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Abstract, We formalize a unified framework for verified decision procedures for
regular expression equivalence. Five recently published formalizations of such
decision procedures (three based on derivatives, two on marked regular expres-
sions) can be obtained as instances of the framework. We discover that the two
approaches based on marked regular expressions, which were previously thought
0 be the same, are different, and we prove a quotient relation between the au-
tomata produced by them. The common framework makes it possible to compare
the performance of the different decision procedures in a meaningful way

1 Introduction

Equivalence of regular expressions is a perennial topic in computer science. Recently
it has spawned a number of formalized and verified decision procedures for this task in
interactive theorem provers [3,6, 10, 19, 21]. Except for the formalization by Braibant
and Pous [6]. all these decision procedures operate directly on variations of regular
expressions. Although they (implicitly) build automata, the states of the automata are
labeled with regular expressions, and there is no global transition table but the next-
state function is computable from the regular expressions. The motivation for working
with regular expressions is simplicity: regular expressions are a free datatype which
proof assistants and their users love because it means induction, recursion and equa-
tional reasoning—the core competence of proof assistants and functional programming
languages. Yet all these decision procedures based on regular expressions look very
different. OF course, the next-state functions all differ, but so do the actual decision pro-
cedures and their correctness, completeness and termination proofs. The contributions
of our paper are the following:

unified framework (Sect. 3) that we instantiate with all the above approaches
(Sects. 4 and 5). The framework is a simple reflexive transitive closure computation
that enumerates the states of a product automaton.

~ Proofs of correctness, completeness and termination that are performed once and

for all for the framework based on a few properties of the next-state function

~ Anew perspective on partial derivatives that recasts them as Brzozowski derivatives
followed by some rewriting (Sect. 4).

‘The discovery that Asperti’s algorithm is not the one by MeNaughton-Yamada 20],
as stated by Asperti [3], but a dual construction which apparently had not been
considered in the literature and which produces smaller automata (Sect. 5).
~ An empirical comparison of the performance of the different approaches (Sect. 6).

The discr

sion of related work is distributed over the relevant sections of the paper.

G. Klein and R Gamboa (Eds): ITP 2014, LNAI 8558, pp. 450-466, 2014,
© Springer International Publishing Switzerland 2014
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—— Abstract
Weak monadic second-order logic of one successor (WSIS) s a simple and natural formalisn
o speeiy regular propertics. WSIS s decidable, although the decision procedure’s complexiy

s nonclementary.  Typicaly, docision procedures for WSIS exploit the logie- automaton con-

ection, ., they escape the simple and natural formalism b translating formulas nto cqually
expressive regular structies such as fnte automata, regular expresions, or games.  In this
vk, we devise a colgobraic decision procedure for WSS that stays within the logical world

by diretly operating on formulas. The key aperation i the derivative of # formula, modeled
after Braozonesk's derivatives of regular expressions. The presented decison procedure has been

formalized and proved correct in the interactive proof assistant Tsabele

1998 ACM Subject Classification F.4.3 Formal Langsiages

Keywords and phrases WSIS, decision procedure, coalgebra, Brzoaonsski deriatives, Isabelle

tal Object Identifier 10.1230/LIPlcs CSL2015.157

1 Introduction

sisioned weak monadlic second-order logic of one successor

In bis seminal work 8], Bichi
WSIS) to hecome a *more conventional formalism [that] can be used i place of regular

expressions || for formalizing conditions on the behavior of antomata”. This vision hecame
truth - WSIS has been used to encode decision problems in hardsware verifcation (3], progtam
verifcation [22], network verification [1], synthesis [19], as well as many otbers.

order quantification over fnite (therefore
s few additional special predicates, such us < to compare fist-order variables. Equivalence
of WSIS formulas is decidable, althongh the complexity for deciding it s non-clementary (27]
Nevertheless, the MONA taal [20] shows that the dsunting theoretieal complexity can often
e v i et by ooy it o st ptnitions. Sty o i,
MONA's manal 24] calls WSIS a “simple and natural notation” for regular langunges.

“Traditionally!, decision procedures for WSLS do not try to benefit from the conventionsl,
simple, and natural logical notaton. Tnstead, by exploiing the logic-uutomaton connection,
formulas e translate into inite antomata which are then minimized. Durin the translation
allthe rich algebraie formula structure including binders and high-level constructs s lost. On
the other hand, the subsequent miniuization might have benefited from some simpliications
o the formula leve

C reguilar ctweens
WSIS formulas and automata. Tn earler work [10, 30], we propose & semantics-preserving
translation of WS1S formulas into regular expressions. Theteby, equivalence of formulas is

e e awareof, i the dec e Toss o [17]
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Let’s define them on WS1S formulas directly!
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Thanks for your attention!
Questions?
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