Almost Event-Rate Independent Monitoring of

Metric Dynamic Logic

David Basin

Srđan Krstić

Dmitriy Traytel

Big DataNational Research Programme

Setting

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

event stream event event stream event event stream event even

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

event stream

@0

@1 enter

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

event stream @0 @1 enter @2 enter exit @3 enter @4 enter property verdict stream 1:0 √ 2:0 × 3:0 × 3:1 × 4:0 √

. . .

@6 exit

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

property event stream verdict stream @0 0:0 @1 enter 1:0 ✓ 2:0 X @2 enter exit @3 enter 3:0 X @3 enter 3:1 X @4 enter 4:0 ✓ @6 exit

. . .

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

unlike in CRV: online ≠ instrumentation

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

@0

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

. .

0:0 ✓

1:0 ✓

2:0 X

3:0 X

3:1 X

4:0 ✓

. . .

ALWAYS

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

@0

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

...

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

@0

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

- -

0:0 ✓

1:0 ✓

2:0 X

3:0 🗶

3:1 X

4:0 ✓

• • •

ALWAYS

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

. . .

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

. .

- 0:0 ✓
- 1:0 ✓
- 2:0 X
- 3:0 X
- 3:1 X
- 4:0 ✓

...

ALWAYS

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

...

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

. .

- 0:0 ✓
- 1:0 ✓
- 2:0 X
- 3:0 🗶
- 3:1 X
- 4:0 ✓

...

ALWAYS

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

...

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

. . .

- 0:0 ✓
- 1:0 ✓
- 2:0 X
- 3:0 X
- 3:1 X
- 4:0 ✓

. . .

ALWAYS

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

within the next 2 time-units both number unbounded potentially equal to event-rate @1 enter @2 enter exit

0:0 ✓ 1:0 ✓

@3 enter

@3 enter

@6 exit

2:0 X

3:0 X

3:1 X

4:0 ✓

ALWAYS

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

- @0
- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

...

within the next 2 time-units both

number unbounded potentially equal to event-rate

- @1 enter
- @2 enter exit
- @3 enter
- @3 enter
- @4 enter
- @6 exit

0:0 ✓	0:0
1:0 ✓	1:0
3:1 = 3:0	2:0
2:0 🗡	3:0
3:0 X	3:1

AERIAL

4:0 ✓ 4:0 ✓

ALWAYS

within the next 2 time-units both

"enter" and "exit" n "enter" must happe

@0

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

number bounded

independent from event-rate

number unbounded potentially equal to event-rate

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

ALWAYS

within the next 2 time-units both "enter" and "exit" n

"enter" must happe

number bounded independent from event-rate

@0

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

within the next 2 time-units both

number unbounded potentially equal to event-rate

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

1:0 ✓ 3:1 = 3:0

2:0 X

0:0 √

3:0 X 4:0 ✓

1:0 ✓ 2:0 X 3:0 X 3:1 X 4:0 ✓

index depends logarithmically on event-rate

ALWAYS

within the next 2 time-units both

"enter" and "exit" n "enter" must happe

number bounded independent from event-rate

@0

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

within the next 2 time-units both

number unbounded potentially equal to event-rate

@1 enter

@2 enter exit

@3 enter

@3 enter

@4 enter

@6 exit

	0:0 √	0:0 ✓
V	1:0 √	1:0 ✓
	3:1 = 3:0	2:0 🗶
	2:0 X	3:0 🗶
3:0 X		3:1 X

4:0 ✓

index depends logarithmically on event-rate

almost event-rate independence [Basin, Bhatt, Traytel, TACAS 2017]

4:0 ✓

Logic

LTL Pnueli 1977

MTL Koymans 1990

LTL Pnueli 1977

MTL Koymans 1990

LDL
De Giacomo, Vardi
2013

PSL IEEE 1850 ... 2005

add regular expressions

add notion of time

Koymans

1990

add regular expressions

add notion of time

$$\begin{array}{rcll} \phi, \psi &=& p \\ & | \neg \phi & | \phi \lor \psi \\ & | X_I \phi & | \phi U_I \psi \\ & | Y_I \phi & | \phi S_I \psi \end{array}$$

$$r,s = \bigstar \mid \phi? \mid r + s \mid rs \mid r*$$

$$i \models \langle r \rangle_{[a,b]} \phi$$

i


```
i \models \langle r \rangle_{[a,b]} \ \phi \ \text{iff there is a j such that} \qquad \qquad j \models \phi \\ \qquad \qquad \qquad (i,j) \ \text{matches } r \\ \qquad \qquad i \qquad \qquad j \\ \qquad \qquad \qquad a \leq \tau_i - \tau_j \leq b \\ (i,i) \ \text{matches } \bigstar \\ (i,i) \ \text{matches } \phi? \ \text{iff } i \models \phi \\ (i,j) \ \text{matches } r+s \ \text{iff } (i,j) \ \text{matches } r \ \text{or } (i,j) \ \text{matches } s
```

```
i \models \langle r \rangle_{[a,b]} \varphi iff there is a j such that
                                                                        j \models \phi
                                               (i,j) matches r
                                                                a \leq \tau_i - \tau_i \leq b
(i,i+1) matches \bigstar
(i,i) matches \varphi? iff i \models \varphi
(i,j) matches r+s iff (i,j) matches r or (i,j) matches s
(i,j) matches rs iff there is a k s.t. (i,k) matches r and (k,j) matches s
(i,j) matches r* iff ...
```

```
\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \vert_{\langle r \rangle}
r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*
```

 $\chi_{\rm I} \phi$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \mid \langle r \rangle_I \rangle$$

$$r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*$$

$$\chi_{I} \phi = \langle \bigstar \rangle_{I} \phi$$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_{I} \varphi \mid \varphi \mid_{\zeta} r \rangle$$

$$r, s = \bigstar \mid \varphi? \mid r + s \mid_{\zeta} r \rangle$$

$$\chi_{I} \varphi = \langle \bigstar \rangle_{I} \varphi$$

$$\varphi U_{I} \psi$$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \vert_{\langle r \rangle}$$

$$r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*$$

$$X_{I} \phi = \langle \bigstar \rangle_{I} \phi$$

$$\phi U_{I} \psi = \langle \phi^{*} \rangle_{I} \psi$$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \mid \langle r \rangle_I \rangle$$

$$r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*$$

$$\chi_{I} \phi = \langle \bigstar \rangle_{I} \phi$$

$$\phi U_{I} \psi = \langle \phi^{*} \rangle_{I} \psi = \langle (\phi? \bigstar)^{*} \rangle_{I} \psi$$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \downarrow \langle r \rangle_r$$
 $r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*$

$$\chi_I \varphi = \langle \bigstar \rangle_I \varphi$$

$$\varphi \cup_I \psi = \langle \varphi^* \rangle_I \psi = \langle (\varphi? \bigstar)^* \rangle_I \psi$$

$$\gamma_I \varphi$$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_{I} \varphi \mid \varphi : \langle r \rangle_{I} \Leftrightarrow r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^{*}$$

$$X_{I} \varphi = \langle \bigstar \rangle_{I} \varphi$$

$$\varphi U_{I} \psi = \langle \varphi^{*} \rangle_{I} \psi = \langle (\varphi? \bigstar)^{*} \rangle_{I} \psi$$

 $Y_I \phi = \phi I < \bigstar >$

$$r,s = \bigstar \mid \phi? \mid r + s \mid rs \mid r^*$$

$$X_{I} \phi = \langle \bigstar \rangle_{I} \phi$$

$$\phi \cup_{I} \psi = \langle \phi^* \rangle_{I} \psi = \langle (\phi? \bigstar)^* \rangle_{I} \psi$$

$$Y_{I} \phi = \phi : \langle \bigstar \rangle$$

$$\phi \cup_{I} \psi = \langle \phi : \bigstar \rangle$$

 $\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \vert_{\zeta} r \rangle$

$$r,s = \bigstar \mid \phi? \mid r + s \mid rs \mid r^*$$
 $X_{I} \varphi = \langle \bigstar \rangle_{I} \varphi$
 $\varphi \cup_{I} \psi = \langle \varphi^* \rangle_{I} \psi = \langle (\varphi? \bigstar)^* \rangle_{I} \psi$
 $Y_{I} \varphi = \varphi \cup_{I} \langle \bigstar \rangle$
 $\varphi \cup_{I} \psi = \psi \cup_{I} \langle \varphi^* \rangle$

 $\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \vert_{\zeta} r \rangle$

$$r,s = \bigstar \mid \phi? \mid r + s \mid rs \mid r^*$$

$$X_{I} \varphi = \langle \bigstar \rangle_{I} \varphi$$

$$\varphi \cup_{I} \psi = \langle \phi^* \rangle_{I} \psi = \langle (\phi? \bigstar)^* \rangle_{I} \psi$$

$$Y_{I} \varphi = \varphi : \langle \bigstar \rangle$$

 $\varphi S_I \psi = \psi I < \varphi^* > = \psi I < (\bigstar \varphi?)^* >$

 $\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \vert_{\zeta} \langle r \rangle$

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi _I \langle r \rangle$$

$$r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*$$

$$X_{I} \phi = \langle \bigstar \rangle_{I} \phi$$

$$\phi U_{I} \psi = \langle \phi^{*} \rangle_{I} \psi = \langle (\phi? \bigstar)^{*} \rangle_{I} \psi$$

$$Y_{I} \phi = \phi I \langle \bigstar \rangle$$

$$\phi S_{I} \psi = \psi I \langle \phi^{*} \rangle = \psi I \langle (\bigstar \phi?)^{*} \rangle$$

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

$$\varphi, \psi = p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle r \rangle_I \varphi \mid \varphi \mid \langle r \rangle_I \rangle$$

$$r, s = \bigstar \mid \varphi? \mid r + s \mid rs \mid r^*$$

$$X_{I} \varphi = \langle \bigstar \rangle_{I} \varphi$$

$$\varphi U_{I} \psi = \langle \varphi^{*} \rangle_{I} \psi = \langle (\varphi? \bigstar)^{*} \rangle_{I} \psi$$

$$Y_{I} \varphi = \varphi I \langle \bigstar \rangle$$

$$\varphi S_{I} \psi = \psi I \langle \varphi^{*} \rangle = \psi I \langle (\bigstar \varphi?)^{*} \rangle$$

within the next 2 time-units both "enter" and "exit" must happen and "enter" must happen before "exit".

 $< \star^*$ enter $\star^* > [0,2]$ exit

Algorithm

...

α

β

αSβ

... ...

α

β

αSβ

... ...

β

αSβ 🗸

.. ...

β

i-1

$$\Delta := \tau_{i+1} - \tau_i$$

$$i \models \langle r \rangle_{[a,b]} \varphi$$

$$a = 0$$

 $a = \emptyset$ \bigwedge $i \models \varphi$ \bigwedge (i,i) matches r

$$\Delta \leq b$$

$$i+1 = \langle???\rangle_{[a-\Delta,b-\Delta]} \varphi$$

$$\Delta := \tau_{i+1} - \tau_i$$

$$i \models \langle r \rangle_{[a,b]} \varphi$$

$$a = 0$$

 $a = \emptyset$ \bigwedge $i \models \varphi$ \bigwedge (i,i) matches r

$$\Delta \leq b$$

$$i+1 = \langle \delta_i(r) \rangle_{[a-\Delta,b-\Delta]} \varphi$$

$$\Delta := \tau_{i+1} - \tau_i$$

$$i \models \langle r \rangle_{[a,b]} \varphi$$

$$\epsilon_{i}(r)$$

$$\Delta \leq b$$

$$i+1 = \langle \delta_i(r) \rangle_{[a-\Delta,b-\Delta]} \varphi$$

$$\Delta := \tau_{i+1} - \tau_i$$

Brzozowski Derivative

$$egin{aligned} arepsilon_i(m{\star}) &= oxed{mathbb{\pi}} & \delta_i(m{\star}) &= oxed{mathbb{\pi}}? \ arepsilon_i(arphi?) &= i \models arphi & \delta_i(arphi?) &= oxed{mathbb{\pi}}? \ arphi_i(r+s) &= arepsilon_i(r) \lor arphi_i(s) & \delta_i(r+s) &= \delta_i(r) + \delta_i(s) \ arphi_i(r+s) &= arphi_i(r) + \delta_i(s) & \delta_i(r+s) &= \delta_i(r) \cdot s + \ arphi_i(r)? \cdot \delta_i(s) \ arphi_i(r+s) &= oxed{mathbb{\pi}} & \delta_i(r^*) &= oxed{mathbb{\pi}} & \delta_i(r) \cdot r^* \end{aligned}$$

Brzozowski Derivative

$$egin{aligned} arepsilon_i(m{\star}) &= oxed{mathbb{\pi}} & \delta_i(m{\star}) = oxed{mathbb{\pi}}? \ arepsilon_i(arphi?) &= i \models arphi & \delta_i(arphi?) &= oxed{mathbb{\pi}}? \ arphi_i(r+s) &= arepsilon_i(r) \lor arphi_i(s) & \delta_i(r+s) &= \delta_i(r) + \delta_i(s) \ arphi_i(r+s) &= arphi_i(r) \cdot s + \ arphi_i(r)? \cdot \delta_i(s) \ arphi_i(r+s) &= oxed{mathbb{\pi}} & \delta_i(r^*) &= \delta_i(r) \cdot r^* \end{aligned}$$

not the whole story; see paper

```
enter
```

exit

$$< \star^*$$
 enter $\star^* > [0,1]$ exit

```
0
                    enter
                          1
                     exit
        <★*> [0,0] exit
        <★*> [0,1] exit
        <★*> [0,2] exit
< \star^* enter \star^* > [0,0] exit
<★*enter ★*> [0,1] exit
<★*enter★*> [0,2] exit
```


enter	0				√	
exit	1				✓	
< ★ *> [0,0] exit	2				\checkmark	
< ★ *> [0,1] exit	3				✓	
< ★ *> [0,2] exit	4				√	
< ★ *enter ★ *> [0,0] exit	5				X	
< ★ *enter ★ *> [0,1] exit	6				2 v 5	
< ★ *enter ★ *> [0,2] exit	7				3 v 6	
		0	1	L	2	3

Evaluation

- Aerial MDL
- Aerial MTL
- Monpoly
- Montre

- Aerial MDL
- Aerial MTL
- Monpoly
- Montre

- Aerial MDL
- Aerial MTL
- Monpoly
- Montre

Formula Size

Aerial MDLAerial MTLMonpoly

Formula Size

Aerial MDLAerial MTLMonpoly

Formula Size

Aerial MDLAerial MTLMonpoly

Formula Size

Future Work

Expressiveness

Expressiveness

Expressiveness

Almost Event-Rate Independent Monitoring of

Metric Dynamic Logic

David Basin

Srđan Krstić

Big Data

National Research Programme