
Formalizing︸ ︷︷ ︸
in

Symbolic Decision Procedures
for

Regular Languages

Dmitriy Traytel

Representations of Regular Languages

explicit

DFA NFA

q0 q1

q2

q3

a
a

b

a

b

q0

q2

q3

a

a

a

b

a(a∗+ b∗) ¬(b(¬∅) + a(¬(a∗)∩¬(b∗))) ∃x . (∀y . x ≤ y)∧x ∈ X

RE ERE WMSO

symbolic

Representations of Regular Languages

explicit

DFA NFA

q0 q1

q2

q3

a
a

b

a

b

q0

q2

q3

a

a

a

b

a(a∗+ b∗) ¬(b(¬∅) + a(¬(a∗)∩¬(b∗))) ∃x . (∀y . x ≤ y)∧x ∈ X

RE ERE WMSO

symbolic

My Thesis

Theme equivalence problem of symbolic representations

L (a∗) = L (aa∗+ε)? L (∃X . ∀y . y ∈ X) = L F?

Setting in a proof assistant

Catch without resorting to explicit representations

unlike traditional methods
Thompson, McNaughton–Yamada, Glushkov, Büchi, Elgot, Trakhtenbrot

⇒ use variations of Brzozowski derivatives

My Thesis

Theme equivalence problem of symbolic representations

L (a∗) = L (aa∗+ε)? L (∃X . ∀y . y ∈ X) = L F?

Setting in a proof assistant

Catch without resorting to explicit representations

unlike traditional methods
Thompson, McNaughton–Yamada, Glushkov, Büchi, Elgot, Trakhtenbrot

⇒ use variations of Brzozowski derivatives

My Thesis

Theme equivalence problem of symbolic representations

L (a∗) = L (aa∗+ε)? L (∃X . ∀y . y ∈ X) = L F?

Setting in a proof assistant

Catch without resorting to explicit representations

unlike traditional methods
Thompson, McNaughton–Yamada, Glushkov, Büchi, Elgot, Trakhtenbrot

⇒ use variations of Brzozowski derivatives

My Thesis

Theme equivalence problem of symbolic representations

L (a∗) = L (aa∗+ε)? L (∃X . ∀y . y ∈ X) = L F?

Setting in a proof assistant

Catch without resorting to explicit representations

unlike traditional methods
Thompson, McNaughton–Yamada, Glushkov, Büchi, Elgot, Trakhtenbrot

⇒ use variations of Brzozowski derivatives

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da

ACI

db

db

db

ACI ACI

da
db

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

a∗
?≡ ε+ a ·a∗ for Σ = {a,b} Brzozowski 1964

Ginzburg 1967

a∗

ε+ a ·a∗

Brzozowski derivative

d : letter→ regex→ regex

L (da r) = {w | aw ∈L (r)}

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

Derivatives in Literature
Theoretical groundwork

JACM 1964 Brzozowski

JACM 1967 Ginzburg

TCS 1996 Antimirov

CONCUR 1998 Rutten

Programming Lanugages community
JFP 2009 Owens, Reppy, and Turon

ICFP 2010 Fischer, Huch, and Wilke

ICFP 2010 Danielsson

ICFP 2011 Might, Darais, and Spiewak

ICFP 2013 T. and Nipkow

POPL 2015 Pous

POPL 2015 Foster, Kozen, Milano,
Silva, and Thompson

JFP 2015 T. and Nipkow

this thesis

Interactive Theorem Proving community
JAR 2011 Krauss and Nipkow

CPP 2011 Coquand and Siles

ITP 2012 Asperti

RAMiCS 2012 Moreira, Pereira, and de Sousa

ITP 2013 Pous

ITP 2014 Nipkow and T.

Logic in Computer Science community
ICALP 2015 Kozen, Mamouras, Petrişan, and Silva

CSL 2015 T.

Derivatives in Literature
Theoretical groundwork

JACM 1964 Brzozowski

JACM 1967 Ginzburg

TCS 1996 Antimirov

CONCUR 1998 Rutten

Programming Lanugages community
JFP 2009 Owens, Reppy, and Turon

ICFP 2010 Fischer, Huch, and Wilke

ICFP 2010 Danielsson

ICFP 2011 Might, Darais, and Spiewak

ICFP 2013 T. and Nipkow

POPL 2015 Pous

POPL 2015 Foster, Kozen, Milano,
Silva, and Thompson

JFP 2015 T. and Nipkow

this thesis

Interactive Theorem Proving community
JAR 2011 Krauss and Nipkow

CPP 2011 Coquand and Siles

ITP 2012 Asperti

RAMiCS 2012 Moreira, Pereira, and de Sousa

ITP 2013 Pous

ITP 2014 Nipkow and T.

Logic in Computer Science community
ICALP 2015 Kozen, Mamouras, Petrişan, and Silva

CSL 2015 T.

Derivatives in Literature
Theoretical groundwork

JACM 1964 Brzozowski

JACM 1967 Ginzburg

TCS 1996 Antimirov

CONCUR 1998 Rutten

Programming Lanugages community
JFP 2009 Owens, Reppy, and Turon

ICFP 2010 Fischer, Huch, and Wilke

ICFP 2010 Danielsson

ICFP 2011 Might, Darais, and Spiewak

ICFP 2013 T. and Nipkow

POPL 2015 Pous

POPL 2015 Foster, Kozen, Milano,
Silva, and Thompson

JFP 2015 T. and Nipkow

this thesis

Interactive Theorem Proving community
JAR 2011 Krauss and Nipkow

CPP 2011 Coquand and Siles

ITP 2012 Asperti

RAMiCS 2012 Moreira, Pereira, and de Sousa

ITP 2013 Pous

ITP 2014 Nipkow and T.

Logic in Computer Science community
ICALP 2015 Kozen, Mamouras, Petrişan, and Silva

CSL 2015 T.

Gerwin Klein
Ruben Gamboa (Eds.)

 123

LN
CS

 8
55

8

5th International Conference, ITP 2014
Held as Part of the Vienna Summer of Logic, VSL 2014
Vienna, Austria, July 14–17, 2014, Proceedings

Interactive
Theorem Proving

Unified Decision Procedures
for Regular Expression Equivalence

Tobias Nipkow and Dmitriy Traytel

Fakultät für Informatik, Technische Universität München, Germany

Abstract. We formalize a unified framework for verified decision procedures for
regular expression equivalence. Five recently published formalizations of such
decision procedures (three based on derivatives, two on marked regular expres-
sions) can be obtained as instances of the framework. We discover that the two
approaches based on marked regular expressions, which were previously thought
to be the same, are different, and we prove a quotient relation between the au-
tomata produced by them. The common framework makes it possible to compare
the performance of the different decision procedures in a meaningful way.

1 Introduction

Equivalence of regular expressions is a perennial topic in computer science. Recently
it has spawned a number of formalized and verified decision procedures for this task in
interactive theorem provers [3, 6, 10, 19, 21]. Except for the formalization by Braibant
and Pous [6], all these decision procedures operate directly on variations of regular
expressions. Although they (implicitly) build automata, the states of the automata are
labeled with regular expressions, and there is no global transition table but the next-
state function is computable from the regular expressions. The motivation for working
with regular expressions is simplicity: regular expressions are a free datatype which
proof assistants and their users love because it means induction, recursion and equa-
tional reasoning—the core competence of proof assistants and functional programming
languages. Yet all these decision procedures based on regular expressions look very
different. Of course, the next-state functions all differ, but so do the actual decision pro-
cedures and their correctness, completeness and termination proofs. The contributions
of our paper are the following:

– A unified framework (Sect. 3) that we instantiate with all the above approaches
(Sects. 4 and 5). The framework is a simple reflexive transitive closure computation
that enumerates the states of a product automaton.

– Proofs of correctness, completeness and termination that are performed once and
for all for the framework based on a few properties of the next-state function.

– A new perspective on partial derivatives that recasts them as Brzozowski derivatives
followed by some rewriting (Sect. 4).

– The discovery that Asperti’s algorithm is not the one by McNaughton-Yamada [20],
as stated by Asperti [3], but a dual construction which apparently had not been
considered in the literature and which produces smaller automata (Sect. 5).

– An empirical comparison of the performance of the different approaches (Sect. 6).

The discussion of related work is distributed over the relevant sections of the paper.

G. Klein and R. Gamboa (Eds.): ITP 2014, LNAI 8558, pp. 450–466, 2014.
© Springer International Publishing Switzerland 2014

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)

◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)

◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)

◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)

◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

Unified Decision Procedures for Regular Expression Equivalence
Nipkow & T., ITP 2014

ICFP 2010 Fischer, Huch, & Wilke Mark after

JAR 2011 Krauss & Nipkow Brzozowski
λ

→

∀
=Is

ab
el
le

β

α

HOL

CPP 2011 Coquand & Siles Brzozowski

RAMiCS 2012 Moreira, Pereira, & de Sousa Antimirov

ITP 2012 Asperti Mark before

• a◦(a◦∗+b◦∗)◦ a•(a◦∗+b◦∗)

read a

◦ a◦(a•∗+b◦∗)

read aa

◦ a◦(a◦∗+b◦∗)

read aab

d : letter→ regex→ regex
+ ACI

∂ : letter→ regex→ regex set

•a(◦a∗+◦b∗)◦a(•a∗+•b∗)

read a

◦a(•a∗+◦b∗)

read aa

◦a(◦a∗+◦b∗)

read aab

Our contribution

• Abstract bisimulation computation

• Insantiations with different derivatives

• ∑ ◦ ∂a = pnorm ◦ da

• “Mark before” yields smaller
bisimulations than “Mark after”
(proof due H. Seidl)

• Empirical comparison

September 25–27, 2013
Boston, Massachusetts, USA

Sponsored by:

ACM SIGPLAN
Supported by:

Jane Street, FPComplete, Microsoft Research, NSF, ORACLE LABS,
Standard Chartered, Credit Suisse, Erlang Solutions, Galois, Google, INRIA,
Twitter, Northwestern University, IntelliFactory, & QuviQ

ICFP’13
Proceedings of the 2013 ACM SIGPLAN

International Conference on Functional Programming

Verified Decision Procedures for MSO on Words
Based on Derivatives of Regular Expressions

Dmitriy Traytel Tobias Nipkow
Technische Universität München, Germany

traytel@in.tum.de www.in.tum.de/~nipkow

Abstract
Monadic second-order logic on finite words (MSO) is a decidable
yet expressive logic into which many decision problems can be
encoded. Since MSO formulas correspond to regular languages,
equivalence of MSO formulas can be reduced to the equivalence
of some regular structures (e.g. automata). This paper presents
a verified functional decision procedure for MSO formulas that
is not based on automata but on regular expressions. Functional
languages are ideally suited for this task: regular expressions are
data types and functions on them are defined by pattern matching
and recursion and are verified by structural induction.

Decision procedures for regular expression equivalence have
been formalized before, usually based on Brzozowski derivatives.
Yet, for a straightforward embedding of MSO formulas into regular
expressions an extension of regular expressions with a projection
operation is required. We prove total correctness and completeness
of an equivalence checker for regular expressions extended in that
way. We also define a language-preserving translation of formulas
into regular expressions with respect to two different semantics
of MSO. Our results have been formalized and verified in the
theorem prover Isabelle. Using Isabelle’s code generation facility,
this yields purely functional, formally verified programs that decide
equivalence of MSO formulas.

Categories and Subject Descriptors F.4.3 [Mathematical Logic
And Formal Languages]: Formal Languages—Decision problems;
F.3.1 [Mathematical Logic And Formal Languages]: Specifying
and Verifying and Reasoning about Programs

General Terms Algorithms, Theory, Verification

Keywords MSO; WS1S; decision procedure; regular expressions;
Brzozowski derivatives; interactive theorem proving; Isabelle

1. Introduction
Many decision procedures for logical theories are based on the fa-
mous logic-automaton connection. That is, they reduce the decision
problem for some logical theory to a decidable question about some
class of automata. Automata are usually implemented with the help
of imperative data structures for efficiency reasons.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500612

In functional languages, automata are not an ideal abstraction
because they are graphs rather than trees. In contrast, regular ex-
pressions are perfect for functional languages and they are equally
expressive. In fact, Brzozowski [8] showed how automata-based
algorithms can be recast as recursive algebraic manipulations of
regular expressions. His derivatives can be seen as a way of simu-
lating automaton states with regular expressions and computing the
next-state function symbolically.

Recently Brzozowski’s derivatives were discovered by func-
tional programmers and theorem provers. Owens et al. [23] real-
ized that regular expressions and their derivatives fit perfectly with
data types and recursive functions. Their paper explores regular
expression matching based directly on regular expressions rather
than automata. Fischer et al. [13] also explore regular expression
matching, but by means of marked regular expressions rather than
derivatives. Slightly later, the interactive theorem proving commu-
nity woke up to the beauty of derivatives, too. This resulted in four
papers about verified decision procedures for the equivalence of
regular expressions based on derivatives and on marked regular ex-
pressions (see Related Work below). In one of these four papers,
Coquand and Siles [10] state that “A more ambitious project will
be to use this work for writing a decision procedure for WS1S”, a
monadic second-order logic. Our paper does just that (and more).

Monadic second-order logic on finite words (MSO) is a decid-
able yet expressive logic into which many decision problems can
be encoded [26]. MSO allows only monadic predicates but quan-
tification both over numbers and finite sets of numbers. Two closely
related but subtly different semantics can be found in the literature.
One of the two, WS1S—the Weak monadic Second-order logic of
1 Successor, is based on arithmetic. The other, M2L(Str) [16], is
more closely related to formal languages. There seems to be some
disagreement as to which semantics is the more appropriate one for
verification purposes [3, 17]. Hence we cover both.

Essentially, MSO formulas describe regular languages. There-
fore MSO formulas can be decided by translating them into au-
tomata. This is the basis of the highly successful MONA tool [12]
for deciding WS1S. MONA’s success is due to its (in practical
terms) highly efficient implementation and to the ease with which
very different verification problems can be encoded in monadic
second-order logic, for example Presburger arithmetic and Hoare
logic for pointer programs.

The contribution of this paper is the presentation of the first
purely functional decision procedures for two interpretations of
MSO based on derivatives of regular expressions. These decision
procedures have been verified in Isabelle/HOL and we sketch their
correctness proofs. We are not aware of any previous decision
procedure for MSO based on regular expressions (as opposed to
automata), let alone a verified program.

It is instructive to compare our decision procedure for WS1S
with MONA. MONA is a highly tuned implementation using

3

Verified Decision Procedures for MSO on Words
Based on Derivatives of Regular Expressions

T. & Nipkow, ICFP 2013 & JFP 2015

mkRE(T) = ¬∅
mkRE(F) = ∅
mkRE(x < y) = ¬∅ · ANth x T · ¬∅ · ANth y T · ¬∅
mkRE(x ∈ X) = ¬∅ · ANth2 x X · ¬∅
mkRE(FO x) = (ANth x F)∗ · ANth x T · (ANth x F)∗

mkRE(ϕ∨ψ) = mkRE(ϕ) + mkRE(ψ)

mkRE(¬ϕ) = ¬mkRE(ϕ)

mkRE(∃ϕ) = Π (mkRE(ϕ))

T | F | x ∈ X | x < y | ϕ∨ψ | ¬ϕ | ∃x . ϕ | ∃X . ϕ

preserves semantics

Verified Decision Procedures for MSO on Words
Based on Derivatives of Regular Expressions

T. & Nipkow, ICFP 2013 & JFP 2015

mkRE(T) = ¬∅
mkRE(F) = ∅
mkRE(x < y) = ¬∅ · ANth x T · ¬∅ · ANth y T · ¬∅
mkRE(x ∈ X) = ¬∅ · ANth2 x X · ¬∅
mkRE(FO x) = (ANth x F)∗ · ANth x T · (ANth x F)∗

mkRE(ϕ∨ψ) = mkRE(ϕ) + mkRE(ψ)

mkRE(¬ϕ) = ¬mkRE(ϕ)

mkRE(∃ϕ) = Π (mkRE(ϕ))

T | F | x ∈ X | x < y | ϕ∨ψ | ¬ϕ | FO x | ∃X . ϕ

preserves semantics

Verified Decision Procedures for MSO on Words
Based on Derivatives of Regular Expressions

T. & Nipkow, ICFP 2013 & JFP 2015

mkRE(T) = ¬∅
mkRE(F) = ∅
mkRE(x < y) = ¬∅ · ANth x T · ¬∅ · ANth y T · ¬∅
mkRE(x ∈ X) = ¬∅ · ANth2 x X · ¬∅
mkRE(FO x) = (ANth x F)∗ · ANth x T · (ANth x F)∗

mkRE(ϕ∨ψ) = mkRE(ϕ) + mkRE(ψ)

mkRE(¬ϕ) = ¬mkRE(ϕ)

mkRE(∃ϕ) = Π (mkRE(ϕ))

T | F | x ∈ X | x < y | ϕ∨ψ | ¬ϕ | FO x | ∃ϕ

preserves semantics

Verified Decision Procedures for MSO on Words
Based on Derivatives of Regular Expressions

T. & Nipkow, ICFP 2013 & JFP 2015

mkRE(T) = ¬∅
mkRE(F) = ∅
mkRE(x < y) = ¬∅ · ANth x T · ¬∅ · ANth y T · ¬∅
mkRE(x ∈ X) = ¬∅ · ANth2 x X · ¬∅
mkRE(FO x) = (ANth x F)∗ · ANth x T · (ANth x F)∗

mkRE(ϕ∨ψ) = mkRE(ϕ) + mkRE(ψ)

mkRE(¬ϕ) = ¬mkRE(ϕ)

mkRE(∃ϕ) = Π (mkRE(ϕ))

T | F | x ∈ X | x < y | ϕ∨ψ | ¬ϕ | ∃x . ϕ | ∃X . ϕ

preserves semantics

Verified Decision Procedures for MSO on Words
Based on Derivatives of Regular Expressions

T. & Nipkow, ICFP 2013 & JFP 2015

mkRE(T) = ¬∅
mkRE(F) = ∅
mkRE(x < y) = ¬∅ · ANth x T · ¬∅ · ANth y T · ¬∅
mkRE(x ∈ X) = ¬∅ · ANth2 x X · ¬∅
mkRE(FO x) = (ANth x F)∗ · ANth x T · (ANth x F)∗

mkRE(ϕ∨ψ) = mkRE(ϕ) + mkRE(ψ)

mkRE(¬ϕ) = ¬mkRE(ϕ)

mkRE(∃ϕ) = Π (mkRE(ϕ))

T | F | x ∈ X | x < y | ϕ∨ψ | ¬ϕ | ∃x . ϕ | ∃X . ϕ

preserves semantics

24th EACSL Annual Conference
on Computer Science Logic

CSL 2015, September 7–10, 2015, Berlin, Germany

Edited by

Stephan Kreutzer

LIPIcs – Vo l . 41 – CSL 2015 www.dagstuh l .de/ l i p i c s

A Coalgebraic Decision Procedure for WS1S
Dmitriy Traytel

Fakultät für Informatik, Technische Universität München, Germany
traytel@in.tum.de

Abstract
Weak monadic second-order logic of one successor (WS1S) is a simple and natural formalism
to specify regular properties. WS1S is decidable, although the decision procedure’s complexity
is non-elementary. Typically, decision procedures for WS1S exploit the logic–automaton con-
nection, i.e., they escape the simple and natural formalism by translating formulas into equally
expressive regular structures such as finite automata, regular expressions, or games. In this
work, we devise a coalgebraic decision procedure for WS1S that stays within the logical world
by directly operating on formulas. The key operation is the derivative of a formula, modeled
after Brzozowski’s derivatives of regular expressions. The presented decision procedure has been
formalized and proved correct in the interactive proof assistant Isabelle.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases WS1S, decision procedure, coalgebra, Brzozowski derivatives, Isabelle

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.487

1 Introduction

In his seminal work [8], Büchi envisioned weak monadic second-order logic of one successor
(WS1S) to become a “more conventional formalism [that] can be used in place of regular
expressions [. . .] for formalizing conditions on the behavior of automata”. This vision became
truth – WS1S has been used to encode decision problems in hardware verification [3], program
verification [22], network verification [4], synthesis [19], as well as many others.

WS1S is a logic that supports first-order quantification over natural numbers and second-
order quantification over finite (therefore “Weak”) sets of natural numbers, and beyond this
has few additional special predicates, such as < to compare first-order variables. Equivalence
of WS1S formulas is decidable, although the complexity for deciding it is non-elementary [27].
Nevertheless, the MONA tool [20] shows that the daunting theoretical complexity can often
be overcome in practice by employing a multitude of smart optimizations. Similarly to Büchi,
MONA’s manual [24] calls WS1S a “simple and natural notation” for regular languages.

Traditionally1, decision procedures for WS1S do not try to benefit from the conventional,
simple, and natural logical notation. Instead, by exploiting the logic–automaton connection,
formulas are translated into finite automata which are then minimized. During the translation
all the rich algebraic formula structure including binders and high-level constructs is lost. On
the other hand, the subsequent minimization might have benefited from some simplifications
on the formula level.

Concerning the algebraic structure, regular expressions are situated somewhere in between
WS1S formulas and automata. In earlier work [40, 39], we propose a semantics-preserving
translation of WS1S formulas into regular expressions. Thereby, equivalence of formulas is

1 The only notable exception, we are aware of, is the decision procedure implemented in the Toss tool [17]
(Sect. 7).

© Dmitriy Traytel;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 487–503

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

a∗

ε+ a ·a∗

ε ·a∗

∅+ε ·a∗

∅ ·a∗+ε ·a∗

∅+∅ ·a∗+ε ·a∗

∅ ·a∗+∅ ·a∗+ε ·a∗

∅+∅ ·a∗+∅ ·a∗+ε ·a∗

∅ ·a∗

∅+∅ ·a∗

∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗

∅ ·a∗+∅ ·a∗+∅ ·a∗

∅+∅ ·a∗+∅ ·a∗+∅ ·a∗

da

da

da ACI

db

db

db

ACI ACI

da
db

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

Key ingredients: derivative + ε-acceptance test︸ ︷︷ ︸
coalgebra

Let’s define them on WS1S formulas directly!

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

Key ingredients: derivative + ε-acceptance test︸ ︷︷ ︸
coalgebra

Let’s define them on WS1S formulas directly!

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

Key ingredients: derivative + ε-acceptance test︸ ︷︷ ︸
coalgebra

Let’s define them on WS1S formulas directly!

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

(∃X .x ∈ X)
?≡ (¬x < x) for Σ = {(0),(1)}

∃X .x ∈ X
¬x < x

∃X .(T∨F)

¬F

∃X .(T∨F)∨ (T∨F)

¬F

∃X .(x ∈ X ∨ x ∈ X)

¬ x < x

d(1)

d(1), d(0) ACI

d(0)

ACI

Benefits

Simplicity

• Implementation

• Formalization λ
→

∀
=Is

ab
el
le

β

α

HOL

• Presentation

Efficiency

• vs. MONA

→ MonaCo (Pous & T.)

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

(∃X .x ∈ X)
?≡ (¬x < x) for Σ = {(0),(1)}

∃X .x ∈ X
¬x < x

∃X .(T∨F)

¬F

∃X .(T∨F)∨ (T∨F)

¬F

∃X .(x ∈ X ∨ x ∈ X)

¬ x < x

d(1)

d(1), d(0) ACI

d(0)

ACI

Benefits

Simplicity

• Implementation

• Formalization λ
→

∀
=Is

ab
el
le

β

α

HOL

• Presentation

Efficiency

• vs. MONA

→ MonaCo (Pous & T.)

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

(∃X .x ∈ X)
?≡ (¬x < x) for Σ = {(0),(1)}

∃X .x ∈ X
¬x < x

∃X .(T∨F)

¬F

∃X .(T∨F)∨ (T∨F)

¬F

∃X .(x ∈ X ∨ x ∈ X)

¬ x < x

d(1)

d(1), d(0) ACI

d(0)

ACI

Benefits

Simplicity
• Implementation

• Formalization λ
→

∀
=Is

ab
el
le

β

α

HOL

• Presentation

Efficiency

• vs. MONA

→ MonaCo (Pous & T.)

A Coalgebraic Decision Procedure for WS1S
T., CSL 2015

(∃X .x ∈ X)
?≡ (¬x < x) for Σ = {(0),(1)}

∃X .x ∈ X
¬x < x

∃X .(T∨F)

¬F

∃X .(T∨F)∨ (T∨F)

¬F

∃X .(x ∈ X ∨ x ∈ X)

¬ x < x

d(1)

d(1), d(0) ACI

d(0)

ACI

Benefits

Simplicity
• Implementation

• Formalization λ
→

∀
=Is

ab
el
le

β

α

HOL

• Presentation

Efficiency
• vs. MONA

→ MonaCo (Pous & T.)

Conclusion

DERIVE
AND

CONQUER

Thanks for your attention!
Questions?

DERIVE
AND

CONQUER

Thanks for your attention!
Questions?

DERIVE
AND

CONQUER

Thanks for your attention!
Questions?

Formalizing︸ ︷︷ ︸
in

Symbolic Decision Procedures
for

Regular Languages

Dmitriy Traytel

