Foundational, Compositional (Co)datatypes for Higher-Order Logic
 Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Blanchette

[^0]

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes
(Co)nclusion

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

Isabelle/HOL

- LCF philosophy

Isabelle/HOL

- LCF philosophy

Small inference kernel

Isabelle/HOL

- LCF philosophy

Small inference kernel

- Foundational approach

Isabelle/HOL

- LCF philosophy

Small inference kernel

- Foundational approach

Reduce high-level specifications to primitive mechanisms

Isabelle/HOL

- LCF philosophy

Small inference kernel

- Foundational approach

Reduce high-level specifications to primitive mechanisms

- HOL = simply typed set theory with ML-style polymorphism

Isabelle/HOL

- LCF philosophy

Small inference kernel

- Foundational approach

Reduce high-level specifications to primitive mechanisms

- HOL = simply typed set theory with ML-style polymorphism

Restrictive logic

Isabelle/HOL

- LCF philosophy

Small inference kernel

- Foundational approach

Reduce high-level specifications to primitive mechanisms

- HOL = simply typed set theory with ML-style polymorphism

Restrictive logic
Weaker than ZF

Isabelle/HOL

- LCF philosophy

Small inference kernel

- Foundational approach

Reduce high-level specifications to primitive mechanisms

- HOL = simply typed set theory with ML-style polymorphism

Restrictive logic
Weaker than ZF

- Datatype specification

$$
\begin{aligned}
& \text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list }) \\
& \text { datatype } \alpha \text { tree }=\text { Node } \alpha(\alpha \text { tree list })
\end{aligned}
$$

- Datatype specification

$$
\begin{aligned}
& \text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list }) \\
& \text { datatype } \alpha \text { tree }=\text { Node } \alpha(\alpha \text { tree list })
\end{aligned}
$$

- Primitive type definitions

The traditional approach

Melham 1989, Gunter 1994

- Fragment of ML (non-co)datatypes

The traditional approach

Melham 1989, Gunter 1994

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types

The traditional approach

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types
- Simulate nested recursion by mutual recursion

$$
\begin{aligned}
& \text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list }) \\
& \text { datatype } \alpha \text { tree }=\text { Node } \alpha \text { (} \alpha \text { tree list })
\end{aligned}
$$

The traditional approach

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types
- Simulate nested recursion by mutual recursion

$$
\begin{aligned}
& \text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) } \\
& \text { datatype } \alpha \text { tree }=\text { Node } \alpha \text { (} \alpha \text { tree_list) } \\
& \text { and } \quad \alpha \text { tree_list }=\text { Nil } \mid \text { Cons }(\alpha \text { tree })(\alpha \text { tree_list })
\end{aligned}
$$

The traditional approach

- Fragment of ML (non-co)datatypes
- Fixed universe for recursive types
- Simulate nested recursion by mutual recursion

$$
\begin{aligned}
& \text { datatype } \alpha \text { list }=\text { Nil | Cons } \alpha \text { (} \alpha \text { list }) \\
& \text { datatype } \alpha \text { tree }=\text { Node } \alpha(\alpha \text { tree_list }) \\
& \text { and } \alpha \text { tree_list }=\text { Nil } \mid \text { Cons }(\alpha \text { tree })(\alpha \text { tree_list })
\end{aligned}
$$

- Implemented in Isabelle by Berghofer \& Wenzel 1999

Limitations

Berghofer \& Wenzel 1999

1. noncompositionality
2. no codatatypes
3. no non-free structures

Limitations

LICS 2012

1. noncompositionality
2. no codatatypes
3. no non-free structures

Limitations

LICS 2012

1. noncompositionality
2. no codatatypes
3. no non-free structures

Limitations

LICS 2012

1. noncompositionality
2. no codatatypes
3. no non-free structures

Limitations

LICS 2012

1. noncompositionality
2. no codatatypes
3. ne non-free structures

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes

(Co)nclusion

$$
\begin{aligned}
\text { datatype } \alpha \text { list } & =\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list }) \\
\text { codatatype } \alpha \text { tree } & =\text { Node } \alpha \text { tree list })
\end{aligned}
$$

$$
\begin{aligned}
\text { datatype } \alpha \text { list } & =\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list }) \\
\text { codatatype } \alpha \text { tree } & =\text { Node } \alpha(\alpha \text { tree list })
\end{aligned}
$$

$$
\text { - } \mathrm{P} \mathrm{n}=\text { print } \mathrm{n} \text {; for } \mathrm{i}=1 \text { to } \mathrm{n} \text { do } \mathrm{P}(\mathrm{n}+\mathrm{i}) \text {; }
$$

$$
\begin{aligned}
\text { datatype } \alpha \text { list } & =\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list }) \\
\text { codatatype } \alpha \text { tree } & =\text { Node } \alpha(\alpha \text { tree list })
\end{aligned}
$$

- P n = print n ; for $\mathrm{i}=1$ to n do $\mathrm{P}(\mathrm{n}+\mathrm{i})$;
- evaluation tree for P 2

$$
\begin{aligned}
\text { datatype } \alpha \text { list } & =\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list }) \\
\text { codatatype } \alpha \text { tree } & =\text { Node } \alpha(\alpha \text { tree list })
\end{aligned}
$$

- Compositionality = no unfolding

$$
\begin{aligned}
\text { datatype } \alpha \text { list } & =\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list }) \\
\text { codatatype } \alpha \text { tree } & =\text { Node } \alpha(\alpha \text { tree fset })
\end{aligned}
$$

- Compositionality = no unfolding
- Need abstract interface

$$
\begin{aligned}
\text { datatype } \alpha \text { list } & =\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list }) \\
\text { codatatype } \alpha \text { tree } & =\text { Node } \alpha(\alpha \text { tree fset })
\end{aligned}
$$

- Compositionality = no unfolding
- Need abstract interface
- What interface?

Type constructors are not just operators on types!

The interface: bounded natural functor

type constructor F

The interface: bounded natural functor

\author{
$\left.\begin{array}{l}\text { type constructor } F \\ \text { Fmap }\end{array}\right\}$ functor

}

The interface: bounded natural functor

The interface: bounded natural functor

The interface: bounded natural functor

type constructor Fmap	$\left\{\begin{array}{l}\text { functor } \\ \text { Fset }\end{array}\right.$
Fbd natural transformation $\}$ infinite cardinal	

BNF = type constructor + polymorphic constrants + assumptions

Type constructors are functors

Fmap : $\left(\alpha \rightarrow \alpha^{\prime}\right) \rightarrow\left(\beta \rightarrow \beta^{\prime}\right) \rightarrow(\alpha, \beta) \mathrm{F} \rightarrow\left(\alpha^{\prime}, \beta^{\prime}\right) \mathrm{F}$

Type constructors are functors

Fmap : $\left(\alpha \rightarrow \alpha^{\prime}\right) \rightarrow\left(\beta \rightarrow \beta^{\prime}\right) \rightarrow(\alpha, \beta) \mathrm{F} \rightarrow\left(\alpha^{\prime}, \beta^{\prime}\right) \mathrm{F}$

$(\alpha, \beta) \mathrm{F}$
$\left(\alpha^{\prime}, \beta^{\prime}\right) \mathrm{F}$

$$
\begin{aligned}
\text { Fmap id id } & =\text { id } \\
\text { Fmap } f_{1} f_{2} \circ \text { Fmap } g_{1} g_{2} & =\text { Fmap }\left(f_{1} \circ g_{1}\right)\left(f_{2} \circ g_{2}\right)
\end{aligned}
$$

Type constructors are containers

Fset $_{1}:(\alpha, \beta) \mathrm{F} \rightarrow \alpha$ set
$\mathrm{Fset}_{2}:(\alpha, \beta) \mathrm{F} \rightarrow \beta$ set

Type constructors are containers

$$
\text { Fset }_{1}:(\alpha, \beta) \mathrm{F} \rightarrow \alpha \text { set }
$$

$\mathrm{Fset}_{2}:(\alpha, \beta) \mathrm{F} \rightarrow \beta$ set

Fset $_{1} \circ$ Fmap $f_{1} f_{2}=$ image $_{1} \circ$ Fset $_{1}$
Fset $_{2} \circ$ Fmap $_{1} f_{2}=$ image $f_{2} \circ$ Fset $_{2}$

Further BNF assumptions

$\left.\begin{array}{l}\forall x \in \text { Fset }_{1} z . f_{1} x=g_{1} x \\ \forall x \in \text { Fset }_{2} z . f_{2} x=g_{2} x\end{array}\right\} \Rightarrow$ Fmap $f_{1} f_{2} z=$ Fmap $g_{1} g_{2} z$

Further BNF assumptions

$\left.\begin{array}{l}\forall x \in \text { Fset }_{1} z . f_{1} x=g_{1} x \\ \forall x \in \text { Fset }_{2} z . f_{2} x=g_{2} x\end{array}\right\} \Rightarrow$ Fmap $f_{1} f_{2} z=$ Fmap $g_{1} g_{2} z$

$$
\aleph_{0} \leq \mathrm{Fbd}
$$

Further BNF assumptions

$\left.\begin{array}{l}\forall x \in \text { Fset }_{1} z . f_{1} x=g_{1} x \\ \forall x \in \text { Fset }_{2} z . f_{2} x=g_{2} x\end{array}\right\} \Rightarrow$ Fmap $f_{1} f_{2} z=$ Fmap $g_{1} g_{2} z$
$\aleph_{0} \leq \mathrm{Fbd}$
\mid Fset $_{i} z \mid \leq$ Fbd

Further BNF assumptions

$\left.\begin{array}{l}\forall x \in \text { Fset }_{1} z . f_{1} x=g_{1} x \\ \forall x \in \text { Fset }_{2} z . f_{2} x=g_{2} x\end{array}\right\} \Rightarrow$ Fmap $f_{1} f_{2} z=$ Fmap $g_{1} g_{2} z$
$\aleph_{0} \leq \mathrm{Fbd}$
\mid Fset $_{i} z \mid \leq \mathrm{Fbd}^{2}$

$$
\left|\left(\alpha_{1}, \alpha_{2}\right) \mathrm{F}\right| \leq\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|\right)^{\mathrm{Fbd}}
$$

Further BNF assumptions

$\left.\begin{array}{l}\forall x \in \text { Fset }_{1} z . f_{1} x=g_{1} x \\ \forall x \in \text { Fset }_{2} z . f_{2} x=g_{2} x\end{array}\right\} \Rightarrow$ Fmap $f_{1} f_{2} z=$ Fmap $g_{1} g_{2} z$
$\aleph_{0} \leq \mathrm{Fbd}$
\mid Fset $_{i} z \mid \leq$ Fbd

$$
\left|\left(\alpha_{1}, \alpha_{2}\right) \mathrm{F}\right| \leq\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|\right)^{\mathrm{Fbd}}
$$

(F, Fmap) preserves weak pullbacks

What are bounded natural functors good for?

BNFs ...

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)
- admit final coalgebras (codatatypes)

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)
- admit final coalgebras (codatatypes)
- are closed under initial algebras and final coalgebras

What are bounded natural functors good for?

BNFs ...

- cover basic type constructors (e.g.,$+ \times$, unit, and $\alpha \rightarrow \beta$ for fixed α)
- cover non-free type constructors (e.g. fset, cset)
- are closed under composition
- admit initial algebras (datatypes)
- admit final coalgebras (codatatypes)
- are closed under initial algebras and final coalgebras
- make initial algebras and final coalgebras expressible in HOL

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes
(Co)nclusion

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list })
$$

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) }
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) }
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) }
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-algebras

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list })
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-algebras
4. Construct initial algebra
(α list, fld : unit $+\alpha \times \alpha$ list $\rightarrow \alpha$ list)

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list })
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-algebras
4. Construct initial algebra

$$
(\alpha \text { list, fld }: \text { unit }+\alpha \times \alpha \text { list } \rightarrow \alpha \text { list })
$$

5. Define iterator

$$
\text { iter : }(\text { unit }+\alpha \times \alpha \text { list } \rightarrow \beta) \rightarrow \alpha \text { list } \rightarrow \beta
$$

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha(\alpha \text { list })
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-algebras
4. Construct initial algebra

$$
(\alpha \text { list, fld }: \text { unit }+\alpha \times \alpha \text { list } \rightarrow \alpha \text { list })
$$

5. Define iterator

$$
\text { iter : }(\text { unit }+\alpha \times \alpha \text { list } \rightarrow \beta) \rightarrow \alpha \text { list } \rightarrow \beta
$$

6. Prove characteristic theorems (e.g. induction)

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) }
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-algebras
4. Construct initial algebra

$$
(\alpha \text { list, fld }: \text { unit }+\alpha \times \alpha \text { list } \rightarrow \alpha \text { list })
$$

5. Define iterator

$$
\text { iter }:(\text { unit }+\alpha \times \alpha \text { list } \rightarrow \beta) \rightarrow \alpha \text { list } \rightarrow \beta
$$

6. Prove characteristic theorems (e.g. induction)
7. Prove that list is a BNF

From user specifications to (co)datatypes

Given

$$
\text { datatype } \alpha \text { list }=\text { Nil } \mid \text { Cons } \alpha \text { (} \alpha \text { list) }
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-algebras
4. Construct initial algebra

$$
(\alpha \text { list, fld }: \text { unit }+\alpha \times \alpha \text { list } \rightarrow \alpha \text { list })
$$

5. Define iterator

$$
\text { iter }:(\text { unit }+\alpha \times \alpha \text { list } \rightarrow \beta) \rightarrow \alpha \text { list } \rightarrow \beta
$$

6. Prove characteristic theorems (e.g. induction)
7. Prove that list is a BNF (enables nested recursion)

From user specifications to (co)datatypes

Given

$$
\text { codatatype } \alpha \text { list }=\text { LNil | LCons } \alpha(\alpha \text { list })
$$

1. Abstract to $\beta=$ unit $+\alpha \times \beta$
2. Prove that $(\alpha, \beta) \mathrm{F}=$ unit $+\alpha \times \beta$ is a BNF
3. Define F-coalgebras
4. Construct final coalgebra

$$
\text { (} \alpha \text { llist, unf : } \alpha \text { llist } \rightarrow \text { unit }+\alpha \times \alpha \text { list) }
$$

5. Define coiterator

$$
\text { coiter : }(\beta \rightarrow \text { unit }+\alpha \times \alpha \text { llist }) \rightarrow \beta \rightarrow \alpha \text { llist }
$$

6. Prove characteristic theorems (e.g. coinduction)
7. Prove that llist is a BNF (enables nested corecursion)

Induction

$$
\beta=(\alpha, \beta) \mathrm{F}
$$

- Given φ : α IF \rightarrow bool

Induction

$$
\beta=(\alpha, \beta) \mathrm{F}
$$

- Given $\varphi: \alpha$ IF \rightarrow bool
- Abstract induction principle
$\forall z .\left(\forall x \in \mathrm{Fset}_{2} z . \varphi x\right) \Rightarrow \varphi($ fld $z)$ $\forall x . \varphi x$

Induction

$$
\beta=\text { unit }+\alpha \times \beta
$$

- Given φ : α IF \rightarrow bool
- Abstract induction principle
- Given φ : α list \rightarrow bool
- Case distinction on z
$\forall z .\left(\forall x \in \mathrm{Fset}_{2} z . \varphi x\right) \Rightarrow \varphi(\mathrm{fld} z) \quad \forall x x s .(\forall y s \in\{x s\} . \varphi y s) \Rightarrow \varphi(\operatorname{fld}(\operatorname{lnr}(x, x s)))$ $\forall x . \varphi x$
$\forall x s . \varphi x s$

Induction

$$
\beta=\text { unit }+\alpha \times \beta
$$

- Given φ : α IF \rightarrow bool
- Abstract induction principle
- Given φ : α list \rightarrow bool
- Concrete induction principle

$\frac{\forall z .\left(\forall x \in \text { Fset }_{2} z . \varphi x\right) \Rightarrow \varphi(\operatorname{fld} z)}{\forall x . \varphi x}$	$\varphi(\operatorname{fld}(\operatorname{lnl}()))$
$\varphi(\operatorname{fld}(\operatorname{lnr}(x, x s)))$	

Induction

$$
\beta=\text { unit }+\alpha \times \beta
$$

- Given φ : α IF \rightarrow bool
- Abstract induction principle
- Given φ : α list \rightarrow bool
- In constructor notation

$\frac{\forall z .\left(\forall x \in \mathrm{Fset}_{2} z . \varphi x\right) \Rightarrow \varphi(\mathrm{fld} z)}{\forall x . \varphi x} \frac{\forall x x \mathrm{~s} .}{\forall x s \Rightarrow \varphi(\text { Nil }}$| φ (Cons $x x s)$ |
| :---: |

Induction \& Coinduction

$$
\beta=(\alpha, \beta) \mathrm{F}
$$

- Given $\varphi: \alpha$ IF \rightarrow bool
- Given $\psi: \alpha \mathrm{JF} \rightarrow \alpha \mathrm{JF} \rightarrow$ bool
- Abstract induction principle
$\forall z .\left(\forall x \in \mathrm{Fset}_{2} z . \varphi x\right) \Rightarrow \varphi($ fld $z)$ $\forall x . \varphi x$

Induction \& Coinduction

$$
\beta=(\alpha, \beta) \mathrm{F}
$$

- Given $\varphi: \alpha$ IF \rightarrow bool
- Abstract induction principle
- Given $\psi: \alpha \mathrm{JF} \rightarrow \alpha \mathrm{JF} \rightarrow$ bool
- Abstract coinduction principle
$\frac{\forall z .\left(\forall x \in \mathrm{Fset}_{2} z \cdot \varphi x\right) \Rightarrow \varphi(\text { fld } z)}{\forall x \cdot \varphi x} \quad \frac{\forall x y \cdot \psi x y \Rightarrow \operatorname{FpredEq} \psi(\text { unf } x)(\text { unf } y)}{\forall x y \cdot \psi x y \Rightarrow x=y}$

Example

codatatype α tree $=$ Node (lab: α) (sub: α tree fset)

Example

codatatype α tree $=$ Node (lab: α) (sub: α tree fset)
corec tmap : $(\alpha \rightarrow \beta) \rightarrow \alpha$ tree $\rightarrow \beta$ tree where
$\operatorname{lab}(\operatorname{tmap} f t)=f(\operatorname{lab} t)$
$\operatorname{sub}(\operatorname{tmap} f t)=i m a g e(\operatorname{tmap} f)(\operatorname{sub} t)$

Example

codatatype α tree $=$ Node (lab: α) (sub: α tree fset)
corec tmap : $(\alpha \rightarrow \beta) \rightarrow \alpha$ tree $\rightarrow \beta$ tree where
$\operatorname{lab}(\operatorname{tmap} f t)=f(\operatorname{lab} t)$
$\operatorname{sub}(\operatorname{tmap} f t)=$ image $(\operatorname{tmap} f)(\operatorname{sub} t)$
lemma $\operatorname{tmap}(f \circ g) t=\operatorname{tmap} f(\operatorname{tmap} g t)$

Example

codatatype α tree $=$ Node (lab: α) (sub: α tree fset)
corec tmap: $(\alpha \rightarrow \beta) \rightarrow \alpha$ tree $\rightarrow \beta$ tree where
$\operatorname{lab}(\operatorname{tmap} f t)=f(\operatorname{lab} t)$
$\operatorname{sub}(\operatorname{tmap} f t)=i m a g e(\operatorname{tmap} f)(\operatorname{sub} t)$
lemma $\operatorname{tmap}(f \circ g) t=\operatorname{tmap} f(\operatorname{tmap} g t)$ by (intro tree_coinduct[where $\left.\left.\psi=\lambda t_{1} t_{2} . \exists t . t_{1}=\operatorname{tmap}(f \circ g) t \wedge t_{2}=\operatorname{tmap} f(\operatorname{tmap} g t)\right]\right)$ force+

Outline

Datatypes in HOL—State of the Art

Bounded Natural Functors

(Co)datatypes
(Co)nclusion

Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

- Framework for defining types in HOL

Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms

Foundational, Compositional (Co)datatypes for Higher-Order Logic
 Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs

Foundational, Compositional (Co)datatypes for Higher-Order Logic
 Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs
- Adapt insights from category theory to HOL's restrictive type system

Foundational, Compositional (Co)datatypes for Higher-Order Logic
 Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs
- Adapt insights from category theory to HOL's restrictive type system
- Formalized \& implemented in Isabelle/HOL

Foundational, Compositional (Co)datatypes for Higher-Order Logic
 Category Theory Applied to Theorem Proving

- Framework for defining types in HOL
- Characteristic theorems are derived, not stated as axioms
- Mutual and nested combinations of (co)datatypes and custom BNFs
- Adapt insights from category theory to HOL's restrictive type system
- Formalized \& implemented in Isabelle/HOL

Foundational, Compositional (Co)datatypes for Higher-Order Logic
 Category Theory Applied to Theorem Proving

Dmitriy Traytel Andrei Popescu Jasmin Blanchette

[^1]

Outline

Backup slides

Type constructors act on sets

$\left(A_{1}, A_{2}\right) \mathrm{F}=\left\{z \mid \mathrm{Fset}_{1} z \subseteq A_{1} \wedge \mathrm{Fset}_{2} z \subseteq A_{2}\right\}$
$A_{1}: \alpha$ set $\quad A_{2}: \beta$ set

$\left(A_{1}, A_{2}\right) \mathrm{F}:(\alpha, \beta) \mathrm{F}$ set

Type constructors act on sets

$$
\left(A_{1}, A_{2}\right) \mathrm{F}=\left\{z \mid \mathrm{Fset}_{1} z \subseteq A_{1} \wedge \mathrm{Fset}_{2} z \subseteq A_{2}\right\}
$$

$\left(A_{1}, A_{2}\right) \mathrm{F}:(\alpha, \beta) \mathrm{F}$ set
$\left(\forall i \in\{1,2\} . \forall x \in\right.$ Fset $\left._{i} z . f_{i} x=g_{i} x\right) \Rightarrow$ Fmap $f_{1} f_{2} z=$ Fmap $g_{1} g_{2} z$

Type constructors are bounded

Fbd: infinite cardinal

Type constructors are bounded

Fbd: infinite cardinal

\mid Fset $_{i} z \mid \leq F b d$

Type constructors are bounded

Fbd: infinite cardinal

\mid Fset $_{i} z \mid \leq F b d$

Type constructors are bounded

Fbd: infinite cardinal

\mid Fset $_{i} z \mid \leq$ Fbd

$$
\left|\left(A_{1}, A_{2}\right) \mathrm{F}\right| \leq\left(\left|A_{1}\right|+\left|A_{2}\right|+2\right)^{\mathrm{Fbd}}
$$

Algebras, Coalgebras \& Morphisms

$\beta=(\alpha, \beta) \mathrm{F}$

$$
\begin{gathered}
(\alpha, A) \mathrm{F} \\
\downarrow \\
\downarrow \\
A
\end{gathered}
$$

Algebras, Coalgebras \& Morphisms

$\beta=(\alpha, \beta) \mathrm{F}$

$$
\begin{gathered}
(\alpha, A) \mathrm{F} \\
\downarrow \\
\downarrow \\
A
\end{gathered}
$$

$(\alpha, A) \mathrm{F} \xrightarrow{\text { Fmap id } f}(\alpha, B) \mathrm{F}$

Algebras, Coalgebras \& Morphisms

$\beta=(\alpha, \beta) \mathrm{F}$

$$
\begin{gathered}
(\alpha, A) \mathrm{F} \\
\downarrow \\
\downarrow \\
A
\end{gathered}
$$

$(\alpha, A) \mathrm{F} \xrightarrow{\text { Fmap id } f}(\alpha, B) \mathrm{F}$

Algebras, Coalgebras \& Morphisms

$\beta=(\alpha, \beta) \mathrm{F}$

$$
\begin{aligned}
& (\alpha, A) \mathrm{F} \\
& \begin{array}{l}
\downarrow \\
\downarrow \\
A
\end{array}
\end{aligned}
$$

$(\alpha, A) \mathrm{F} \xrightarrow{\text { Fmap id } f}(\alpha, B) \mathrm{F}$

Initial Algebras \& Final Coalgebras

$\beta=(\alpha, \beta) \mathrm{F}$
weakly initial: initial:
weakly final: final:
exists morphism to any other algebra exists unique morphism to any other algebra exists morphism from any other coalgebra exists unique morphism from any other coalgebra

Initial Algebras \& Final Coalgebras

$\beta=(\alpha, \beta) \mathrm{F}$

weakly initial: initial:
weakly final: final:
exists morphism to any other algebra exists unique morphism to any other algebra exists morphism from any other coalgebra exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial

Initial Algebras \& Final Coalgebras

$\beta=(\alpha, \beta)$ F

weakly initial: initial:
weakly final: final:
exists morphism to any other algebra exists unique morphism to any other algebra exists morphism from any other coalgebra exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
\Rightarrow Have a bound for its cardinality
$\Rightarrow(\alpha \mathrm{IF}$, fld : $(\alpha, \alpha \mathrm{IF}) \mathrm{F} \rightarrow \alpha \mathrm{IF})$

Initial Algebras \& Final Coalgebras

$\beta=(\alpha, \beta) \mathrm{F}$

weakly initial: initial:
weakly final: final:
exists morphism to any other algebra exists unique morphism to any other algebra exists morphism from any other coalgebra exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
\Rightarrow Have a bound for its cardinality
$\Rightarrow(\alpha$ IF, fld $:(\alpha, \alpha \mathrm{IF}) \mathrm{F} \rightarrow \alpha \mathrm{IF})$
- Sum of all coalgebras is weakly final
- Suffices to consider coalgebras over types of certain cardinality
- Quotient of weakly final coalgebra to the greatest bisimulation is final

Initial Algebras \& Final Coalgebras

$$
\beta=(\alpha, \beta) \mathrm{F}
$$

weakly initial: initial: weakly final: final:
exists morphism to any other algebra exists unique morphism to any other algebra exists morphism from any other coalgebra exists unique morphism from any other coalgebra

- Product of all algebras is weakly initial
- Suffices to consider algebras over types of certain cardinality
- Minimal subalgebra of weakly initial algebra is initial
- Construct minimal subalgebra from below by transfinite recursion
\Rightarrow Have a bound for its cardinality
$\Rightarrow(\alpha$ IF, fld $:(\alpha, \alpha \mathrm{IF}) \mathrm{F} \rightarrow \alpha \mathrm{IF})$
- Sum of all coalgebras is weakly final
- Suffices to consider coalgebras over types of certain cardinality
- Quotient of weakly final coalgebra to the greatest bisimulation is final
- Use concrete weakly final coalgebra (elements are tree-like structures)
\Rightarrow Have a bound for its cardinality
$\Rightarrow(\alpha \mathrm{JF}$, unf $: \alpha \mathrm{JF} \rightarrow(\alpha, \alpha \mathrm{JF}) \mathrm{F})$

Iteration \& Coiteration

$\beta=(\alpha, \beta) \mathrm{F}$

- Given $s:(\alpha, \beta) \mathrm{F} \rightarrow \beta$

Iteration \& Coiteration

$\beta=(\alpha, \beta) \mathrm{F}$

- Given $\mathrm{s}:(\alpha, \beta) \mathrm{F} \rightarrow \beta$
- Obtain unique morphism iter s from ($\alpha \mathrm{IF}, \mathrm{fld}$) to $\left(\mathrm{U}_{\beta}, \mathrm{s}\right)$

Iteration \& Coiteration

$\beta=(\alpha, \beta) \mathrm{F}$

- Given $\mathrm{s}:(\alpha, \beta) \mathrm{F} \rightarrow \beta$
- Given $s: \beta \rightarrow(\alpha, \beta) \mathrm{F}$
- Obtain unique morphism iter s from ($\alpha \mathrm{IF}, \mathrm{fld}$) to $\left(\mathrm{U}_{\beta}, \mathrm{s}\right)$

Iteration \& Coiteration

$\beta=(\alpha, \beta) \mathrm{F}$

- Given $\mathrm{s}:(\alpha, \beta) \mathrm{F} \rightarrow \beta$
- Obtain unique morphism iter s from ($\alpha \mathrm{IF}, \mathrm{fld}$) to $\left(\mathrm{U}_{\beta}, s\right)$

- Given $s: \beta \rightarrow(\alpha, \beta) \mathrm{F}$
- Obtain unique morphism coiter s from $\left(\mathrm{U}_{\beta}, \mathrm{s}\right)$ to ($\alpha \mathrm{JF}$, unf)

Preservation of BNF Properties

$$
\beta=(\alpha, \beta) F
$$

- IFmap $f=\operatorname{iter}$ (fld \circ Fmap f id)
- IFset = iter collect, where
collect $z=$ Fset $_{1} z \cup \bigcup$ Fset $_{2} z$

Preservation of BNF Properties

$$
\beta=(\alpha, \beta) \mathrm{F}
$$

- IFmap $f=\operatorname{iter}$ (fld \circ Fmap f id)
- IFset = iter collect, where
collect $z=$ Fset $_{1} z \cup \bigcup$ Fset $_{2} z$

Theorem
(IF, IFmap, IFset, 2^{Fbd}) is a BNF

Preservation of BNF Properties

$\beta=(\alpha, \beta) \mathrm{F}$

- IFmap $f=\operatorname{iter}$ (fld \circ Fmap f id)
- IFset = iter collect, where
collect $z=$ Fset $_{1} z \cup \bigcup$ Fset $_{2} z$
- JFmap $f=\operatorname{coiter~(Fmap~} f$ id \circ unf)
- JFset $x=\bigcup_{i \in \mathbb{N}} \operatorname{collect}_{i} x$, where
collect $_{0} x=\emptyset$
$\operatorname{collect}_{i+1} x=$ Fset $_{1}($ unf $x) \cup \bigcup$ collect $_{i} y$
$y \in$ Fset $_{2}$ (unf x)

Theorem
(IF, IFmap, IFset, 2^{Fbd}) is a BNF

Preservation of BNF Properties

$\beta=(\alpha, \beta) \mathrm{F}$

- IFmap $f=\operatorname{iter}$ (fld \circ Fmap f id)
- IFset = iter collect, where
collect $z=$ Fset $_{1} z \cup \bigcup$ Fset $_{2} z$
- JFmap $f=$ coiter (Fmap f id \circ unf)
- JFset $x=\bigcup_{i \in \mathbb{N}} \operatorname{collect}_{i} x$, where
collect $_{0} x=\emptyset$
$\operatorname{collect}_{i+1} x=$ Fset $_{1}($ unf $x) \cup \bigcup \operatorname{collect}_{i} y$ $y \in$ Fset $_{2}$ (unf x)

Theorem
(JF, JFmap, JFset, $\mathrm{Fbd}^{\mathrm{Fbd}}$) is a BNF

Theorem
(IF, IFmap, IFset, 2^{Fbd}) is a BNF

[^0]: Technische Universität München

[^1]: Technische Universität München

