Admissible Types-to-PERs Relativization

Higher-Order Logic

Andrei Popescu Dmitriy Traytel

University of

Sheffield

%
/,BE]\

PSS
O

&P UNIVERSITY OF
COPENHAGEN

Proof Assistants, a.k.a. Interactive Theorem Provers

v /Y T <4
’—) :ngz HoLolght ﬂ
ACL2 N

ACL2 Agda Coq HOL4 HOL Light HOL-w

Isabelle/HOL Lean Mizar Nuprl Matita

Proof Assistants, a.k.a. Interactive Theorem Provers

7 /Y - i
’—) :LI‘%!: Ho@lght !
ACL2 £~ :

ACL2 Agda Coq HOL4 HOL Light HOL-w

Isabelle/HOL Lean Mizar Nuprl Matita PVS

Logical foundations: a form of Higher-Order Logic (HOL) or Dependent Type Theory

Proof Assistants, a.k.a. Interactive Theorem Provers

SN B o, !
ACL2 N &

ACL2 Agda Coq HOL4 HOL Light HOL-w

Isabelle/HOL Lean Mizar Nuprl Matita PVS

Logical foundations: a form of Higher-Order Logic (HOL) or Dependent Type Theory

Verification Success Stories

seL4, CompCert, CakeML,

Making the news: .
Kepler’s, Four Color, 0dd Order, Godel’'s theorems

Verification Success Stories

seL4, CompCert, CakeML,
Kepler’s, Four Color, 0dd Order, Godel’'s theorems

Making the news:

Verification Success Stories

seL4, CompCert, CakeML,
Kepler’s, Four Color, 0dd Order, Godel’'s theorems

Making the news:

Libraries of mathematical results
Automated proof methods
Abstraction/modularization mechanisms
Smart prover IDE

Infrastructure:

Verification Success Stories

seL4, CompCert, CakeML,
Kepler’s, Four Color, 0dd Order, Godel’'s theorems

Making the news:

Libraries of mathematical results
Automated proof methods
Abstraction/modularization mechanisms
Smart prover IDE

Infrastructure:

Two Little Pigs

Two Little Pigs

group : (¢ = a = a) = « = bool

Two Little Pigs

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)

Two Little Pigs

group™ : o set = (¢ = @ = a) = a = bool

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)

Two Little Pigs

group™ : o set = (¢ = @ = a) = a = bool

group™ A (%) e =
(Vx,y,zEA. (x xy) *x Zz=x % (y * 2)) A
(VXeEA. x x e = X A e* X = X) A
(Vxe A.Jye A xxy=e Ay*xx=e)

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)

proved Abel-Galois-Klein-Lie-Ruffini
in 10 kLoI and 2 person months

Two Little Pigs

group™ : o set = (¢ = @ = a) = a = bool

group™ A (*) e =
(Vx,y,zEA. (x xy) *x Zz=x % (y * 2)) A
(VXeEA. x x e = X A e* X = X) A
(Vxe A.Jye A xxy=e Ay*xx=e)

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)
proved Abel-Galois-Klein-Lie-Ruffini
in 10 kLoI and 2 person months

to use AGKLR for symmetric groups:
1. aperm={f: a= a. bijf}

2. lift results about bijections to a perm
(10 kLoI and 2 person months)

Two Little Pigs

group™ : o set = (¢ = @ = a) = a = bool

group™ A (*) e =
(Vx,y,zEA. (x xy) *x Zz=x % (y * 2)) A
(VXeEA. x x e = X A e* X = X) A
(Vxe A.Jye A xxy=e Ay*x=e)

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)
proved Abel-Galois-Klein-Lie-Ruffini
in 10 kLoI and 2 person months

to use AGKLR for symmetric groups:
1. aperm={f: a= a. bijf}

2. lift results about bijections to a perm
(10 kLoI and 2 person months)

Two Little Pigs

group™:aset = (¢ = a = a) = a=bo

group™ A (*) e =
(Vx,y,zEA. (x xy) *x Zz=x % (y * 2)) A
(VXeEA. x x e = X A e* X = X) A
(Vxe A.Jye A xxy=e Ay*x=e)

proved Abel-Galois-Klein-Lie-Ruffini
assumingec€ AandVx,y € A xxy €A
in 30 kLol and 6 person months

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)
proved Abel-Galois-Klein-Lie-Ruffini
in 10 kLoI and 2 person months

to use AGKLR for symmetric groups:
1. aperm={f: a= a. bijf}

2. lift results about bijections to a perm
(10 kLoI and 2 person months)

Two Little Pigs

group™:aset = (¢ = a = a) = a=bo
group™ A (*) e =

(Vx,y,ze A. (x xy) *z=x % (y * 2)) A
(VXeEA. x x e = X A e* X = X) A
(Vxe A.Jye A xxy=e Ay*x=e)

proved Abel-Galois-Klein-Lie-Ruffini
assumingec€ AandVx,y € A xxy €A
in 30 kLol and 6 person months

to use AGKLR for symmetric groups:
1. A={f:a=>a bijf}
2. nothing left to do

group : (¢ = a = a) = « = bool

group (*)e=

(VXar YarZa- (XX Y) % Z=x % (y *¥2)) A
(VXo. X x & = X A e *X = X)A
(VXo. Ao X xy=€ Ay *xx=¢)

proved Abel-Galois-Klein-Lie-Ruffini
in 10 kLoI and 2 person months

to use AGKLR for symmetric groups:

1. aperm={f: a= a. bijf}

2. lift results about bijections to a perm
(10 kLoI and 2 person months)

Two Little Pigs

Type-based vs. Set-based

group™ : o set = (¢ = @ = a) = a = bool

group™ A (*) e =
(Vx,y,zEA. (x xy) *x Zz=x % (y * 2)) A
(VXeEA. x x e = X A e* X = X) A
(Vxe A.Jye A xxy=e Ay*x=e)

proved Abel-Galois-Klein-Lie-Ruffini
assumingec€ AandVx,y € A xxy €A
in 30 kLol and 6 person months

to use AGKLR for symmetric groups:
1. A={f:a=>a bijf}
2. nothing left to do

Our Contribution

A logically safe mechanism for reducing the bureaucracy of
formal developments in HOL-based proof assistants

HOL in One Line

Rank-1 Polymorphic Simply-Typed A-Calculus with Hilbert Choice and Infinity

HOL in One Slide
Types

t=al(r, ..., T)k bool ind =

bool ind =

HOL in One Slide

Terms

t=Xr|Cr | tE| AXr.t =isesboor ChOICE(embo0)=a

HOL in One Slide

e Terms
t=al(r,..., T)k bool ind = t=Xc|cr|tt| AXret =isumbool ChOICE(embool)a
Definitions
Constant ¢, =t ep
Type tr=bool X — T EAbs:::
Truepoor = (AXbool- X)=(Ax. X)

All(o=booly=bool = AP. (P=(AX,. True))
Falsepool = All (AXpoor- X)

Types
t=al(r, ..., T)k bool ind =

Definitions
Constant ¢c; =t

—Rep
TYPe to=bool X — T =pp 0t

Tru€poor = (AXpool- X)=(AX. X)
Alla=booly=bool = AP. (p=(AX,- True))
Falseboo/ = All (dxboo/- X)

HOL in One Slide

Terms
t=x:|c.|tt]|Ax.. t

Axioms

=a=a=bool ChOICE(a=bool)=a

refl x,=x

sub x,=y—px—py
inf 3zs. (Vx. = (s x=2)) A (Vx.y. s x=5 y—sx=Y)
Ch pu=boor X—p (choice p)

HOL in One Slide

Types Terms
t=al(r, ..., T)k bool ind = t=x:|c.|tt]|Ax.. t =amsamsbool ChOICE(a=hool)=>a
Definitions Axioms
Constant c; =t Rep refl x,=x
Type to=bool X —> T EAbs::: t sub x,=y—px—py
Tru€poor = (AXpool- X)=(AX. X) inf 3zs. (Vx. = (s x=2)) A(Vxy. s X=S y—>x=Y)
A”(or:boo/):bno/ = Ap. (P:(JXW True)) ch Pa=bool X—P (choice p)
Falseboo/ = All (/leog/. X)
Deduction
peDUl D;Tko a¢l D;Tky Xo &1
D;Tko D; T F glo/a] D; T+ o[t/xs] D;T F (ax.t) s = t[s/xs]
DiTFp—y D;Tkop D;TU{¢} Fy D;T+fxs=9x, Xy &
DTy

DiTFo— ¢ D;THf=g

HOL in Practice

And that’s it! No induction, no datatypes, no recursion in the kernel!

These high-level mechanisms are defined from the (non-recursive) HOL primitives.

|

Fewer opportunities to have soundness bugs in the kernel.

Back to

Type-based formulation ¢ and its relativized set-based counterpart ¢

) \ Ve, V*amamq. group (x) e — (VXo, Yo, Za. X ¥ Yy =X ¥ Z—> Yy =2)

it Ve, *o=a=ma- VAgset. Closed A (x) e —

¢ group™ A (%) e — (VX0, Ve ZoEA.X X y =X % Z— y = 2)

Back to

Type-based formulation ¢ and its relativized set-based counterpart ¢

) \ Ve, V*amamq. group (x) e — (VXo, Yo, Za. X ¥ Yy =X ¥ Z—> Yy =2)

it Ve, *o=a=ma- VAgset. Closed A (x) e —

¢ group™ A (%) e — (VX0, Ve ZoEA.X X y =X % Z— y = 2)

Our goal: Formally (and automatically) infer ¢t from .

Back to

Type-based formulation ¢ and its relativized set-based counterpart ¢t:

) \ Ve, V*amamq. group (x) e — (VXo, Yo, Za. X ¥ Yy =X ¥ Z—> Yy =2)

it Ve, *o=a=ma- VAgset. Closed A (x) e —

¢ group™ A (%) e — (VX0, Ve ZoEA.X X y =X % Z— y = 2)

Our goal: Formally (and automatically) infer ¢t from .
Is this doable without extending the HOL axiomatic base?

Type The method of "postulating" what we want
has many advantages; they are the same
as the advantages of theft over honest toil.

it Ve, *o=a=ma- VAgset. Closed A (x) e —

¢ group™ A (%) e — (VX4, Yar Zo€EA. X * y = X

Our goal: Formally (and automatically) infer ¢t from .
Is this doable without extending the HOL axiomatic base?

Back to

Type-based formulation ¢ and its relativized set-based counterpart ¢t:

) \ Ve, V*amamq. group (x) e — (VXo, Yo, Za. X ¥ Yy =X ¥ Z—> Yy =2)

it Ve, *o=a=ma- VAgset. Closed A (x) e —

¢ group™ A (%) e — (VX0, Ve ZoEA.X X y =X % Z— y = 2)

Our goal: Formally (and automatically) infer ¢t from .
Is this doable without extending the HOL axiomatic base?

But first: It was not clear how ¢ looks like in general.
What structure and properties do we need for relativization?

Towards a General Definition of Types-To-Sets
Example: the second-order property of left-inverse function uniqueness

Ve, V*ozama- group (*) e—
© | (VinVe=a,inV g=q. (VXq. inv X * x =€) A (VX inV’ x * x =€) — inv =inv’)

Towards a General Definition of Types-To-Sets

Example: the second-order property of left-inverse function uniqueness

Ve, V*ozama- group (*) e—
(VinVa=a, iV 4=q. (VXq. inv X * x =€) A (VXo. inV’ x * x =€) — inv =inv’)

rit

Ve,. VAyset. closed A (%) e A group™A (x)e—
(Vinve=sq, inV/ 4=q € A = A.
(Vxe €A.invx x x =€) A (Vxy €EA.inV' x * x =€) —> inv="inv")

Towards a General Definition of Types-To-Sets

Example: the second-order property of left-inverse function uniqueness

Vey. V*omama- group (*) e—
© | (VinVe=a,inV g=q. (VXq. inv X * x =€) A (VX inV’ x * x =€) — inv =inv’)

vt | Veq. VAgset. closed A (%) e A group™A () e—
(Vinve=sq, inV/ 4=q € A = A.
(Vxe €A.invx x x =€) A (Vxy €EA.inV' x * x =€) —> inv="inv")

Need set-based counterparts of the type constructors, incl. function space.

Towards a General Definition of Types-To-Sets

Example: the second-order property of left-inverse function uniqueness

Vey. V*omama- group (*) e—
© | (VinVe=a,inV g=q. (VXq. inv X * x =€) A (VX inV’ x * x =€) — inv =inv’)

vt | Veq. VAgset. closed A (%) e A group™A () e—
(Vinve=sq, inV/ 4=q € A = A.
(Vxe €A.invx x x =€) A (Vxy €EA.inV' x * x =€) —> inv="inv")

Need set-based counterparts of the type constructors, incl. function space.

Need to relax the equality relation on higher-order types

Towards a General Definition of Types-To-Sets

Example: the second-order property of left-inverse function uniqueness

Vey. V*omama- group (*) e—
© | (VinVe=a,inV g=q. (VXq. inv X * x =€) A (VX inV’ x * x =€) — inv =inv’)

vt | Veq. VAgset. closed A (%) e A group™A () e—
(Vinve=sq, inV/ 4=q € A = A.
(Vxe €A.invx x x =€) A (Vxy €EA.inV' x * x =€) —> inv="inv")

Need set-based counterparts of the type constructors, incl. function space.

Need to relax the equality relation on higher-order types
Relaxed equalities + restricted domains = PERs (partial equivalence relations)

Towards a General Definition of Types-To-Sets

Example: the second-order property of left-inverse function uniqueness

Vey. V*omama- group (*) e—
© | (VinVe=a,inV g=q. (VXq. inv X * x =€) A (VX inV’ x * x =€) — inv =inv’)

it |Veq. VRyrel. pErR A (%) € Dom(R=>R=>R) A e € Dom(R) A group™ R (x)e—
(Vinve=sq, inV’ 4=¢ € Dom(R = R).
(Vx, € Dom(R).inv x * x =€) A (Vx, € Dom(R).inv’ x * x = e) — (R = R) inv inv’

Need set-based counterparts of the type constructors, incl. function space.

Need to relax the equality relation on higher-order types
Relaxed equalities + restricted domains = PERs (partial equivalence relations)

We generalize from Types-To-Sets to Types-To-PERs

Towards a General Definition of Types-To-Sets

Another example: iterated multiplication distributes over list append

Ve, V% amama. group (%) e —
¢ (VxSalist YSaist- fold () € (append xs ys) = fold (*) e xs fold () e ys)

Towards a General Definition of Types-To-Sets

Another example: iterated multiplication distributes over list append

Vey. V*omama- group (*) e—
) (YXSqlist, ¥Sqtist- fold (*) e (append xs ys) = fold (*) exs * fold (*) e ys)

Ve,. VRyrel. per R A (%) € Dom(R=>R=>R) A e € Dom(R) A group™R(*)e —
rit

14 (szaflisbysalist € Dom(rEI—“St R)

fold” R (*) e (append™ R xs ys) = fold™ R (*) exs * fold™ R (*)eys)

Towards a General Definition of Types-To-Sets

Another example: iterated multiplication distributes over list append

Vey. V*omama- group (*) e—
) (YXSqlists ¥Sqtist- fold (*) e (append xs ys) = fold (*) exs * fold (*) eys)

it |V€a- YRo rel. per R A (%) € Dom(R=>R=>R) A e € Dom(R) A group™R (*)e —
14 (sz(zlisbysalist € Dom(rel—”St R)
fold” R (*) e (append™ R xs ys) = fold™ R (*) exs * fold™ R (*)eys)

Want the relational interpretation of the container types to be the expected one
(in spite of container types not being primitive in HOL)

Towards a General Definition of Types-To-Sets

Another example: iterated multiplication distributes over list append

Vey. V*omama- group (*) e—
) (YXSqlists ¥Sqtist- fold (*) e (append xs ys) = fold (*) exs * fold (*) eys)

it |V€a- YRo rel. per R A (%) € Dom(R=>R=>R) A e € Dom(R) A group™R (*)e —
7 1(VxSqlist: YSa it € Dom(rel_list R).
fold” R (*) e (append™ R xs ys) = fold” R (*) exs * fold™ R (*)eys)

Want the relational interpretation of the container types to be the expected one
(in spite of container types not being primitive in HOL)

Want that relationally parameteric functions are not affected by relativization.

Towards a General Definition of Types-To-Sets

Another example: iterated multiplication distributes over list append

Veq. V*ozama- group (*) e—
) (VXSqlists ¥Sqtist- fold (*) e (append xs ys) = fold (*) exs * fold (*) eys)

it |V€a. YRy rel. per R A (%) € Dom(R=>R=>R) A e € Dom(R) A group™ R (x)e —
(VXSalists YSqtist € Dom(rel_list R).
fold (*) e (append xs ys) = fold (*) exs * fold (*) e ys)

Want the relational interpretation of the container types to be the expected one
(in spite of container types not being primitive in HOL)

Want that relationally parameteric functions are not affected by relativization.

Towards a General Definition of Types-To-Sets

Another example: iterated multiplication distributes over list append

Veq. V*ozama- group (*) e—
) (VXSqlists ¥Sqtist- fold (*) e (append xs ys) = fold (*) exs * fold (*) eys)

it |V€a. YRy rel. per R A (%) € Dom(R=>R=>R) A e € Dom(R) A group™ R (x)e —
(VXSalists YSqtist € Dom(rel_list R).
fold (*) e (append xs ys) = fold (*) exs * fold (*) e ys)

Want the relational interpretation of the container types to be the expected one
(in spite of container types not being primitive in HOL)

Want that relationally parameteric functions are not affected by relativization.
Why? PER-relativization turns a term into its "closest” PER-parametric counterpart.

Summary of the Desiderata for Relativization
Term relativization RLT and relational type interpretation RIN, such that:
1. RIN should be compatible with the container-type relators
2. RLT should generalize FOL-relativization
3. RLT(t) should recover t when instantiating relations to equalities
4. RLT(t) should be PER-parametric
5. Parametric terms t should not be affected by RLT

6. RLT should preserve provability (i.e., be admissible)

Defining RIN : Type — Term and RLT : Term — Term
RIN(a) = Ry rel RIN(bool) = =pool rel RIN(o- = 7) = RIN(c") = RIN(7)

RIN(7) = choice (AP rej. Af;=4. bijupto f P RIN(o)rur(t))
if =t is a type definition where t : ¢ = bool and r has the form (o1, ...,0m)«

RLT(X,) = X, RLT(t1 t2) = RLT(t1) RLT(t2) RLT(AX. t) = AX,. RLT(t)
RLT(=¢=0=bool) = RIN(0)
RLT(choice(s=bool)=o) = APo=bool- if (Ixs. RIN(c) X X A p X)

then choice (Axs. RIN(o) x x A p X)
else choice (Ax. RIN(0) x x A RIN(0) # (=5 rel))

Defining RIN : Type — Term and RLT : Term — Term
RIN(a) = Ry rel RIN(bool) = =pool rel RIN(o- = 7) = RIN(c") = RIN(7)

RIN(7) = choice (AP rej. Af;=4. bijupto f P RIN(o)rur(t))
if =t is a type definition where t : ¢ = bool and r has the form (o1, ...,0m)«

RLT (Xo) = X, RLT(t1 t2) = RLT(t1) RLT(t2) RLT (AX,. t) = AXy. RLT(t)

RLT(=o=0=bool) = RIN(0)
Equality mapped to the PER-relational interpretation
RLT(choice(s=bool)=o) = APo=bool- if (Ixs. RIN(c) X X A p X)
then choice (Axs. RIN(o) x x A p X)
else choice (Ax,. RIN(0) x X A RIN(0) £ (=crel))

Defining RIN : Type — Term and RLT : Term — Term
RIN(a) = Ry rel RIN(bool) = =pool rel RIN(o- = 7) = RIN(c") = RIN(7)

RIN(7) = choice (AP rej. Af;=4. bijupto f P RIN(o)rur(t))
if =t is a type definition where t : ¢ = bool and r has the form (o1, ...,0m)«

RLT (Xo) = X, RLT(t1 t2) = RLT(t1) RLT(t2) RLT (AX,. t) = AXy. RLT(t)
RLT(=g=o=bool) = RIN(c)

RLT(choice(s=bool)=o) = APo=bool- if (Ixs. RIN(c) X X A p X)
then choice (Axs. RIN(o) x x A p X)
else choice (Ax,. RIN(0) x X A RIN(0) £ (=crel))
The (notoriously non-parametric) Hilbert Choice needs special treatment

Defining RIN : Type — Term and RLT : Term — Term
RIN(a) = Ry rel RIN(bool) = =pool rel RIN(o- = 7) = RIN(c") = RIN(7)

RIN(7) = choice (AP rej. Af;=4. bijupto f P RIN(o)rur(t))
if r =t is a type definition where t : o = bool and 7 has the form (o1, ...,0m)k
- Only behaves well when defining predicates t are “wide” enough: |t| = |RLT(t)/RIN(o)].
- Choice of P needs flexibility to correctly capture container types.

RLT(X,) = X, RLT(t1 t2) = RLT(t1) RLT(t2) RLT(AX. t) = AX,. RLT(t)
RLT(=¢=0=bool) = RIN(0)
RLT(choice(s=bool)=o) = APo=bool- if (Ixs. RIN(c) X X A p X)

then choice (Axs. RIN(o) x x A p X)
else choice (Ax. RIN(0) x x A RIN(0) # (=5 rel))

Main Result

Desiderata:

. RIN should be compatible with the container-type relators

. RLT should generalize FOL-relativization

. RLT(t) should recover t when instantiating relations to equalities
. RLT(t) should be PER-parametric

. Parametric terms t should not be affected by RLT

. RLT should preserve provability (i.e., be admissible)

AN WN =

Main Result

Desiderata:

. RIN should be compatible with the container-type relators

. RLT should generalize FOL-relativization

. RLT(t) should recover t when instantiating relations to equalities
. RLT(t) should be PER-parametric

. Parametric terms t should not be affected by RLT

. RLT should preserve provability (i.e., be admissible)

AN WN =

A type definition r = t where t : o = bool is said to be wide if [t| > |RLT(t)/RIN(c")|.

Main Result

Desiderata:

. RIN should be compatible with the container-type relators

. RLT should generalize FOL-relativization

. RLT(t) should recover t when instantiating relations to equalities
. RLT(t) should be PER-parametric

. Parametric terms t should not be affected by RLT

. RLT should preserve provability (i.e., be admissible)

AN WN =

A type definition r = t where t : o = bool is said to be wide if [t| > |RLT(t)/RIN(c")|.

THEOREM: If the type-definitions in the background definitional theory are wide,
then RLT and RIN satisfy the above desiderata.

Main Result

Desiderata:

. RIN should be compatible with the container-type relators

. RLT should generalize FOL-relativization

. RLT(t) should recover t when instantiating relations to equalities
. RLT(t) should be PER-parametric

. Parametric terms t should not be affected by RLT

. RLT should preserve provability (i.e., be admissible)

AN WN =

A type definition r = t where t : o = bool is said to be wide if [t| > |RLT(t)/RIN(c")|.

THEOREM: If the type-definitions in the background definitional theory are wide,
then RLT and RIN satisfy the above desiderata.

COROLLARY: (Types-To-Sets) is admissible assuming wide type definitions.

Main Result

Desiderata:

. RIN should be compatible with the container-type relators

. RLT should generalize FOL-relativization

. RLT(t) should recover t when instantiating relations to equalities
. RLT(t) should be PER-parametric

. Parametric terms t should not be affected by RLT

. RLT should preserve provability (i.e., be admissible)

AN WN =

A type definition r = t where t : o = bool is said to be wide if [t| > |RLT(t)/RIN(c")|.

THEOREM: If the type-definitions in the background definitional theory are wide,
then RLT and RIN satisfy the above desiderata.

COROLLARY: (Types-To-Sets) is admissible assuming wide type definitions.

Main Result

Desiderata:

. RIN should be compatible with the container-type relators

. RLT should generalize FOL-relativization

. RLT(t) should recover t when instantiating relations to equalities
. RLT(t) should be PER-parametric

. Parametric terms t should not be affected by RLT

. RLT should preserve provability (i.e., be admissible)

AN WN =

A type definition r = t where t : o = bool is said to be wide if [t| > |RLT(t)/RIN(c")|.

THEOREM: If the type-definitions in the background definitional theory are wide,
then RLT and RIN satisfy the above desiderata.

COROLLARY: (Types-To-Sets) is admissible assuming wide type definitions.

The Result’s Scope

Empirical Conjecture: Type definitions of interest in HOL developments are wide.

The Result’s Scope

Empirical Conjecture: Type definitions of interest in HOL developments are wide.

Evidence:

m type definitions involved in defining (co)datatypes (which are already 99% of the
cases of interest) are wide

The Result’s Scope

Empirical Conjecture: Type definitions of interest in HOL developments are wide.
Evidence:

m type definitions involved in defining (co)datatypes (which are already 99% of the
cases of interest) are wide

m and so are the non-(co)datatypes from the Isabelle/HOL distribution

Relativization Infrastructure

definition group where
"group tms e «—
(Vx y z. tms (tms x y) z = tms x (tms y z)) A
(VX. tms x e = X A tms e X = X) A
(Vx. Jy. tms x y = e A tms y x = e)"

lemma lemma3 auxl:"group tms e — foldl tms x ys = tms x (foldl tms e ys)" [5 lines]
lemma lemma3 aux2: "group tms e — foldl tms x (xs @ ys) = tms (foldl tms x xs) (foldl tms e ys)" [1 lines]
lemma lemma3: "group tms e — (Vxs ys. foldl tms e (xs @ ys) = tms (foldl tms e xs) (foldl tms e ys))" [1 lines]

local_setup <RLCST @{term group}>

lemma group rlt alt:
"neper R = group rlt R tms e «—
(W xy z.RXXARYYARZZzZ— R (tms (tms x y) z) (tms x (tms y z))) A
(Vx. Rx x — R (tms x e) x A R (tms e x) x) A
(W . Rx x — (3y. Ry y AR (tms x y) e A R (tms y x) e))"
unfolding group rlt def by auto

local_setup <RLTHM @{binding lemma3 rlt} @{thm lemma3}>

lemma lemma3 rlt readable:
assumes "neper R" "R e e" "(R ===> R ===> R) tms tms"
shows "group rlt R tms e —
(Vxs ys. rel list R xs xs — rel list R ys ys — R (foldl tms e (xs @ ys)) (tms (foldl tms e xs) (foldl tms e ys)))"
supply assms(1)[simp] assms(1) [THEN list.rrel neper, simp] using lemma3 rlt[OF assms, simplified]
by (auto simp only: rrel alt rlt param neper assms(1l))

Wideness Proofs

typedef (overloaded) 'a poly = "{f :: nat =
morphisms coeff Abs poly
by (auto intro!: ALL MOST)

a::zero. Voo n. T n = 0}"

200 lines later

wide_typedef poly rel: rel poly rep: "AR1 R2. gg Rl R2 o coeff"
subgoal using rel poly neper .
subgoal using rel poly eq .
subgoal using bij upto transportFromRaw[OF poly.type definition poly rel poly def,
unfolded isPoly def[abs def, symmetric], OF bij upto ggl
unfolding isPoly rlt def .
subgoal using gg eq by simp .

Wideness Proofs

a fset*
a cset*
a multiset”

(@, B) fmap®

a biject
a dlist*

(a, B) alist”

(a, B) node

finite sets over «
countable sets over o
multisets (bags) over a
partial functions
of finite support
between « and 8
bijections on o
non-repetitive lists over
association lists with
values in o and keys in 8
the pre-datatype universe by
Berghofer and Wenzel [1999]

a filter*
a poly
a fls
(a, B) comm*

a comparator

a bit0, « bitl

filters on the
powerset of a
polynomials with
a-coefficients
formal Laurent series
with a-coefficients
commutative
a-operators
with values in j
comparison
functions on &
finite types used for
binary representation

Related Work

Relational interpretation
m Reynolds 1983. Types, abstraction, and parametric polymorphism
m Wadler 1989. Theorems for free!
m Bernardy et al. 2012. Extension to DTT

Previous work on Types-To-Sets in Isabelle
m Kuncar & Popescu 2015. Local Typedef axiom
m Immler & Zhan 2019. Divason et al. 2020. Large case studies
m Milehins 2022. Types-To-Sets conversion tool

PER constructions in DTT
m Constable et al. 1986. Subset types and quotient types in Nuprl
m Barthe et al. 2003. (Partial) setoids in Agda and Coq
m Altenkirch et al. 2019. Types to setoids in Martin-L6f type theory

Take Home Message

Motto: Prove easily (type-based) and still be flexible (PER-based)!

Take Home Message

Motto: Prove easily (type-based) and still be flexible (PER-based)!

And don’t worry:
Very likely (if only wide types are involved), you are not reasoning outside of HOL!

Admissible Types-to-PERs Relativization

in
Higher-Order Logic
N ‘ ‘A‘
d Andrei Popescu Dmitriy Traytel m

University of

Sheffield

&,
Sam’

PSS
O

&P UNIVERSITY OF
COPENHAGEN

20

	Introduction
	Proof Assistants
	Prelude
	Background on Higher-Order Logic (HOL)
	Back To Two Little Pigs
	Formal Definition
	Scope of Relativization and Tool

