Tom677

Conte and Yuanyuan Zhou, editors, ASPLOS 2016, pages 517–530. ACM, 2016.678

22 Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu, Haryadi S. Gunawi, and679

Chen Tian. DCatch: Automatically detecting distributed concurrency bugs in cloud systems.680

In Yunji Chen, Olivier Temam, and John Carter, editors, ASPLOS 2017, pages 677–691. ACM,681

2017.682

23 Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. FCatch: Automat-683

ically detecting time-of-fault bugs in cloud systems. In Xipeng Shen, James Tuck, Ricardo684

Bianchini, and Vivek Sarkar, editors, ASPLOS 2018, pages 419–431. ACM, 2018.685

24 Andreas Lochbihler and Johannes Hölzl. Recursive functions on lazy lists via domains and686

topologies. In Gerwin Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS,687

pages 341–357. Springer, 2014. doi:10.1007/978-3-319-08970-6_22.688

25 Andreas Lochbihler and Pascal Stoop. Lazy algebraic types in Isabelle/HOL, 2018.689

26 Rupak Majumdar and Filip Niksic. Why is random testing effective for partition tolerance690

bugs? PACMPL, 2(POPL):46:1–46:24, 2018.691

27 Konstantinos Mamouras. Semantic foundations for deterministic dataflow and stream pro-692

cessing. In Peter Müller, editor, ESOP 2020, volume 12075 of LNCS, pages 394–427. Springer,693

2020. doi:10.1007/978-3-030-44914-8_15.694

28 Frank McSherry. Github: Differential dataflow. URL: https://github.com/timelydataflow/695

differential-dataflow/.696

29 Frank McSherry. Github: Timely dataflow. URL: https://github.com/TimelyDataflow/697

timely-dataflow/.698

30 Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differential699

dataflow. In Sixth Biennial Conference on Innovative Data Systems Research, CIDR 2013,700

Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013.701

31 Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and702

Martín Abadi. Naiad: a timely dataflow system. In Michael Kaminsky and Mike Dahlin,703

editors, SOSP 2013, pages 439–455. ACM, 2013. doi:10.1145/2517349.2522738.704

https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1145/3371074
https://jepsen.io/analyses
https://jepsen.io/analyses
https://jepsen.io/analyses
http://sites.computer.org/debull/A15dec/p4.pdf
http://sites.computer.org/debull/A15dec/p4.pdf
http://sites.computer.org/debull/A15dec/p4.pdf
https://doi.org/10.29007/1mdt
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.1007/978-3-319-08970-6_22
https://doi.org/10.1007/978-3-030-44914-8_15
https://github.com/timelydataflow/differential-dataflow/
https://github.com/timelydataflow/differential-dataflow/
https://github.com/timelydataflow/differential-dataflow/
https://github.com/TimelyDataflow/timely-dataflow/
https://github.com/TimelyDataflow/timely-dataflow/
https://github.com/TimelyDataflow/timely-dataflow/
https://doi.org/10.1145/2517349.2522738

R. Castro G. Silva, D. Traytel XX:19

32 Derek Gordon Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham, and705

Martín Abadi. Incremental, iterative data processing with timely dataflow. Commun. ACM,706

59(10):75–83, 2016. doi:10.1145/2983551.707

33 Lawrence C. Paulson. A Fixedpoint Approach to (Co)Inductive and (Co)Datatype Definitions,708

page 187–211. MIT Press, Cambridge, MA, USA, 2000.709

34 Robert Sandner and Olaf Müller. Theorem prover support for the refinement of functions.710

In Ed Brinksma, editor, TACAS 1997, volume 1217 of LNCS, pages 351–365. Springer, 1997.711

doi:10.1007/BFb0035399.712

35 Maria Spichkova. Specification and seamless verification of embedded real-time systems:713

FOCUS on Isabelle. PhD thesis, Technical University Munich, Germany, 2007. URL: http:714

//mediatum.ub.tum.de/doc/620981/document.pdf.715

36 Caleb Stanford, Konstantinos Kallas, and Rajeev Alur. Correctness in stream processing:716

Challenges and opportunities. In CIDR 2022. www.cidrdb.org, 2022.717

37 Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,718

Pranay Jain, and Michael Stumm. Simple testing can prevent most critical failures: An719

analysis of production failures in distributed data-intensive systems. In Jason Flinn and Hank720

Levy, editors, OSDI 2014, pages 249–265. USENIX Association, 2014.721

38 Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.722

Discretized streams: fault-tolerant streaming computation at scale. In Michael Kaminsky and723

Mike Dahlin, editors, SOSP 2013, pages 423–438. ACM, 2013. doi:10.1145/2517349.2522737.724

https://doi.org/10.1145/2983551
https://doi.org/10.1007/BFb0035399
http://mediatum.ub.tum.de/doc/620981/document.pdf
http://mediatum.ub.tum.de/doc/620981/document.pdf
http://mediatum.ub.tum.de/doc/620981/document.pdf
https://doi.org/10.1145/2517349.2522737

	1 Introduction
	2 Codatatypes, Coinduction, and Corecursion
	3 Lazy Lists Processors
	3.1 Operators on Lazy Lists
	3.2 Sequential Composition

	4 Time-Aware Operators
	4.1 Monotonicity and Productivity
	4.2 Building Blocks
	4.3 Correctness
	4.3.1 Correctness of [language=isabelle]batchop.
	4.3.2 Correctness of [language=isabelle]incrop.

	4.4 Compositional Reasoning

	5 Case Study
	5.1 Histogram
	5.2 Join

	6 Conclusion

