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Gödel’s Incompleteness Theorems 
1931

There are sentences that the 
theory cannot decide (i.e., 
neither prove nor disprove).

Fix a consistent logical theory that

- contains enough arithmetic,

- can itself be arithmetized.

The theory cannot prove 
(an internal formulation of) 
its own consistency.
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The reader who does not like incomplete and 
(apparently) irremediably messy proofs of 
syntactic facts may wish to skim over the rest of 
this chapter and take it for granted that …

… … … …
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- Fix a particular logic: Classical FOL

- Fix a particular theory (+ finite extensions of it)

- Arithmetic (Harrison, O’Connor)

- Hereditarily finite set theory (Sieg, Shankar, Paulson)

- Tour de force for the particular combination

Formal Verifications of �  and �  

Shared structure

 Scope of  and  remains largely unexploded

E.g. do they hold for Intuitionistic FOL, HOL, CIC?
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- Concrete instantiation to hereditarily finite set theory

- Reproduce (for ) and improve (for ) Paulson’s formalization



What must a logic/theory offer?
Generic 
Syntax Connectives Provability 

Relation Numerals



What must a logic/theory offer?
Generic 
Syntax Connectives Provability 

Relation Numerals

Classical 
Logic

What may a logic/theory offer?
Order-like 
Relation Proofs Encodings

Represent-
ability

Derivability 
Conditions

Standard 
Model Soundness

Consistency Omega-
Consistency

Completeness 
of Provability

Proofs vs. 
Provability



Generic 
Syntax



• sets: Var, Term, Fmla with Var⊆Term Generic 
Syntax



• sets: Var, Term, Fmla with Var⊆Term

• operators: 
FV_Term : Term → 2Var

FV : Fmla → 2Var

subst_Term : Term → Var → Term → Term
subst : Fmla → Var → Term → Fmla

Generic 
Syntax



• sets: Var, Term, Fmla with Var⊆Term

• operators: 
FV_Term : Term → 2Var

FV : Fmla → 2Var

subst_Term : Term → Var → Term → Term
subst : Fmla → Var → Term → Fmla

• properties, e.g.:
x∈FV(φ) implies FV(subst φ x s) = FV(φ) - {x} ∪ FV_Term(s)

Generic 
Syntax



• sets: Var, Term, Fmla with Var⊆Term

• operators: 
FV_Term : Term → 2Var

FV : Fmla → 2Var

subst_Term : Term → Var → Term → Term
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• properties, e.g.:
x∈FV(φ) implies FV(subst φ x s) = FV(φ) - {x} ∪ FV_Term(s)

Generic 
Syntax

We require unary substitution only. 
We derive parallel substitution from it.
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Connectives

We require a minimal list w.r.t.   
intuitionistic deduction and define the rest. 
Note: operators, not constructors
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we write ⊢φ if φ ∈ ⊢


• properties: 
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Relation

• nonempty set: 
Num ⊆ Fmla0

Numerals
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• set: Proof 
• binary relation: ⊩ ∈ Proof×Fmla


we write p⊩φ if (p,φ)∈⊩

Proofs
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⟨_⟩ : Fmla → Num and ⟨_⟩ : Proof → Num

Encodings
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Consistency

• property: For all φ∈Fmla1,


if ⊢¬φ(n) for all n∈Num then ⊬¬¬(∃x.φ(x))  
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ability

Derivability 
Conditions

subst ⊢φ implies ⊢⊢⟨φ⟩

There exists φ∈Fmla0 such that

⊬φ and ⊬¬φ


and φ is true in the standard model
semantic

⊢⊢⟨φ⟩ implies ⊢φ

Standard 
Model Soundness Completeness 

of Provability
Proofs vs. 
Provability
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EncodingsRepresent-
ability

Derivability 
Conditions

subst ⊢φ implies ⊢⊢⟨φ⟩

⊬¬⊢⟨⊥⟩

Consistency

⊢⊢⟨φ⟩∧⊢⟨φ→ψ⟩→⊢⟨ψ⟩

⊢⊢⟨φ⟩→⊢⟨⊢⟨φ⟩⟩

In the paper:

Jeroslow’s


“improvement"

to remove this 

condition


results in weaker 
conclusion


+ mistake in proof
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From Abstract to Concrete
Generic 
Syntax Connectives Provability 

Relation Numerals

Verified instances
-Robinson’s Arithmetic (Q)
-Hereditarily finite set theory
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Thank you! 
Questions?



A Formally Verified Abstract Account 
of 

Gödel’s Incompleteness Theorems

Andrei Popescu Dmitriy Traytel

λ
→

∀
=Is

ab
el
le

β

α

HOL


