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The theory cannot prove

é an internal formulation of)
Its own consistency.
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i The reader who does not like incomplete and
| (@apparently) irremediably messy proofs of

{syntactic facts may wish to skim over the rest of |
{this chapter and take it for granted that ...
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- Fix a particular logic: Classical FOL
- Fix a particular theory (+ finite extensions of it)

- Arithmetic (Harrison, O’Connor)

- Hereditarily finite set theory (Sieg, Shankar, Paulson)
- Tour de force for the particular combination

* Scope of 1 and @ remains largely unexploded

E.g. do they hold for Intuitionistic FOL, HOL, CIC?



Our Motto:



Our Motto:
Don’t Fix, Gather!




Our Contributions



Our Contributions

xse\\ol -0 OB
Ot " . . 7
- Abstract %’ formalization of and -
- Answer “What must/may a logic/theory offer?”

- Understand variants and distill trade-offs from the literature
- Correct a mistake in a pen and paper proof



Our Contributions

xse\\ol -0 OB
Ot " . . 7
- Abstract %’ formalization of and -
- Answer “What must/may a logic/theory offer?”
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- Reproduce (for ) and improve (for ( ) Paulson’s formalization
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¢ sels: var Term, Fmla with VarcTerm
Syntax
e operators:

-V Term : Term — 2Var
=V : Fmla — 2Var

subst Term : Term — Var = Term — Term

subst : Fmla = Var =@ Term = Fmla

* properties, e.g.:
xeFV(d) implies FV(subst ¢ x s) = FV(}) - {x} u FV_Term(s)

We require unary substitution only.

We derive parallel substitution from it.
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operators:
= : Term = Term — Fmla

—. A, v:Fmla = Fmla = Fmla

- : Fmla =@ Fmla
1, T:Fmla

3, v :Var = Fmla = Fmla

We require a minimal list w.r.t.

Intuitionistic deduction and define the rest.
Note: operators, not constructors
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— c Fmla Relation

we write Fo iIf € -

 properties:

— contains the standard (Hilbert-style) intuitionistic FOL axioms
about the connectives

* nonempty set:

Num <€ Fmlag

Numerals
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Proofs




e operators:

(> :Fmla = Num and ¢ ) : Proof =& Num

Encodings

® formUIaS subst, |k, - Represent_

ability

* property:

behave like operators/relations (subst, I+, =) on encodings



operators:

(> :Fmla = Num and ¢ ) : Proof =& Num

Encodings

formUIaS subst, |k, - Represent_
ability

property:

behave like operators/relations (subst, I+, =) on encodings

property: .

Consistency




operators:

(> :Fmla = Num and ¢ ) : Proof =& Num

Encodings

formUIaS subst, |k, - Represent_
ability

property:

behave like operators/relations (subst, I+, =) on encodings

property: ».

Consistency

property: roral ¢pcFmia;, Omega-

if ——=d(n) for all neNum then #—--(3x.p(x)) Consistency




What must a logic/theory offer?

Generic Connectives Provability

Syntax Relation Numerals

What may a logic/theory offer?

Classical Order-like

Logic Relation Encodings

Represent- Derivability Standard

ability Conditions Model Soundness

Omega- Completeness Proofs vs.

Consistency Consistency of Provability Provability




Omega-
Consistency

subst, I+ —¢ implies —=<(})
Represent- Derivability :
ability Conditions

There exists peFmlao such that
£~ and o



| Rosser’s ==
| Trick |

Consistency

subst, |- —¢ implies —=<(})

Represent- Derivability

ability Conditions Encodings

There exists peFmlao such that
ala #® and -

Rosser



| Rosser’s ==
| Trick |

Consistency

subst, |- —¢ implies —=<(})

Represent- Derivability

ability Conditions Encodings

ﬂ

There exists peFmlao such that
ala #® and -

Rosser



Order-like
Relation

{Rosser’s == .
i Consistency

subst, I+ —¢ implies —=<(})

Represent- Derivability

ability Conditions Encodings

ﬂ

There exists peFmlao such that
ala #® and -

Rosser



Standard Soundness Completeness Proofs vs.
Model of Provability Provability
bst —o Implies <)
Represent- Derivability :
ability Conditions
—E{(P) implies o

There exists peFmlao such that

semantic vty and Tkl
and ¢ Is true in the standard model



Classical
Logic

Consistency
subst —® implies FE={(})

Represent- Derivability
ability Conditions

—E=(P) Implies —}

Encodings

There exists peFmlao such that
classical £~ and ¢
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Summary Using our generic infrastructure (Section 2), we have formally proved sev-
eral abstract incompleteness results. They include four versions of Z7:

— Godel’s original Z7; (Theorem 9) and an Z°7; based on classical logic (Theo-

rem 12) required the formalization of some well-known arguments without change.

— Rosser’s Z77| (Theorem 10) involved the generalization of a well-known argument:
distilling two abstract conditions, Ord; and Ord>.

— Novel semantic variants of Z7; (Theorems 11 and 13) were born from abstractly
connecting standard models, HBL s “iff”” version, and proof representability.

They also include two versions of Z75:

— The standard Z7, based on the three derivability conditions (Theorem 14) again
only required formalizing a well-known argument.

— The alternative, Jeroslow-style Z7, (Theorems 17 and 18) involved a detailed anal-
ysis and correction of an existing abstract result.
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From Abstract to Concrete

Generic : Provability
Connectives . Numerals
Syntax Relation

Verified instances
- Robinson’s Arithmetic (Q)
- Hereditarily finite set theory
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