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Our Contribution

A logically safe mechanism for reducing the bureaucracy of
formal developments in HOL-based proof assistants



HOL in One Line

Rank-1 Polymorphic Simply-Typed A-Calculus with Hilbert Choice and Infinity
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HOL in Practice

And that’s it! No induction, no datatypes, no recursion in the kernel!

These high-level mechanisms are defined from the (non-recursive) HOL primitives.

|

Fewer opportunities to have soundness bugs in the kernel.
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Our goal: Formally (and automatically) infer ¢t from .
Is this doable without extending the HOL axiomatic base?

But first: It was not clear how ¢ looks like in general.
What structure and properties do we need for relativization?
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Relaxed equalities + restricted domains = PERs (partial equivalence relations)

We generalize from Types-To-Sets to Types-To-PERs
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Another example: iterated multiplication distributes over list append

Veq. V*ozama- group (*) e—
) (VXSqlists ¥Sqtist- fold (*) e (append xs ys) = fold (*) exs * fold (*) eys)

it |V€a. YRy rel. per R A (%) € Dom(R=>R=>R) A e € Dom(R) A group™ R (x)e —
(VXSalists YSqtist € Dom(rel_list R).
fold (*) e (append xs ys) = fold (*) exs * fold (*) e ys)

Want the relational interpretation of the container types to be the expected one
(in spite of container types not being primitive in HOL)

Want that relationally parameteric functions are not affected by relativization.
Why? PER-relativization turns a term into its "closest” PER-parametric counterpart.



Summary of the Desiderata for Relativization
Term relativization RLT and relational type interpretation RIN, such that:
1. RIN should be compatible with the container-type relators
2. RLT should generalize FOL-relativization
3. RLT(t) should recover t when instantiating relations to equalities
4. RLT(t) should be PER-parametric
5. Parametric terms t should not be affected by RLT

6. RLT should preserve provability (i.e., be admissible)
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RIN(a) = Ry rel RIN(bool) = =pool rel RIN(o- = 7) = RIN(c") = RIN(7)
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COROLLARY: (Types-To-Sets) is admissible assuming wide type definitions.
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The Result’s Scope

Empirical Conjecture: Type definitions of interest in HOL developments are wide.
Evidence:

m type definitions involved in defining (co)datatypes (which are already 99% of the
cases of interest) are wide

m and so are the non-(co)datatypes from the Isabelle/HOL distribution



Relativization Infrastructure

definition group where
"group tms e «—
(Vx y z. tms (tms x y) z = tms x (tms y z)) A
(VX. tms x e = X A tms e X = X) A
(Vx. Jy. tms x y = e A tms y x = e)"

lemma lemma3 auxl:"group tms e — foldl tms x ys = tms x (foldl tms e ys)" [5 lines]
lemma lemma3 aux2: "group tms e — foldl tms x (xs @ ys) = tms (foldl tms x xs) (foldl tms e ys)" [1 lines]
lemma lemma3: "group tms e — (Vxs ys. foldl tms e (xs @ ys) = tms (foldl tms e xs) (foldl tms e ys))" [1 lines]

local_setup <RLCST @{term group}>

lemma group rlt alt:
"neper R = group rlt R tms e «—
(W xy z.RXXARYYARZZzZ— R (tms (tms x y) z) (tms x (tms y z))) A
(Vx. Rx x — R (tms x e) x A R (tms e x) x) A
(W . Rx x — (3y. Ry y AR (tms x y) e A R (tms y x) e))"
unfolding group rlt def by auto

local_setup <RLTHM @{binding lemma3 rlt} @{thm lemma3}>

lemma lemma3 rlt readable:
assumes "neper R" "R e e" "(R ===> R ===> R) tms tms"
shows "group rlt R tms e —
(Vxs ys. rel list R xs xs — rel list R ys ys — R (foldl tms e (xs @ ys)) (tms (foldl tms e xs) (foldl tms e ys)))"
supply assms(1)[simp] assms(1) [THEN list.rrel neper, simp] using lemma3 rlt[OF assms, simplified]
by (auto simp only: rrel alt rlt param neper assms(1l))



Wideness Proofs

typedef (overloaded) 'a poly = "{f :: nat =
morphisms coeff Abs poly
by (auto intro!: ALL MOST)

a::zero. Voo n. T n = 0}"

200 lines later

wide_typedef poly rel: rel poly rep: "AR1 R2. gg Rl R2 o coeff"
subgoal using rel poly neper .
subgoal using rel poly eq .
subgoal using bij upto transportFromRaw[OF poly.type definition poly rel poly def,
unfolded isPoly def[abs def, symmetric], OF bij upto ggl
unfolding isPoly rlt def .
subgoal using gg eq by simp .



Wideness Proofs

a fset*
a cset*
a multiset”

(@, B) fmap®

a biject
a dlist*

(a, B) alist”

(a, B) node

finite sets over «
countable sets over o
multisets (bags) over a
partial functions
of finite support
between « and 8
bijections on o
non-repetitive lists over
association lists with
values in o and keys in 8
the pre-datatype universe by
Berghofer and Wenzel [1999]

a filter*
a poly
a fls
(a, B) comm*

a comparator

a bit0, « bitl

filters on the
powerset of a
polynomials with
a-coefficients
formal Laurent series
with a-coefficients
commutative
a-operators
with values in j
comparison
functions on &
finite types used for
binary representation
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Motto: Prove easily (type-based) and still be flexible (PER-based)!

And don’t worry:
Very likely (if only wide types are involved), you are not reasoning outside of HOL!
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